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Simple Summary: Regucalcin plays a multifunctional role in the regulation of cell function and
expresses a repressive effect in the growth of normal cells. Of note, there is increasing evidence
that regucalcin plays a potential role as a suppressor in several types of human cancer. Regucalcin
expression is downregulated in the tumor tissues of cancer patients. Patients with higher levels of
regucalcin in tumor tissues have shown longer survival. Overexpressed regucalcin suppresses the
development of carcinogenesis. Extracellular regucalcin has been shown to suppress the proliferation
of cancer cells. Delivery of the regucalcin gene may offer novel therapeutic benefits. This review
discusses the potential role of regucalcin in the suppression of human cancer.

Abstract: Regucalcin, a calcium-binding protein lacking the EF-hand motif, was initially discovered
in 1978. Its name is indicative of its function in calcium signaling regulation. The rgn gene encodes for
regucalcin and is situated on the X chromosome in both humans and vertebrates. Regucalcin regulates
pivotal enzymes involved in signal transduction and has an inhibitory function, which includes
protein kinases, protein phosphatases, cysteinyl protease, nitric oxide dynthetase, aminoacyl-transfer
ribonucleic acid (tRNA) synthetase, and protein synthesis. This cytoplasmic protein is transported to
the nucleus where it regulates deoxyribonucleic acid and RNA synthesis as well as gene expression.
Overexpression of regucalcin inhibits proliferation in both normal and cancer cells in vitro, indepen-
dent of apoptosis. During liver regeneration in vivo, endogenous regucalcin suppresses cell growth
when overexpressed. Regucalcin mRNA and protein expressions are significantly downregulated in
tumor tissues of patients with various types of cancers. Patients exhibiting upregulated regucalcin
in tumor tissue have shown prolonged survival. The decrease of regucalcin expression is linked to
the advancement of cancer. Overexpression of regucalcin carries the potential for preventing and
treating carcinogenesis. Additionally, extracellular regucalcin has displayed control over various
types of human cancer cells. Regucalcin may hold a prominent role as a regulatory factor in cancer
development. Supplying the regucalcin gene could prove to be a valuable asset in cancer treatment.
The therapeutic value of regucalcin suggests its potential significance in treating cancer patients. This
review delves into the most recent research on the regulatory role of regucalcin in human cancer
development, providing a novel approach for treatment.

Keywords: regucalcin; cancer suppressor; cell signaling; cell proliferation; carcinogenesis; gene therapy

1. Introduction

Cellular calcium plays a pivotal role as a second messenger in the hormone signal
transduction mechanism of cell communication [1]. Its regulatory effect is potentially
modulated by calcium-binding proteins, including calmodulin [2] and protein kinase C [3],
which play critical roles as intracellular signaling molecules in the regulation of various
cell functions [4]. In recent years, there has been increased attention on the functional
pleiotropy of regucalcin, a novel calcium-binding protein, in cell signaling and disease [5,6].
Regucalcin was first discovered in 1978 as a calcium-binding protein lacking the EF-hand
motif commonly found in calcium-binding domains [7,8]. This protein inhibits various
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calcium-dependant enzymes, such as Ca2+/calmodulin-dependent protein kinase and
protein kinase C. Consequently, it serves a crucial role in cellular regulation as an inhibitory
protein in the calcium signaling pathway [5,8]. Regucalcin’s nucleotide sequence was
identified in 1993, and its gene symbol (rgn) is registered on PubMed [9]. The gene for
regucalcin is located exclusively on the X chromosome, comprising of seven exons and
six introns [5,10,11]. The regucalcin gene has been identified in over 15 vertebrate species,
including humans, with the creation of the regucalcin family [12]. Later on, a protein
identical to regucalcin, named senescence marker protein-30, was discovered [13,14].

The expression of the regucalcin gene is influenced by various physiological conditions,
including different hormones and their associated signaling molecules. The promoter
region of the gene has been thoroughly examined [11]. The regucalcin gene’s expression is
enhanced by various transcription factors, such as calcium, AP-1, NF1-A1, RGPR-p117, β-
catenin, HIF-1α, NF-κB, STAT3, SMADs, and the aryl hydrocarbon receptor (AHR) [15–19].
These factors have been identified as enhancers. Repressor elements have been found in the
promoter region of the regucalcin gene. According to a study [20], SP1 acts as a suppressor
in regucalcin gene expression. The discovery of RGPR-p117 was part of the transcription
mechanism study of this gene [19], which is located on human chromosome 1q25.2 and is
composed of 26 exons. Binding to a nuclear factor I (NFI) consensus motif TTGGC(N)6CC
activates the regucalcin protein [19]. These transcription factors may contribute to cell
regulation via regucalcin expression, as depicted in Figure 1.
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Figure 1. The expression of regucalcin is regulated by various signaling factors implicated in the
action of peptide hormones, steroid hormones, and other factors. The transcription factors AP-1, NF1-
A1, RGPR-p117, and others are involved in the expression of the regucalcin gene. These transcription
factors are transported from the cytoplasm to the nucleus through a mechanism mediated via
intracellular signaling factors. These signaling factors include cyclic AMP-dependent protein kinase
(A kinase), Ca2+-calmodulin-dependent protein kinase (CaM kinase), and protein kinase C (C kinase).
These factors are coupled to the signaling processes of various factors. Steroid hormones directly
bind to receptors in the cytoplasm and nucleus, increasing the expression of the regucalcin gene
through transcription factors. Additionally, the promoter activity of the regucalcin gene is enhanced
in the nucleus.

Regucalcin mRNA and protein are expressed in various cell types and tissues [21].
Regucalcin functions as a regulator of signaling pathways in a variety of cells [5,6,8].
Regucalcin is critical to maintaining intracellular Ca2+ homeostasis by activating Ca2+

pump enzymes in the plasma membranes, mitochondria, and endoplasmic reticulum of
cells, resulting in the reduction of cytoplasmic Ca2+ levels [5,8]. The cytoplasmic regucalcin
is translocated to the nucleus of cells. Both cytoplasmic and nuclear regucalcins inhibit
the activity of several Ca2+-dependent protein kinases, protein phosphatases, nitric oxide
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synthase, thiol protease, aminoacyl t-RNA synthetase, and protein synthesis involved
in cell signaling [5,22]. Nuclear regucalcin hinders the Ca2+-activated process of DNA
fragmentation and DNA and RNA synthesis. It also regulates gene expression, hence
indicating its potential as a transcription factor [22]. As such, regucalcin exhibits the ability
to regulate several molecules involved in signaling pathways within the cytoplasm and
nucleus of cells. Overexpressed regucalcin has been shown to suppress cell proliferation
enhancement [23] and apoptotic cell death [24] mediated by various signaling stimuli in
cloned normal rat kidney proximal tubular epithelial cells and cloned rat hepatoma cells
in vitro. Regucalcin is proposed to play a critical role as a suppressor in different signal
transductions to maintain cell homeostasis for various stimuli [5]. Regucalcin may be
involved in maintaining a physiological state and preventing metabolic disorders and
related diseases, including osteoporosis [25], hyperlipidemia [25,26], diabetes [26], and
renal failure [27].

The role of regucalcin in humans has yet to be fully understood, although the regucal-
cin gene and its protein sequences and crystal structure have been identified in the human
species [12,28]. In recent years, evidence has increasingly suggested that regucalcin may
play a role in suppressing human cancer [29–33]. Overexpressed regucalcin plays a critical
role in suppressing cell growth by controlling various signaling processes associated with
cell proliferation, repressing oncogene expression, and stimulating tumor suppressor gene
expression in various types of human cancer cells [34–40]. Furthermore, regucalcin gene
expression and protein levels are downregulated in human cancer tissues as per multiple
gene expression profiling and proteomics analyses [34–40]. Higher expression of regucalcin
in tumor tissues has been demonstrated to extend the survival of cancer patients [34–40].
It has been suggested that regucalcin may have a potential role in suppressing human
cancers. This review presents recent advancements in understanding the role of regucalcin
as a tumor suppressor in human cancer.

2. Overexpressed Regucalcin Suppresses Cell Growth In Vitro

Regucalcin has been shown to suppress the proliferation of various cell types, includ-
ing normal and cancer cells. Overexpressed regucalcin suppressed proliferating cells via the
mechanism involving the inhibition of the cell signaling process, independent of apoptotic
cell death in vitro [23]. The overexpression of regucalcin blocked the pathway of the G1
progression and G2/M phase cell cycle due to the inhibition of cyclin-dependent kinases
(cdc2, cdk2m, and cdk5) in proliferating cells [23]. Furthermore, overexpressed regucalcin
increased the expression of p21, an inhibitor of cyclin-dependent kinases (cdk) [23]. Over-
expressed regucalcin did not aeffect the expression of cdc2a and chk2 (checkpoint kinase 2)
mRNAs [23]. Thus, regucalcin has demonstrated the ability to hinder the growth of diverse
cell types, including those implicated in cancer.

The expressions of regucalcin are decreased in liver cancer cells compared to normal
livers [23,32]. Overexpression of regucalcin suppressed the growth of H4-II-E cells and
HepG2 cells in vitro [23,32]. The underlying mechanism by which the overexpressed
regucalcin suppresses cell growth has been implicated in the inhibition of mitogen-activated
protein (MAP) kinase, Ca2+/calmodulin-dependent protein kinases, protein kinase C,
and various protein phosphatases, including protein tyrosine phosphatase and protein
serine/threonine phosphatases in the cytoplasm and nuclei of cells in vitro [23,32]. In
addition, regucalcin suppresses cytoplasmic protein synthesis by inhibiting aminoacyl
t-RNA synthase activity in the cytoplasm of cells [23,32], resulting in protein loss in cancer
cells. Of note, overexpressed regucalcin suppressed the enhancement of nuclear DNA
synthesis in rat hepatoma H4-II-E cells [23,32]. Thus, regucalcin has been shown to suppress
proliferation in normal and cancer cells, suggesting a physiological and pathophysiological
role in the control of cell overproliferation.

As an underlying mechanism, overexpressed regucalcin has been demonstrated to
suppress tumor-related gene expression, such as c-myc, c-fos, c-jun, c-src or Ha-ras, which
are tumor stimulator genes [23,32]. It is worth noting that c-src is an oncogene [41]. It is
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noteworthy that overexpression of regucalcin inhibits the mRNA levels of p53 and Rb,
which are tumor suppressor genes [42]. Additionally, p53 stimulates the gene expression
of p21, which is an inhibitor of protein kinases that are related to the cell cycle. These
genes have been demonstrated to increase cancer cell growth in vitro [42]. This, in turn,
induces cell cycle arrest [23,32], providing evidence that the alteration of these molecules
may play a role in controlling cell proliferation in vitro. Downregulation of the regucalcin
gene expression in cancer cells could lead to tumorigenesis with rapidly proliferating
cells [23,32].

As stated previously, Figure 2 provides a summary of the molecules and genes that
regucalcin targets to inhibit the growth of both normal and cancer cells. Regucalcin plays a
critical role in the suppression of cell proliferation by regulating multiple signaling processes.
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Figure 2. Regucalcin inhibits proliferation in various types of normal and cancer cells. Within
cells, intracellular regucalcin reduces the activity of several enzymes involved in signaling, such as
Ca2+/calmodulin-dependent enzymes, protein kinases, and protein phosphatases in the cytoplasm.
Additionally, regucalcin activates cysteinyl protease and aminoacyl-tRNA synthetase, leading to a
decrease in protein production. Cytoplasmic regucalcin is translocated to the nucleus through protein
kinase-related signaling. Nuclear regucalcin inhibits both Ca2+-dependent and -independent protein
kinase and protein phosphatase, and suppresses nuclear DNA and RNA synthesis. Overexpressed
regucalcin obstructs the G1 and G2/M phases of the cell cycle. Therefore, regucalcin’s suppression of
cell proliferation occurs by regulating various signaling processes. The black upward arrow signifies
upregulation, while the black and red downward arrows denote downregulation.

3. The Repressive Role of Regucalcin in Carcinogenesis In Vivo Models

Regucalcin is involved in the control of cell growth and carcinogenesis in vivo mod-
els. The hepatocytes of rat liver are normally quiescent in vivo. Partial hepatectomy liver
tissues increase the proliferation of hepatocytes to restore the removed liver tissue [43].
The regenerating liver is a good model for the cell proliferation of liver tissue in vivo [43].
Regucalcin may help to control the growth of the regenerating liver and the development of
hepatocarcinogenesis in animal models in vivo [44]. Regucalcin mRNA expression was in-
creased in regenerating rat liver after partial hepatectomy [44], suggesting an involvement
in suppressing liver cell overproliferation with the regenerating liver. Enhanced endoge-
nous regucalcin increased the activities of the plasma membrane (Ca2+-Mg2+)-ATPase and
nuclear Ca2+-ATPase to maintain cytoplasmic and nuclear calcium levels [44]. Mechanisti-
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cally, regucalcin suppressed the activities of Ca2+/calmodulin-dependent protein kinases,
protein kinase C, protein phosphatases, and the synthesis of protein, DNA, and RNA in the
nucleus, which is enhanced with proliferating cells in the regenerating liver, to control liver
cell overproliferation in vivo [44]. Thus, endogenous regucalcin has been shown to play a
role in controlling liver regeneration after partial hepatectomy in vivo.

Liver carcinogenesis is induced in vivo in rats by continuous feeding of the basal
diet containing 0.06% 3′-methyl-4-dimethylaminoazobenzene [45]. In this animal model,
the study identified a decrease in regucalcin mRNA expression in rat hepatoma tissues
compared to non-tumor liver tissues. Additionally, a specific increase in c-myc mRNA was
observed in the tumor tissues [45]. Notably, the mutation of the regucalcin gene was not
found in the tumor tissues [45]. This finding was the first to implicate regucalcin in cancer
in vivo. In other animal models, new markers of liver carcinogenesis were identified in the
pre-neoplastic foci of the liver of rats partially hepatectomized in vivo with both diethylni-
trosamine and 2-acetylaminofluorene, which induces liver carcinogenesis [46]. Biomarkers,
including transaldolase, aflatoxin B1 aldehyde reductase, and gamma-glutamylcysteine
synthetase, were identified as upregulated genes in hepatocellular carcinoma (HCC) [46].
Specifically, regucalcin expression was shown to be downregulated in HCC, especially in
the early stages of carcinogenesis [46]. Additionally, in vivo studies with CuZn superoxide
dismutase (CuZnSOD, Sod1)-deficient mice have demonstrated their ability to induce
HCC [47]. In this animal model, a considerable decrease in regucalcin was found in −/−
samples with HCC development [47]. This indicates that the downregulation of regucalcin
gene expression is linked with carcinogenesis in vivo animal models, supporting the notion
that regucalcin could potentially suppress tumorigenesis in rats.

Regucalcin is expressed not only in the liver but also in the prostate and mammary
glands of both rats [48] and humans [49]. Regucalcin gene expression in these tissues was
downregulated by sex steroid hormones, including 17β-estradiol [50,51]. Interestingly,
overexpression of regucalcin led to the suppression of cell proliferation in the prostate
of regucalcin transgenic rats in vivo [50]. In addition, it has been shown that regucalcin
gene expression in the prostate decreases with aging [50]. This decrease was not seen
in transgenic rats overexpressing regucalcin [50]. Increasing age leads to decreased glu-
tathione activity and antioxidant capacity in the prostate. These decreases were found to be
prevented in regucalcin transgenic rats [50]. Thus, overexpression of regucalcin may have
a protective effect against age-related pathologies, such as prostate cancer [50].

In addition, regucalcin is involved in mammary malignancy using regucalcin trans-
genics in vivo [51]. 7,12-dimethylbenz[α]anthracene, a carcinogen [51], was administered
to wild-type and regucalcin transgenic rats [51]. Regucalcin expression decreased with
the histologic grade of breast infiltrating ductal carcinoma (IDC) [51]. This study implies
that breast cancer progression is associated with a decline in regucalcin [51]. Furthermore,
regucalcin transgenic rats demonstrated a lower incidence of carcinogen-induced mam-
mary tumors through a reduction in cell cycle inhibitors and an increase in apoptosis
inducers [51]. Thus, elevated levels of regucalcin were demonstrated to obstruct tumor
growth in mammary glands induced by carcinogens in vivo [51].

As stated previously, regucalcin has a protective role in the overproliferation of regen-
erating rat liver after partial hepatectomy in vivo models. Additionally, the expression of
regucalcin decreases in animals with cancer and contributes to the development of liver,
prostate, and mammary gland carcinogenesis in in vivo animal models.

4. The Role of Regucalcin in the Suppression of Human Cancer

The gene for regucalcin is expressed in the human species [12]. Characteristics of the
human regucalcin gene have been discovered. Transcript heterogeneity is found in the
human regucalcin gene [52], although the significance of transcript heterogeneity of the
human gene for regucalcin is unknown. Alternatively spliced variants of the regucalcin
gene have been found in various normal and tumor tissues of human subjects, although
they have not been observed in animals, including rats and mice [53]. The different variants
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of regucalcin mRNA, both full-length and alternatively spliced, were expressed in various
human normal tissues. However, they were suppressed in tumor tissues such as hepato-
cellular carcinoma, renal transitional cell carcinoma, brain malignant meningioma, and
lung non-small cell carcinoma [53]. Other tumor tissues may also contain these variants.
Overexpressed regucalcin has demonstrated its potential in suppressing the growth of
human cancer cells [34–40]. However, overexpression of the spliced variant proteins did
not have a significant suppressive effect on the growth of cancer cells [53]. Further studies
are required to determine the significance of the spliced variant proteins in the regulation
of human cells.

Regucalcin may potentially suppress human cancer [23,32]. Overexpressed regucalcin
plays a suppressive role in human cancer cell growth by suppressing various signaling
processes associated with cell proliferation by repressing oncogene expression and stimu-
lating tumor suppressor gene expression in various types of human cancer cells [34–40]. In
addition, the downregulation of the regucalcin gene and its protein expressions in human
cancer tissues has been demonstrated by multiple gene expression profiling and proteomics
analyses [34–40]. Notably, patients with various types of human cancer experience pro-
longed survival with an increased expression of regucalcin in tumor tissues [34–40], as
demonstrated in Figure 3.

4.1. Liver Cancer

Regucalcin is highly expressed in both animal and human liver and is suppressed in
liver cancer of humans. Hepatocellular carcinoma (HCC) is the most common primary
liver cancer, which accounts for most of the prevalent malignancies and the primary cause
of cancer-linked deaths [54,55]. HCC usually arises in cirrhosis conditions, a chronic and
diffuse liver ailment that occurs due to continuous liver regeneration and injury [56,57].
HCC cases are also associated with chronic viral infections, such as hepatitis B or hepatitis
C [58–62]. External stimuli initiate a multistep process leading to hepatocellular carcinogenesis.

Regucalcin plays a critical role as a suppressor in human liver cancer, as depicted in
Figure 3 [34]. When comparing liver expression levels of regucalcin in 35 healthy individ-
uals and 47 patients with HCC, a decrease in its expression was observed among HCC
patients using the Gene Expression Omnibus (GEO) database (GSE45436) and the Human
Protein Atlas, as reported by [34]. Moreover, a clinical evaluation was conducted between
81 HCC patients with higher regucalcin expression and 81 HCC patients with lower regu-
calcin expression [34]. The results showed that reduction of regucalcin expression was
associated with poor prognosis in HCC patients [34]. Higher regucalcin gene expression
was associated with prolonged survival in HCC patients [34]. It can be hypothesized that
downregulated regucalcin expression plays a role in the development of carcinogenesis in
human HCC cells. Regucalcin has potential as a suppressor of human HCC. Translational
studies have demonstrated that the overexpression of regucalcin inhibits the proliferation,
cell death, and migration of human liver cancer HepG2 cells in vitro [34]. The overex-
pression of regucalcin suppressed the G1 and G2/M phase cell cycle and proliferation of
HepG2 cells by inhibiting several signaling pathways comprising Ras, Akt, MAP kinase,
SAPK/JNK, NF-κB p65, and the expression of the oncogenes c-fos and c-myc while increas-
ing the levels of tumor suppressors p21, p53, and Rb [34]. Remarkably, the overexpression
of regucalcin reduced the levels of β-catenin, which is a major oncogenic molecule in
HCC [34]. Mutation of the β-catenin gene is detected in patients with HCC and has been
found to alter the expression of β-catenin target genes such as glutamate synthetase, axin2,
lect2, and regucalcin [63]. Furthermore, in vitro studies indicate that the growth of HepG2
cells is promoted by the calcium channel agonist Bay K 8644 [64]. However, this promotion
is hindered by regucalcin overexpression in HepG2 cells [64]. Thus, the elevated expression
of regucalcin demonstrated inhibition of calcium signaling related to the growth of liver
cancer cells.
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Figure 3. Regucalcin may have a role in suppressing human cancer. Low expression levels of the
regucalcin gene and protein seem to be associated with unfavorable outcomes in patients with
various types of human cancer. The patients were divided into two groups based on their regucalcin
gene expression, high and low. The high regucalcin gene expression group exhibited a statistically
significant difference (p-value) compared to the low group. The Kaplan-Meier curve showed a
significant increase in the survival rate of cancer patients in the high regucalcin gene expression
group compared to the low expression group. Abbreviations: RGN, regucalcin.

Furthermore, a tissue microarray confirmed that regucalcin is preferentially expressed
in the normal human liver [65]. The level of regucalcin was reduced in HCC tissues
compared to non-tumor tissues [65]. The downregulation of regucalcin in HCC was
suggested to be mediated by DNA methylation [65]. This study provides additional
support for the notion that regucalcin serves as a possible clinical prognostic marker and
therapeutic target for HCC [65].
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Serum regucalcin may be clinically significant as a biomarker in human liver
cancer [66–69]. Regucalcin may be an HCC-associated antigen [66]. A total of 175 instances
of HCC serum were examined to ascertain the presence of anti-regucalcin antibodies [66].
Specifically, 22 cases were confirmed as positive [66]. In addition, the regucalcin and
anti-regucalcin antibody levels in the serum of 143 patients with HCC were compared to
those in serum samples from 137 patients with chronic hepatitis, 51 individuals with liver
cirrhosis, and 165 healthy control participants [67]. The rate of positivity for anti-regucalcin
antibodies in HCC patients was higher than that in the chronic hepatitis group and the
liver cirrhosis group [67]. This implies that the levels of anti-regucalcin antibodies in the
serum could serve as a unique biomarker for diagnosing HCC [67]. It is worth noting
that significant outcomes have been recorded in patients with alpha-fetoprotein (AFP)
negativity [67].

Liver injury and hepatitis can lead to the development of hepatocellular carcinoma
(HCC) in humans. Regucalcin in serum is a potential biomarker for detecting hepatitis. A
study found that regucalcin was released in the serum of human subjects with hepatitis [69].
The study collected serum samples from 42 individuals diagnosed with liver disease. The
serum regucalcin concentration in all patients was significantly higher than that in the
serum of normal subjects (10 persons) without hepatitis [69]. Notably, the serum levels of
glutamine-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT)
in 18 patients with liver damage were within normal range [69]. The assessment of serum
regucalcin served as an effective diagnostic tool for chronic liver injury, presenting a lower
level of serum GOT and GPT activities. Serum regucalcin exhibits potential as a biochemical
marker for hepatitis due to its potential sensitivity.

Furthermore, serum regucalcin was determined in 47 chronic hepatitis B patients,
91 hepatitis B virus (HBV)-related acute-on-chronic liver failure (HBV-ACLF) patients, and
33 healthy controls [70]. The median serum regucalcin concentrations in the HBV-ACLF
and chronic hepatitis B patients were much higher than in the healthy controls. Serum
regucalcin may be more useful as a marker of liver injury [69,70].

Interestingly, the development of a regucalcin antigen vaccine for HCC immunother-
apy has been investigated. Dendritic cells (DC) pulsed with recombinant regucalcin were
shown to induce cytotoxic T lymphocytes (CTLs) against liver cancer cells in vitro [71].
Regucalcin and the heat shock protein GP96 were subcloned into lentiviruses and trans-
fected into DCs from healthy donors [71]. Regucalcin plus GP96 effectively stimulated the
proliferation of T cells compared to the control treatment [71]. In the constructed liver cancer
model, the regucalcin plus GP96 group showed a better effect [72]. In addition, DCs trans-
duced with LV-regucalcin were shown to enhance specific T-cell immune responses against
murine hepatocarcinoma cells in vitro and in vivo [71,73]. These studies may lead to the
development of a DC-based regucalcin antigen vaccine for HCC immunotherapy [71,73].

As mentioned above, it has been demonstrated that the downregulation of liver
regucalcin may lead to hepatocellular carcinogenesis (HCC) and that this protein plays a
critical role as a suppressor of HCC. In addition, serum regucalcin may play a clinical role
as a biomarker for the diagnosis of HCC and as an antigen for immunotherapy.

4.2. Lung Cancer

Human lung cancer is categorized into two types: small-cell lung cancer (SCLC) and
non-small cell lung cancer (NSCLC). NSCLC accounts for over 80% of all cases and is a
significant factor in malignancy-related deaths and long-term survival rates, according
to [74–81]. Additional therapeutic measures may be required for lung cancer sufferers.
Notably, the decreased expression of regucalcin contributes to the growth of human lung
cancer [37]. Gene expression and survival data from 204 patients with lung adenocarcinoma
were retrieved from the GEO database (GSE31210) to carry out outcome analysis [37]. The
results revealed that regucalcin expression was downregulated in lung cancer patients.
Moreover, higher regucalcin gene expression led to prolonged survival in lung cancer
patients. In translational studies, it was observed that the overexpression of regucalcin
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suppressed proliferation, cell death, and migration in human lung adenocarcinoma NSCLC
A549 cells in vitro [37]. In the underlying mechanism, regucalcin overexpression led to cell
cycle arrest in A549 cells by suppressing multiple signaling pathways such as Ras, Akt,
MAP kinase, and SAPK/JNK [37]. Additionally, the overexpressed regucalcin reduced the
oncogenes c-fos and c-myc while upregulating the tumor suppressors p53 and Rb [37].

Note that regucalcin and survivin are involved in the process of aging and overcoming
aging and are epigenetically modified in NSCLC tissues, as demonstrated by analysis of a
methylome bead chip and corresponding transcriptome [82]. The study has shown that a
higher expression of survivin is associated with lower survival rates in adenocarcinoma
patients, while a higher expression of regucalcin is correlated positively [82]. Epigenetic
reprogramming in NSCLC may increase survivin expression and decrease regucalcin ex-
pression [82]. Survivin and regucalcin could be potential predictive markers in NSCLC [82].

The study investigated the role of regucalcin in NSCLC, using tumor and normal tissue
from 341 NSCLC patients [83]. Results indicated that regucalcin expression was signifi-
cantly reduced in NSCLC tissue compared to non-tumor tissue [83]. Additionally, Kaplan-
Meier survival analysis demonstrated that patients with lower regucalcin expression had
poorer overall survival compared to patients with higher regucalcin expression [83]. Trans-
lational studies indicate that overexpressed regucalcin inhibits the proliferation of A549 and
H1299 cells in vitro and in tumor xenografts. Additionally, it downregulates the expression
of c-myc, cyclinD1 protein, and histone deacetylase 4 (HDAC4) [83]. Notably, HDAC4
overexpression reverses the inhibition of NSCLC mediated by regucalcin both in vitro and
in vivo [83]. Regucalcin was shown to inhibit NSCLC proliferation by reducing HDAC4
expression, suggesting a possible mechanism by which regucalcin suppresses NSCLC.

Interestingly, recent research indicates that regucalcin may play a significant role in
the tumor immunological microenvironment of lung squamous cell carcinoma (LUSC) [83].
By utilizing ESTIMATE and CIBERSORT algorithms and the Tumor Immune Estima-
tion Resource database, the correlation between regucalcin and immune cells was estab-
lished [83,84]. Furthermore, regucalcin expression was found to be reduced in the tumor
tissues of LUSC patients [84]. It is notable that the expression of regucalcin was greatly in-
volved in immunobiological processes [84]. The results of this study demonstrate a positive
correlation between regucalcin expression and specific immune-infiltrating cells in the lung
tumor microenvironment. Regucalcin’s potential role in this context suggests that it may
serve as a valuable biomarker for assessing immunotherapy efficacy and patient prognosis.

4.3. Prostate Cancer

Prostate cancer, a malignancy which commonly spreads to bone, ranks among men’s top
malignant growths, and is the second leading cause of cancer-related death for men [85–88].
This condition particularly infiltrates bones, leading to severe complications like excruciat-
ing pain, fractures, spinal cord compression, and bone marrow suppression [89–95]. The
most prevalent cause of death among patients afflicted with prostate cancer is the metastatic
spread of the tumor or disease recurrence. Regucalcin plays a role in the suppression of
prostate cancer (Figure 3) [40]. This study elucidates the role of regucalcin in prostate
cancer tumor malignancy [40]. The expression of regucalcin was lower in metastatic tumors
than in primary tumors [40]. Prostate cancer patients with higher regucalcin expression
had a prolonged progression-free survival compared to those with lower regucalcin gene
expression [40]. Additionally, the translational study demonstrated that in vitro overex-
pression of regucalcin significantly decreased colony formation and cell growth in bone
metastatic human prostate cancer PC-3 and DU-145 cells [40]. Overexpression of regucalcin
increased the levels of p53, Rb, and p21, while decreasing the levels of Ras, PI3 kinase,
Akt, MAP kinase, and transcription factors, including NF-κB p65, β-catenin, and signal
transducer and activator of transcription 3 (STAT3). This leads to the control of cell growth
and suggests that regucalcin has a suppressive effect on lung cancer by regulating the
expression of various molecules in different signaling pathways [40].



Cancers 2023, 15, 5489 10 of 23

Regucalcin promotes dormancy of prostate cancer [96]. The study confirmed that
higher levels of regucalcin were associated with longer recurrence-free and overall survival
of prostate cancer patients. An ectopic expression system induced dormancy in vivo of
prostate tumor cells using doxycycline-inducible regucalcin expression [96]. Interestingly,
the study found that knocking down regucalcin in LNCap cells, a human prostate cancer
cell line, led to their increased growth in the tibia of mice [96]. Regucalcin was found to
promote tumor dormancy through various mechanisms, including activation of p38 MAP
kinase, decrease in Erk signaling, and inhibition of FOXM1 expression [96]. Furthermore,
regucalcin was shown to suppress angiogenesis by raising secretory miR-23c levels in
exosomes [96]. Therefore, this research supports the crucial role of regucalcin in maintaining
the quiescence of the prostate [96].

Notably, an overexpression of regucalcin was found to suppress the migration and
invasion of bone metastatic human prostate cancer cells in vitro [97]. Mechanistically,
overexpression of regucalcin led to decreased levels of key metastasis proteins, including
Ras, Akt, MAP kinase, RSK-2, mTOR, caveolin-1, and integrin β1 [97]. Additionally, the
invasion of prostate cancer cells was promoted by co-culturing with preosteoblastic MC3T3-
E1 or preosteoclastic RAW264.7 cells [97]. Thus, the overexpression of regucalcin in prostate
cancer cells prevented aberrant bone cell differentiation. It is noteworthy that regucalcin
overexpression also inhibited TNF-α production in prostate cancer cells [97].

As previously stated, regucalcin suppresses human prostate carcinogenesis. When
there is a decrease in regucalcin in human prostate cells, it leads to increased prostate cancer
metastasis. Conversely, a higher expression of regucalcin in prostate cancer cells inhibits
their migration, invasion, and bone metastatic activity.

4.4. Breast Cancer

Breast cancer is the most prevalent malignant form and the primary reason for death
due to cancer among women in the United States. The malignancy is prone to metastasize
to the bone [72,98–102], inducing agonizing pathological fractures, pain, and hypercal-
cemia [72,98–102]. The invasion of the tumor in the bone tissue corresponds to the activa-
tion of osteoclasts and osteoblasts, which are the main bone cells [100,102–104]. For patients
of breast cancer with bone metastases, bisphosphonates or denosumab are the standard
care treatment options [105].

The expression pattern of regucalcin was compared in human, canine, and feline
mammary carcinomas [106]. Regucalcin was specifically observed in neoplastic mammary
epithelial cells, while its expression was low in normal mammary gland tissues or well-
differentiated adenoma tissues. This study provides valuable information to comprehend
the expression of regucalcin in different stages of mammary carcinoma and indicates its
usefulness as a pan-species diagnostic marker.

The study examined the role of regucalcin in human breast cancer patients by an-
alyzing data from the GEO database (GSE6532). The goal was to compare clinical out-
comes between 44 patients expressing higher levels of regucalcin and 43 patients with
lower expression (see Figure 3) [36]. It was found that regucalcin expression is down-
regulated in breast cancer patients [36], and patients with higher regucalcin levels had
longer relapse-free survival [36]. Additionally, the translational study showed that overex-
pressing regucalcin led to cell cycle arrest and inhibited the proliferation of bone metastatic
human breast MDA-MB-231 cells in vitro [36]. Mechanistically, the overexpression of
regucalcin suppressed various signaling pathways, such as Akt, MAP kinase, SAPK/JNK,
NF-κB p65, and β-catenin, while increasing the tumor suppressor p53 and decreasing
K-ras, c-fos, and c-jun [36]. Additionally, research has demonstrated that the coculture
of regucalcin-overexpressing MDA-MB-231 cells and mouse bone marrow cells inhibited
enhanced osteoclastogenesis and suppressed mineralization in vitro [36]. Furthermore,
higher expression of regucalcin was shown to suppress the growth and bone metastatic
activity of breast cancer cells, potentially contributing to relapse-free survival in patients.
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4.5. Pancreatic Cancer

The pancreas comprises two types of cells—endocrine and exocrine cells. Pancreatic
ductal adeno-carcinoma (PDAC) accounts for about 90% of all pancreatic cancers [107–109].
As a highly aggressive malignancy [110–112], currently available therapies only provide
limited treatment options for pancreatic cancer patients [110–112]. K-ras mutations are
present in the majority (90%) of pancreatic cancers [113–116]. The function of regucalcin in
human pancreatic cancer has been clarified through assessment of its expression levels in
both normal pancreatic tissue and pancreatic ductal adenocarcinoma (PDA) among human
subjects [35]. Microarray analysis revealed downregulation of regucalcin expression levels
in pancreatic tissue from 36 PDA patients as compared to tissue from 36 normal pancreases,
as determined through the utilization of the GEO database (GSE15471) [35]. The survival
of pancreatic cancer patients with increased regucalcin gene expression was extended
(Figure 3). The study found that overexpression of regucalcin inhibited proliferation, cell
death, and migration in human pancreatic cancer MIA PaCa-2 (K-ras mutated) cells, which
are resistant to drug and radiation therapy [35]. The suppressive effects of regucalcin on cell
proliferation were not dependent on cell death. The overexpression of regucalcin inhibits
various signaling pathways, including Akt, MAP kinase, SAPK/JNK, K-ras, c-fos, and
c-jun [35]. Intriguingly, regucalcin overexpression boosts the levels of p53 protein, a tumor
suppressor [35]. Therefore, regucalcin demonstrates potential as a tumor suppressor in
human pancreatic cancer. The decrease in regucalcin expression may lead to the onset of
carcinogenesis in pancreatic tissues.

4.6. Colorectal Cancer

Adenocarcinoma is the primary malignancy affecting the colon and rectum [117]. Col-
orectal cancer ranks third among the most frequently diagnosed cancers [118,119], with an
average five-year survival rate of only 55% [119]. Despite novel therapeutic strategies being
developed, the prognosis for CRC remains dismal [120–123]. Identification and characteri-
zation of innovative biomarkers could offer scope for prolonging the survival in colorectal
cancer. Mutations in the KRAS gene have been found in over 40% of tumors displaying
genetic and epigenetic alterations [124–127]. Regucalcin plays a role in the inhibition of
human colorectal cancer [38]. To examine the outcomes, regucalcin gene expression and sur-
vival data of 62 patients from the GEO database (GSE12945) were analyzed (Figure 3) [38].
Regucalcin expression was reduced in colorectal cancer patients [38]. Prolonged survival
among colorectal cancer patients is significantly linked with elevated regucalcin gene ex-
pression in their tumor tissue [38]. In vitro translational findings reveal how overexpressed
regucalcin can lead to the suppression of colony formation and proliferation of human
colorectal-cancer-derived RKO cells [38]. Mechanistically, this overexpression hinders the
cell cycle of RKO cells by inhibiting crucial signaling pathways related to Ras, Akt, MAP
kinase, and SAPK/JNK [38]. Notably, the overexpression of regucalcin increased the levels
of tumor suppressors p53 and Rb, as well as the cell cycle inhibitor p21 [38]. Moreover, the
overexpression of regucalcin repressed the transcription factors c-fos, c-jun, NF-κB p65,
β-catenin, and STAT3 [38], indicating that regucalcin targets various signaling molecules.
This study indicates that regucalcin plays a crucial role as a suppressor in human colorectal
cancer. Higher levels of regucalcin with gene delivery could potentially serve as a novel
therapy for colorectal cancer.

4.7. Kidney Cancer

Renal cell carcinoma (RCC) is a type of cancer that develops in the lining of kidney
tubules [128,129]. RCC is the second leading cause of death among urological malignant
neoplasms [130–133]. Clear cell RCC is the most frequent histological subtype, represent-
ing around 80–90% of all RCCs [129]. The treatment of RCC employs FDA-approved
agents such as mammalian target of rapamycin (mTOR), vascular endothelial growth factor
(VEGF), platelet-derived growth factor (PDGF), and their corresponding receptors VEGFR
and PDGFR [134,135]. Nevertheless, the therapeutic benefits of these inhibitors could be
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curbed because of the emergence of drug-resistant phenotype [136–140]. To investigate the
role of regucalcin in RCC, we obtained data from kidney cortex tissues of clear-cell RCC
patients through the GEO database (GSE36895). Our analysis revealed downregulation of
regucalcin expression in RCC tumor tissues. Interestingly, an association between higher
regucalcin gene expression and prolonged survival in clear-cell RCC patients was observed
(see Figure 3) [39]. The translational study showed that overexpression of regucalcin inhib-
ited colony formation and proliferation of human clear-cell RCC A498 cells in vitro [39].
Mechanistically, regucalcin overexpression resulted in G1 and G2/M phase arrest of A498
cells by suppressing multiple signaling components such as Ras, PI3 kinase, Akt, and
MAP kinase [39]. The enhanced expression of regucalcin significantly increased the levels
of tumor suppressors, namely p53, Rb, and the cell cycle inhibitor, p21 [39]. Therefore,
regucalcin suppresses the advancement of human RCC by aiming at various molecules
involved in the intra.

4.8. Cervical Adenocarcinoma

Cervical cancer is a tumor that has a high morbidity and mortality rate [141–144].
Compared to squamous cell carcinoma, cervical cancer has a higher rate of ovarian metas-
tasis [145–147]. Due to its safety and specificity, gene therapy is emerging as a potential
therapeutic option for cervical cancer [148]. The transfection of lentivirus-mediated regu-
calcin into HeLa cells has been found to increase regucalcin expression and significantly
reduce cell proliferation, invasion, and promote cell cycle arrest at the G2/M phase [149].
A higher expression of regucalcin results in a decreased level of β-Catenin, p-glycogen
synthase kinase-3β (GSK-3β), and matrix metalloproteinases (MMPs) -3, -7, and -9 [150].
E-cadherin and GSK-3beta levels were increased through regucalcin overexpression [149].
Regucalcin exhibited inhibition of cervical cancer tumorigenesis through mechanisms in-
volving Wnt/β-catenin signaling and epithelial-mesenchymal transition, which suppress
tumor proliferation and metastasis [149]. Notably, lentivirus-mediated siRNA downregula-
tion of regucalcin was found to promote cell proliferation, migration, and invasion. Thus,
studies have demonstrated that regucalcin plays a suppressive role in the development
of cervical cancer in humans. Upregulating the expression of regucalcin may provide a
potential therapeutic approach for treating cervical cancer.

4.9. Melanoma

Melanoma is a highly aggressive type of skin cancer [151,152]. Breslow’s thickness (T
stage) [153] is one of the key factors that determines prognosis and treatment for locally
advanced melanoma. This measure is based on the thickness of the main tumor in millime-
ters. The discovery of new biomarkers could have clinical implications. Biomarkers such as
serum lactate dehydrogenase (LDH) and S100B could be linked to clinical stage and tumor
progression [154]. Regucalcin may be a significant biomarker in human melanoma. Affinity
proteomic assays were employed to profile serum samples from patients with malignant
melanoma to identify proteins present in the bloodstream linked with melanoma stage or
recurrence. The analysis encompassed 149 serum samples from patients with malignant
melanoma. Notably, patients with recurrent tumors and high Breslow’s were found to have
lower serum levels of regucalcin and syntaxin 7 (STX7) than those with low thickness and
no recurrence [154]. Regucalcin shows potential as a new biomarker for human melanoma.

4.10. Osteosarcoma

Osteosarcoma originates in the bone, and there have been few advances in survival
and treatment of metastatic disease [155–157]. Chondrosarcoma is the most common bone
sarcoma in adults [155–157]. Pain is the most common presenting symptom in patients
with bone tumors [156]. The primary tumor of osteosarcoma is surgically resected [157–
160]. The involvement of regucalcin in human osteosarcoma has been investigated using
Saos-2 human osteosarcoma cells in vitro [161]. The overexpression of regucalcin was
found to suppress the growth of Saos-2 cells in vitro [161]. The suppressive effects of
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overexpressed regucalcin on the proliferation of Saos-2 cells were suggested to involve
the suppression of signaling pathways, including PI3K/Akt, extracellular signal-regulated
kinase (ERK)/MAP kinase, and a protein kinase C, by using each specific inhibitor [162–
164]. In addition, the suppressive effects of overexpressed regucalcin on the proliferation of
Saos-2 cells may be involved in the regulation of nuclear functions from the results obtained
by using an inhibitor of RNA polymerase II-dependent transcriptional activity [165] and
gemcitabine, an antitumor agent that induces nuclear DNA damage [166]. In addition,
overexpressed regucalcin decreased the levels of several proteins involved in signaling
pathways related to Ras, PI3K, Akt, MAP kinase, STAT3, β-catenin, and NF-κB p65, and
increased the levels of p53, Rb, and p21 in Saos-2 cells [161]. Thus, the suppressive effects of
regucalcin on the proliferation of human osteosarcoma Saos-2 cells may be exerted through
the regulation of various signaling pathways. Regucalcin may contribute as a suppressor
in human osteosarcoma.

4.11. Ovarian Cancer

Ovarian cancer has the highest mortality rate among gynecologic malignancies and an
average five-year survival rate for tumor patients [167–176]. It is a complex and heteroge-
neous malignant disease. Various risk factors, such as nulliparity, infertility, endometriosis,
obesity, and advanced age are associated with the underlying mechanism leading to ovar-
ian cancer. Primary surgery and drug therapy are commonly utilized treatment methods
for ovarian cancer. The study has demonstrated the inhibitory effect of regucalcin on
cell growth in human ovarian cancer SK-OV-3 cells, which have shown resistance to cy-
totoxic cancer drugs [177]. Overexpression of regucalcin repressed the colony formation
and proliferation of SK-OV-3 cells through an independent mechanism of cell death [177].
Overexpression of regucalcin decreased the levels of Ras, Akt, MAP kinase, NF-κB p65,
β-catenin, and STAT3, while elevating the levels of tumor suppressors p53 and Rb, as
well as the cell cycle inhibitor p21 [177]. Notably, the proliferative effects of epidermal
growth factor (EGF) on cell proliferation were inhibited by the overexpression of regucalcin
in SK-OV-3 cells [177]. Thus, overexpressed regucalcin may repress cell proliferation by
targeting diverse signaling pathways, including EGF signaling. This study suggests the
involvement of regucalcin as a suppressor in ovarian cancer.

5. The Suppressive Role of Extracellular Regucalcin in the Cancer Microenvironment

Regucalcin is expressed in various organ cells, including the liver and kidney, in both
humans and animals [21,69]. Physiological levels of regucalcin in human serum are 1
nM [21,69]. It is worth noting that isolated regucalcin has been found to bind to plasma
membranes, and regulate the activity of the pump enzyme (Ca2+-Mg2+)-adenosine triphos-
phatase [178]. As a result, extracellular regucalcin has been suggested to play a role in
regulating cell function. In recent years, mounting evidence suggests that extracellular
regucalcin suppresses the growth of various types of cancer cells. Additionally, regucalcin
may have therapeutic potential in the development of cancer within the microenviron-
ment, presenting a novel strategy for cancer therapy. This section delves into the role of
extracellular regucalcin as a cancer cell suppressor.

In modeled human liver cancer HepG2 cells, extracellular regucalcin was found to
have suppressive effects on cell growth in vitro [179]. In this study, regucalcin was used
at physiological levels (0.01–10 nM). Extracellular regucalcin did not affect apoptotic cell
death [180]. In addition, extracellular regucalcin suppressed the colony formation of
HepG2 cells in vitro [180]. This study demonstrated that extracellular regucalcin exerts an
inhibitory effect on the growth of human liver cancer cells.

Extracellular regucalcin is also shown to suppress the growth of human pancreatic
cancer MiaPaCa-2 cells in vitro [179]. The proliferation of MiaPaCa-2 cells was suppressed
by culturing with the addition of regucalcin [179]. The suppressive effects of regucalcin
on cell proliferation were not potentiated by the presence of various signaling inhibitors,
including TNF-α, Bay K 8644, PD98059, staurosporine, wortmannin, DRB, or gemcitabine,
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which depressed cell proliferation [179]. Extracellular regucalcin did not induce apoptotic
cell death in MiaPaCa-2 cells in vitro [179]. Thus, extracellular regucalcin may have sup-
pressive effects on the proliferation of human pancreatic MiaPaCa-2 cells mediated through
various signaling pathways in vitro.

The proliferation of bone metastatic human breast cancer MDA-MB-231 cells has
been shown to be suppressed by culturing with extracellular regucalcin [181]. In this
study, extracellular regucalcin did not induce apoptotic cell death of MDA-MB-231 cells
in vitro [181].

Interestingly, extracellular regucalcin has been found to have suppressive effects on the
growth, colony formation, migration, invasion, and adhesion of metastatic human prostate
cancer PC-3 and DU-145 cells in vitro, as reported in [182]. The suppressive effects of
extracellular regucalcin may result from a decrease in levels of multiple signaling proteins,
such as Ras, phosphatidylinositol-3 kinase, MAP kinase, mTOR, RSK-2, caveolin-1, and
integrin β1, in PC-3 cells [182]. This study demonstrated in vitro inhibition of metastatic
activity by extracellular regucalcin.

Extracellular regucalcin suppressed proliferation in vitro independent of SK-OV-3 cell
death [177]. The proliferation of SK-OV-3 cells was enhanced by culturing with EGF [177],
which was then suppressed by extracellular regucalcin [177]. This suggests that the binding
of EGF to its receptors in the plasma membranes of cells is antagonized by extracellular
regucalcin. However, extracellular regucalcin did not reduce the levels of EGF receptor
protein [177]. Extracellular regucalcin has potential for suppressing cell proliferation
through various signaling pathways, particularly those related to EGF signaling proteins.
This is accomplished through the targeting of specific proteins in a mechanistic manner.

Furthermore, extracellular regucalcin exhibited inhibitory effects on the growth of
human osteosarcoma Saos-2 cells in vitro [161]. Incubation with extracellular regucalcin
at 1 and 10 nM led to decreased colony formation and proliferation of Saos-2 cells [161].
Importantly, extracellular regucalcin did not induce cell death in Saos-2 cells [161]. Extra-
cellular regucalcin was observed to decrease the levels of several molecules including Ras,
PI3K, Akt, MAP kinase, phosphor-MAP kinase, STAT3, NF-κB p65, and β-catenin, while
increasing the levels of p21, which is known to suppress cell proliferation. This suggests
that extracellular regucalcin may have potential therapeutic benefits in treating diseases
that involve exacerbated cell proliferation.

As previously noted, extracellular regucalcin has been shown to inhibit the growth of
different human cancer cell types in vitro without affecting cell death. It is highly likely that
the extracellular regucalcin produced within the tissues plays a vital role in inhibiting cancer
cell growth. Therefore, extracellular regucalcin may potentially function as a suppressive
factor similar to cytokines in suppressing cell growth.

The mechanism underlying extracellular regucalcin’s suppression of cancer cell growth
involves blocking different intracellular signaling pathways that participate in cell prolifera-
tion. This is illustrated in Figure 4. Extracellular regucalcin binds to the plasma membranes
of cancer cells. The bound regucalcin can cause signal transduction, generating a factor that
suppresses intracellular signaling pathways associated with transcription in the nucleus of
cancer cells. Additionally, the binding of regucalcin to plasma membranes may potentially
trigger cellular internalization and hence, influence cell signaling processes, resulting in
the inhibition of cell proliferation.

Extracellular regucalcin, which is increased in the cancer microenvironment, po-
tentially suppresses carcinogenesis in various tissues. Additionally, extracellular regu-
calcin may prevent adhesion, invasion, and migration of cancer cells, thereby blocking
their metastasis.
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Figure 4. The underlying mechanism by which extracellular regucalcin suppresses the prolifera-
tion of human cancer cells in vitro. Extracellular regucalcin blocks various EGF-related signaling
pathways by targeting EGF receptors in cells. In addition, extracellular regucalcin may bind to
putative regucalcin-binding sites on plasma membranes to transmit signals to cells. In addition,
intracellular regucalcin may suppress other signaling processes and the levels of transcription factors.
In particular, extracellular regucalcin increases the levels of p53, Rb, and p21, which are suppressors
of tumorigenesis, suggesting an effect on nuclear function. Extracellular regucalcin may affect various
molecules in cancer cells, leading to the promotion of tumorigenesis. Extracellular regucalcin may
play a critical role as a suppressor in the cancer microenvironment. Abbreviations: RGN; regucalcin;
EGF; epidermal growth factor. The black down arrow indicates downregulation. The blue down
arrow indicates downregulation.

6. Conclusions and Perspectives

Regucalcin was originally discovered in 1978 as a novel calcium-binding protein lack-
ing the EF-hand motif of the calcium-binding domain [7,8]. Regucalcin was shown to play
a critical role in maintaining intracellular calcium homeostasis and as an inhibitory protein
of calcium signaling, which plays a pivotal role in the regulation of cell functions [5,6,8].
Subsequently, this protein was found to play a multifunctional role in maintaining cell
homeostasis in various cell types [5]. In addition, regucalcin has been shown to play a
pathophysiological role in various diseases [5,6,25–27], including human cancer [34–40].

As presented in this literature review, regucalcin—a protein that plays an indispens-
able role in controlling cell growth—has been identified as a potential suppressor in the
development of human carcinogenesis. The expression of regucalcin is notably dimin-
ished in diverse tissues of cancer patients, such as the liver [32,34,63–65], pancreas [35],
colon [38], lung [37,82–84], kidney [39], breast [36], prostate [40,96], cervical [149,150], and
melanoma [154], as investigated by our group and other researchers. A greater expression
of regucalcin in tumor tissues extends the survival of patients with different cancer types.
Recent studies have shown that extracellular regucalcin, found in the extracellular fluids
of various tissues, suppresses the growth of several types of human cancer cells, such
as HepG2 liver cancer cells [180], MiaPaCa-2 pancreatic cancer cells [179], MDA-MB-231
breast cancer cells [181], PC-3 prostate cancer cells [182], SK-OV-3 ovarian cancer cells [177],
and Saos-2 osteosarcoma cells [161]. Extracellular regucalcin contributes to suppressing
cancer cell growth in the cancer microenvironment. These studies suggest that regucalcin
has potential as a suppressor in the development of human malignancies.

A recent study demonstrated that inflammatory macrophages inhibit the growth of
human prostate cancer cells that have spread to the bones through intracellular signaling of
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TNF-α and IL-6 produced by macrophages [17]. The action of TNF-α and IL-6 is mediated
through transcription factors, specifically NF-κB or STAT3 [17]. Moreover, these transcrip-
tion factors have been observed to increase the activity of regucalcin gene expression [17].
Inflammatory macrophages may trigger prostate cancer cell loss through NF-κB, STAT3,
or regucalcin-linked processes (17). Figure 1 shows that regucalcin gene expression is
enhanced by various transcription factors, including HIF-1α and β-catenin. Intracellular
regucalcin mediates the cellular signaling effects of various signaling factors that regulate
cell function. Further research is necessary to explore intracellular regucalcin’s role as a
mediator of cellular signaling.

The role of regucalcin in the prevention and management of human cancer is demon-
strated in Figure 5. Reduced expression of regucalcin in tumor tissues contributes to the
development of carcinogenesis in multiple tissues and affects patient prognosis. Regucalcin
gene expression and protein levels can be elevated by several factors, including hormones,
intracellular signaling factors, and transcription factors. Furthermore, various pathophysio-
logical conditions, aging, and environmental components may repress the expression of
the regucalcin gene. Although epigenetic modification has been proposed to contribute to
the decreased expression of regucalcin, the mechanism underlying its downregulation in
tumor tissues requires elucidation through functional studies [82].
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Figure 5. The role of regucalcin in the development and management of human cancer is examined.
The expression of the regucalcin gene is influenced by different factors, such as hormonal, nutritional,
and chemical factors. Altered regucalcin gene expression can cause various metabolic disorders,
leading to uncontrolled cell proliferation, tumorigenesis, and metastasis. This process can be blocked
by increasing the levels of regucalcin. Preventive and therapeutic efficacy of cancer can be brought by
increasing regucalcin levels in tissues and cells through epigenetic modification, nutritional factors,
and natural chemical treatment. Abbreviations: RGN; regucalcin. The red down arrow indicates
downregulation. The blue up arrow indicates upregulation.

In conclusion, the findings demonstrate that regucalcin could be a valuable biomarker
for diagnosing and treating various types of human cancer. These results indicate the poten-
tial clinical significance of regucalcin as a novel diagnostic and therapeutic target in cancer
research. Overexpression of regucalcin in tumor cells has been shown to inhibit cancer cell
growth, while its underexpression is associated with early stages of cancer progression.
Since regucalcin expression is decreased in tumor tissues, increasing its expression may be
crucial. This could help regulate cancer development through the elevated expression of
regucalcin. Figure 5 indicates that therapeutic benefits can result from higher regucalcin
levels in tumor tissues and cells, which can be achieved by enhancing the expression of
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the regucalcin gene through hormonal, nutritional, and chemical therapies. Objectively,
delivery of regucalcin genes into tumor tissues may exhibit a depressive impact on tu-
morigenesis. Moreover, administering exogenous regucalcin treatment may play a role in
tumor development suppression within the cancer microenvironment. However, clinical
application of this therapy may present various challenges. Further research is required to
establish the clinical potential of regucalcin as a suppressor of human cancer.
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