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Simple Summary: Bladder cancer is the sixth most common cancer in the United States. The
prognosis is excellent for localized forms, but the survival rates drop significantly when cancer
invades the smooth muscle of the bladder. Imaging is essential for the accurate staging, prognosis,
and assessment of therapeutic efficacy in bladder cancer and has the potential to guide personalized
treatment strategies. Computed tomography has traditionally been the standard modality, but
magnetic resonance imaging (MRI) is the emerging technique of choice for its superior soft tissue
contrast without exposure to ionizing radiation. Multiparametric (mp)MRI provides physiological
data interrogating the biology of the tumor, as well as high-resolution anatomical images. Advanced
MRI techniques have enabled new imaging-based clinical endpoints, including novel scoring systems
for tumor staging. Artificial intelligence (AI) holds the potential for the automated discovery of
clinically relevant patterns in mpMRI images of the bladder.

Abstract: This review focuses on the principles, applications, and performance of mpMRI for blad-
der imaging. Quantitative imaging biomarkers (QIBs) derived from mpMRI are increasingly used
in oncological applications, including tumor staging, prognosis, and assessment of treatment re-
sponse. To standardize mpMRI acquisition and interpretation, an expert panel developed the Vesical
Imaging–Reporting and Data System (VI-RADS). Many studies confirm the standardization and
high degree of inter-reader agreement to discriminate muscle invasiveness in bladder cancer, sup-
porting VI-RADS implementation in routine clinical practice. The standard MRI sequences for
VI-RADS scoring are anatomical imaging, including T2w images, and physiological imaging with
diffusion-weighted MRI (DW-MRI) and dynamic contrast-enhanced MRI (DCE-MRI). Physiological
QIBs derived from analysis of DW- and DCE-MRI data and radiomic image features extracted from
mpMRI images play an important role in bladder cancer. The current development of AI tools for
analyzing mpMRI data and their potential impact on bladder imaging are surveyed. AI architectures
are often implemented based on convolutional neural networks (CNNs), focusing on narrow/specific
tasks. The application of AI can substantially impact bladder imaging clinical workflows; for example,
manual tumor segmentation, which demands high time commitment and has inter-reader variability,
can be replaced by an autosegmentation tool. The use of mpMRI and AI is projected to drive the field
toward the personalized management of bladder cancer patients.

Keywords: bladder cancer; quantitative; multiparametric; artificial intelligence; diffusion-weighted
MRI; dynamic contrast-enhanced MRI; radiomics
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1. Introduction

Bladder cancer is the sixth most common cancer in the United States, with an inci-
dence in men approximately four times higher than in women [1]. Tobacco smoking is
implicated in about 50% of bladder cancer cases, followed by other environmental risk
factors, such as exposure to chemicals and industrial pollutants [2]. Squamous cell carci-
noma and adenocarcinoma are rare subtypes (incidences of 6–8% and 2%, respectively) [3].
While localized forms of bladder cancer have an excellent prognosis, survival rates drop
significantly if the smooth muscle is invaded [4]. Accordingly, the key classification for
bladder cancers is non-muscle-invasive bladder cancer (NMIBC) vs. muscle-invasive
bladder cancer (MIBC) [5]. Cystoscopy is the standard procedure for diagnosing and
treating bladder cancer, allowing direct access to a tumor for biopsy, fulguration, and/or
resection. Radical cystectomy (RC) is the treatment option for MIBC [6]. However, some
patients may not meet the inclusion criteria for RC due to morbidity and perioperative
risks. Multimodality treatment approaches are evolving, including bladder-sparing in
MIBC [7]. The advantages of bladder-sparing procedures include less aggressive surgery,
the avoidance of urinary diversion, the preservation of sexual potency, and improved
quality of life [8]. The standard treatment is transurethral resection for NMIBC and RC,
and neoadjuvant chemotherapy (NAC) for MIBC [9]. Recently, the treatment landscape has
been transformed by paradigm-changing breakthroughs with two new classes of drugs,
antibody-drug conjugates (AbDCs) and immune checkpoint inhibitors (ICIs), which offer
more effective and less toxic treatment options [10–13].

Medical imaging with computed tomography (CT) and magnetic resonance imaging
(MRI) has been used to derive quantitative imaging biomarkers (QIBs) that provide on-
cologists with clinical endpoints for the staging, prognosis, and assessment of therapeutic
efficacy [14]. Recent technical advances in multimodality imaging have impacted the man-
agement of patients with bladder cancer. While CT has long been the standard imaging
modality for bladder cancer treatment evaluation, MRI is emerging as a modality of choice
because of its superior soft tissue contrast without exposure to ionizing radiation [15,16].
MRI differentiates the bladder wall layers and enables an accurate assessment of the depth
of tumor invasion and extravesical extension [17]. The advancement in MRI technology
has led to the implementation of multiparametric (mp)MRI, which provides multi-b-value
diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) image sets. mpMRI ac-
quires anatomic and physiological images for qualitative evaluation and allows for the
measurement of model-based quantitative parameters [18,19]. The acquisition, interpre-
tation, and reporting of mpMRI for bladder cancer were standardized by VI-RADS, the
Vesical Imaging–Reporting and Data System, which was developed in 2018 through expert
consensus [20,21]. VI-RADS’s scoring comprises T2-weighted (w), DW-, and DCE-MRI as a
qualitative assessment for diagnostic reporting [22,23]. The dominant MRI sequence for
bladder cancer risk assessment is DW. If DW-MRI is suboptimal, DCE-MRI is considered a
second option.

Quantitative metrics derived from DW-, DCE-MRI, and radiomics enable numerical
values that promise improvements in detecting, staging, and evaluating treatment response
in bladder cancer [24–26]. DW-derived metrics include the apparent diffusion coefficient
(ADC, the composite of both diffusion and capillary perfusion), apparent kurtosis coefficient
(Kapp, surrogate of tissue microstructure), and true diffusion coefficient (D, capturing tu-
mor cellularity, extracellular-space tortuosity, and integrity of cellular membranes) [27–29].
ADC metric values were able to identify the aggressive phenotype of upper urinary tract
urothelial cell carcinoma and monitor response to chemo-radiotherapy [30] and NAC
therapy in MIBC [31,32]. DCE-derived biomarkers such as plasma perfusion (Fp) and
the volume transfer constant (Ktrans) are surrogates of tumor perfusion and permeabil-
ity [19,33,34]. Fp values were able to distinguish between residual tumor and therapeutic
effects in MIBC patients treated with NAC [19]. The entropy of Ktrans, a measure of hetero-
geneity, was significantly lower in responders than in nonresponders after NAC therapy in
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bladder cancer patients [35]. QIBs from DW- and DCE-MRI also allow clinicians to develop
personalized treatment strategies [36].

Radiomics is an approach that quantifies textural information in mpMRI images by
mathematically extracting the spatial distribution of signal intensities and pixel interre-
lationships [37]. Radiomics also includes morphological (shape, size, and volume) and
gray-level features (contrast, etc.), in addition to the texture features [38]. Extracted ra-
diomic features have been used to characterize MIBC and predict tumor response to NAC
in MIBC patients [26,39,40].

New artificial intelligence (AI) data analysis methods offer promise in developing
biomarkers through the automated discovery of radiomic features in qualitative and quanti-
tative mpMRI data associated with clinical outcomes in the training dataset. This approach
has the potential to go beyond existing biomarkers developed using traditional statistical
methods, extracting and analyzing hidden information about individual patients that can
guide the personalized management of their cancer [37,41]. This review discusses quantita-
tive mpMRI acquisition for the bladder and the current and potential role of derived QIBs
for clinical endpoints, including staging, prognosis, and prediction of treatment efficacy in
MIBC [19,25,32,34]. Future directions for AI are highlighted, including the specific clinical
tasks that are likely to benefit from narrow AI applications, along with the challenges that
AI is expected to face and recommendations for its successful application in MIBC.

2. Multiparametric (mp)MRI and VI-RADS Score in Bladder Cancer

mpMRI increasingly surpasses CT as the preferred imaging technique for bladder
cancer because of its superior spatial resolution and more reliable characterization of the
bladder’s layers and locoregional anatomic structures [15,42]. mpMRI exhibited a high
diagnostic performance in differentiating NMIBC from MIBC and predicting extravesical
extension [42].

2.1. Qualitative mpMRI

High-resolution qualitative mpMRI images acquired using standard multiplanar
imaging protocols are used for the preoperative local staging of bladder cancer, including
fat-saturated T2w, precontrast T1w, and postcontrast T1w sequences [21]. T1w images
identify extravesical fat infiltration, pelvic lymphadenopathy, and bone metastases [17].
Urine in the bladder has low signal intensity on T1w images, normal detrusor muscle and
bladder tumors both have intermediate signal intensity, and the adjacent fat has high signal
intensity. Therefore, T1w images are valuable in showing the luminal extension of the
tumor, as well as perivesical fat infiltration [43]. T2w images are used to assess the whole
pelvis anatomy, including the bladder and surrounding tissue, for tumor detection and
morphology evaluation [44]. Tumor invasion into adjacent organs (prostate, uterus, and
vagina) can also be better evaluated on T2w than T1w images.

The standard MRI sequences used to perform VI-RADS scoring in radiological practice
are T2w and postcontrast T1w images for anatomical imaging, and DW- and DCE-MRI
for physiological information [21]. This protocol reduces the potential for mismatch of the
lesion between sequences, as such a mismatch could lead to the erroneous upstaging or
downstaging of tumors in bladder cancer [20,23]. VI-RADS shows good sensitivity and
specificity for determining MIBC; however, technical factors associated with MRI acquisi-
tion and cutoff scores must be considered [45,46]. The inclusion of DW-MRI protocols for
tumor staging has been found to improve the specificity of bladder cancer detection [47].
An inflammatory change or fibrosis surrounding the tumor may mimic the invasion of blad-
der cancer on T2w or postcontrast T1w. To reduce the resulting potential for over-staging,
DW-MRI was added to VI-RAD’s protocol to improve bladder cancer differentiation be-
cause benign formations would show no significant changes in signal intensity compared
to tumors on DW images [21]. T1w acquisition is also helpful in diagnosing eventual
hemorrhage and blood clots in the bladder and bone metastasis; however, its findings do
not contribute to the score [48]. The postcontrast T1w images were useful for detecting
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early-stage disease. Numerous studies have highlighted the improved sensitivity, speci-
ficity, and accuracy when two or more sequences are used for diagnosing and staging
bladder cancer [49,50].

VI-RADS has been consistently validated across several different institutions for the
local staging of bladder cancer [51–53] and has been proven to contribute to diagnostic
workup and disease management. VI-RADS criteria are used to calculate a score for each
MRI sequence that represents the overall likelihood of cancer invading the muscle and
beyond, from 1 (highly unlikely) to 5 (very likely), as presented in Table 1 [21]. The typical
mpMRI acquisition parameters for bladder imaging are given in Table 2. T1w, T2w, DW-
MRI, and postcontrast T1w images representative of those used in VI-RADS scoring are
shown in Figure 1. The ADC map is derived from the DW images (b = 0 and 700 s/mm2)
using a standard monoexponential model.

Table 1. VI-RADS score inference.

VI-RADS Score Inferences

1 Muscle invasion is highly unlikely

2 Muscle invasion is unlikely to be present

3 Presence of muscle invasion is equivocal

4 Muscle invasion is likely

5 Invasion of muscle and beyond the bladder is very likely
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Figure 1. mpMRI images acquired from a 74-year-old male patient with bladder cancer. The multicontrast 
images include T1w, T2w, postcontrast T1w, and the diffusion-weighted magnetic resonance (DW-MR) im-
age b = 700 s/mm2, with the apparent diffusion coefficient map overlaid. The yellow arrow points to a tumor 
with a VI-RADS score of 5. 

Figure 1. mpMRI images acquired from a 74-year-old male patient with bladder cancer. The multi-
contrast images include T1w, T2w, postcontrast T1w, and the diffusion-weighted magnetic resonance
(DW-MR) image b = 700 s/mm2, with the apparent diffusion coefficient map overlaid. The yellow
arrow points to a tumor with a VI-RADS score of 5.

2.2. Quantitative (q)MRI

Parametric maps derived from qMRI techniques display physiological properties [54]
that can provide quantitative information and insights into tumor heterogeneity [55]. The
most commonly used qMRI methods are DW- and DCE-MRI. DW-MRI quantifies ADC
metrics that reflect the hindered motion of water molecules affected by tumor cellularity
and tissue microstructure. DCE-MRI estimates the microvascular properties of tumor
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tissue by utilizing the kinetics of exogenous contrast agent (CA). A quantitative analysis
of DCE images generates kinetic parameters that reflect tumor perfusion/permeability
and CA distribution spaces [56]. An alternative to biophysical models of mpMRI is image
analysis via radiomics, a data-driven approach to quantify visually imperceptible statistical
features [57].

2.2.1. DW-MRI

The DW-MRI acquisition used in the mpMRI protocol for VI-RADS scoring in blad-
der imaging images the tissue signal contrast affected by the Brownian motion of water
molecules [58]. The cell membranes and intracellular organelles restrict or hinder the
displacement of water molecules in tissue, causing lower attenuation (dephasing) of the
MRI signal compared to free diffusion [59]. The amount of signal attenuation is evoked
by the degree of diffusion weighting (b-value) determined by the amplitude, duration,
and separation of applied diffusion gradient pulses [60]. Single-shot echo-planar imaging
(SS-EPI) is the default method of choice in radiology clinics for performing DW-MRI. The
typical acquisition parameters for the bladder are given in Table 2. Compared to other
techniques, SS-EPI offers a shorter scan time, higher signal-to-noise ratio (SNR), and greater
immunity to respiratory motion [61]. Its limitations include geometric distortion due to B0
inhomogeneity, signal dropout, and image blurring from field inhomogeneity and eddy
currents [62]. The introduction of parallel imaging with a reduced echo time, increasing
the number of excitations (NEX), and adjusting the matrix and voxel size can dramati-
cally reduce distortion and blurring and maintain sufficient spatial resolution and desired
SNR [63]. Recently, deep learning (DL) has been applied to the image reconstruction of DW
sequences and has shown promise to enhance the quality of bladder imaging by reducing
the scan time and improving image quality [64].

Table 2. mpMRI bladder imaging protocol for 1.5 and 3.0 Tesla (T).

Parameter T2w DW DCE

Field strength 1.5 T/3 T 1.5 T/3 T 1.5 T/3 T

Sequence * FSE SS-EPI FSPGR

Plane orientation Multiplanar Axial Axial

FOV (mm) 220–250 250–300 250–300

TR (ms) 4000–5000 4500–6000 3.5–4.5

TE (ms) 80–120 60–80 (minimum) 1.2–2.2

Acquisition matrix 256 × 192–256 128 × 128 256 × 192–214

Slice thickness/gap (mm) 3–4/0 3–4/0 3–4/0

Number of excitations 1–2 4–12 + 1

Flip angles (FAs) (degree) 90 90 15

b-values (s/mm2) NA 0 and 800–1000, up to
2000 optional NA

Note: Precontrast T1 mapping with multiple flip angles (30◦, 15◦, and 5◦) is preferred; * fast spin echo (FSE),
single-shot echo-planar imaging (SS-EPI), and fast spoiled gradient echo (FSPGR). + To improve SNR, more
excitations are required at higher b-values

To fit the DW imaging data, a standard monoexponential model requires at least two
b-values (b = 0 s/mm2 and a high b-value of 800–1000 s/mm2) to calculate the apparent
diffusion coefficient (ADC (mm2/s); Equation (1) [60]).

sb = s0 e−b×ADC (1)

where Sb and S0 denote signal intensities with and without diffusion weighting, respec-
tively; and b is the diffusion-sensitizing factor or b-value.
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The monoexponential modeling of signal decay as a function of b-value for DW
images assumes a Gaussian distribution for the displacement of water molecules over
the given measurement interval [58]. LeBihan formulated the Gaussian-based intravoxel
incoherent motion (IVIM) model (Equation (2)), which provides estimates of pseudo-
diffusion (perfusion) phenomena of microcirculation of blood in the capillary network (at
low b-values < 100 s/mm2) and molecular diffusion in tissue (intermediate b-values) [65].
The translation of a water molecule substantially deviates from a Gaussian to non-Gaussian
behavior due to complex cellular structures of tissue being more readily probed with greater
diffusion weighting (>1000 s/mm2) [66]. The second-order expansion of the signal decay at
high b-values (>1000 s/mm2), accounting for the deviation from monoexponential behavior,
is termed diffusion kurtosis imaging (DKI) (Equation (3)) [67].

sb = s0

[
f e−b×D∗ + (1− f )e−b×D

]
(2)

sb = s0 e−b×Dapp+
1
6 Kapp(b×Dapp)2

(3)

DKI’s apparent kurtosis coefficient, Kapp (unitless), quantifies the degree of diffusion
restriction by heterogeneous subcellular structures. Its apparent diffusion coefficient,
Dapp (mm2/s), characterizes the tissue microstructure. Mathematically, Kapp describes
the “peakedness” of the distribution function, representing the deviation of the diffusion
propagator from a normal (Gaussian) shape [67]. The advanced non-Gaussian (NG)-IVIM
model incorporates the kurtosis coefficient, K, into the IVIM model [65,68]. The nested
models, IVIM, DKI, and monoexponential, can be derived from the NG-IVIM model setting
Kapp and/or f = 0 [68]. Standard DW-MRI [49,69,70] and DKI models [28,29] have been
used for bladder cancer imaging.

2.2.2. DCE-MRI

DCE-MRI is another component of the VI-RADS protocol [21]. It reveals qualitative
changes in signal intensity as a function of time after CA injection, which is routinely used
for diagnostic evaluation of blood perfusion kinetics in tissue. DCE data for bladder cancer
can be analyzed semi-quantitatively and quantitatively. The semi-quantitative approach
provides descriptive parameters, such as the time to peak (TTP), initial enhancement (IE),
wash-in rate (WIR), wash-out rate (WOR), area under contrast curve (AUC), and maximum
signal enhancement (SE) [71].

Quantitative DCE-MRI parameters allow for the spatial mapping of heterogeneous
tumor characteristics for improved staging and treatment planning. The different portions
of a signal intensity time-course curve are characterized; for example, the initial upslope,
including the peak height, reflects the total blood flow (Fp) and plasma volume fraction (vp).
The downslope curve is due to contrast leakage into the extravascular extracellular space
(EES), reflecting vascular permeability. The volume fraction of EES (ve) can be inferred
from the late portion of the curve. The quantitative approach of the DCE data analysis uses
pharmacokinetic models. It is performed through the following steps: (i) conversion of
signal intensity to CA concentration through the longitudinal R1 relaxation rate (R1 = 1/T1)
(Equation (2)), (ii) selection of an appropriate pharmacokinetic model (Equation (3)), and
(iii) estimation of pharmacokinetic model parameters [72]. The model-derived quantitative
parameters include the Fp, vascular permeability surface areas product (PS), EES, etc. The
extended Tofts model (ETM) has become a common approach for the pharmacokinetic
modeling of DCE-MRI data. ETM provides three kinetic parameters: the volume transfer
constant, Ktrans; vp; and ve [73]. The ETM model assumes a bidirectional exchange of CA
between blood plasma and EES and that the water molecule exchange between the tissue
compartments is effectively infinitely fast. The fast exchange limit (FXL) assumes that the
change in R1(t), ∆Rt(t), is linearly proportional to the contrast agent tissue concentration
(Ct(t)) [73], and it is given by the following:

Rt(t) = R10 + r1Ct(t)→ ∆Rt(t) = R1(t)− R10 = r1Ct(t) (4)
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The temporal evolution of Ct(t) is given by the following [73] :

Ct(t) = Ktrans
∫ t

o
e−kep(t−τ)cp(τ) + vpCp(t) (5)

where r1 [mM−1 s−1] is the longitudinal relaxivity of a [Gd] based CA; Cp(t) and Ct(t) are
the CA concentrations in the plasma space and tissue, respectively; and kep is the backward
flux from EES to plasma space, respectively.

A variant model from FXL is the fast exchange regime (i.e., also called shutter speed
model) that accounts for the rate of water exchange between the intracellular and EES
across the cell membrane, providing estimates of the mean lifetime of intracellular water
molecules and an inverse of the rate of water exchange (τi), in addition to Ktrans and ve [74].
This is associated with the metabolic activity of a cell [75]. The FXR model is usually valid
only when a large amount of CA extravasates into the EES (i.e., vp ∼= 0).

Figure 2 shows example overlay parametric maps for mpMRI metrics derived from
DCE and DW imaging of bladder cancer: Ktrans, IE, signal enhancement ratio (SER),
perfusion-suppressed ADC (b = 100,b = 800), f, and Kapp. The most viable tumor regions
tend to have higher Ktrans, IE, and Kapp and lower ADC and f, while the mid-anterior bladder
wall exhibits normal characteristics.
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Figure 2. mpMRI images acquired for a 72-year-old male patient with bladder cancer. The top row
shows the single slice images of the bladder (left to right): delayed-phase T1w (20-phase DCE-MRI,
7s sampling), T2w, and b-value = 0 s/mm2 DW-MR image. The middle row shows tumor overlays
of volume transfer constant (Ktrans), initial enhancement (IE)%, and signal enhancement ratio (SER)
derived from DCE. The lower row shows the overlay maps for DW-MRI-derived metrics (left to
right): perfusion-suppressed apparent diffusion coefficient (ADC (b = 100, b = 800)), perfusion fraction
(f ), and apparent Kurtosis coefficient (Kapp).
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2.2.3. Radiomics

Radiomics is a data-driven approach that is used to quantify visually imperceptible
statistical features from qualitative and quantitative MRI that can provide their correlation
with tumor physiology with no a priori information [57]. Extracting radiomic features
from qualitative MRI (T1w/T2w) and quantitative (DW- and DCE-MRI) requires some
preprocessing steps [76]. Radiomics is a quantitative imaging feature extraction method
that provides more information about the grayscale patterns and inter-pixel relationships.
Radiomics can be used for the extraction of the traditional first-order, second-order, and
high-order statistical image texture features based on the gray-level co-occurrence matrix
(GLCM) and gray-level run-length matrix (GLRLM) from MR images [38,77]. First-order
texture statistics are based on the histogram that describes the distribution of voxel intensi-
ties within the image region defined by the mask by using basic metrics such as energy,
entropy, skewness, kurtosis, etc. The second- and higher-order features provide informa-
tion about the inter-voxel relationships within the image [78]. Several open-source software
packages, like PyRadiomics [79], CERR [80], LifeX [81], IBEX [82], CaPTK or CGITA [83],
RaCaT [84], and RodiomiX [85], have been developed for extracting image features. Few
radiomics tools have undergone comprehensive methodological standardization with ex-
ternal validation [57]. The accurate automated delineation of regions of interest (ROIs),
including the tumor and the normal wall region, will be essential for the radiomics analysis
to contribute to bladder cancer diagnosis and prognosis. Figure 3 displays the workflow of
the image segmentation and radiomic feature extraction of MR images.
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tation with low and high entropy. (D) Feature selection approaches. (E) Model development. Note:  
* Extracted features should be compatible with the Image Biomarker Standardization Initiative (IBSI) [57]. 

 

 

Figure 3. Radiomic feature analysis workflow: (A) Segmentation of tumor (bounding box in red) on
postcontrast T1w images acquired from an 82-year-old male patient with bladder cancer extending to
the prostate with a VIRADS score of 5. (B) Image standardization, a preprocessing step. (C) Feature
extraction* from the region of interest with the histogram and textural image feature representation
with low and high entropy. (D) Feature selection approaches. (E) Model development. Note:
* Extracted features should be compatible with the Image Biomarker Standardization Initiative (IBSI) [57].

3. mpMRI for Clinical Consideration

The VI-RADS scoring is a standardized approach to imaging and reporting bladder
cancer with mpMRI, which has changed the paradigms of bladder cancer detection and
characterization. Advances in MRI technology have shown great promise for improved
local staging and detecting local recurrences after treatment in bladder cancer. Previous
studies have illustrated that mpMRI QIBs assessing tumor heterogeneity have the poten-
tial to improve the diagnosis, characterization, and assessment of treatment response in
MIBC [19,25,34,70]. Image features and mpMRI-derived physiological QIBs can be fur-
ther employed to develop computational models using AI algorithms that may serve as a
guidance tool for personalized treatment.
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3.1. mpMRI for Staging, Characterization, and Prognosis in MIBC

The TNM (tumor–node–metastasis) staging system is used for bladder cancer stag-
ing [86]. mpMRI techniques improve the accuracy of detecting bladder cancer and have
been used for histologic grading and TNM staging of bladder cancer [20,87,88]. For prog-
nosis, accurate staging is necessary prior to treatment. Preoperative mpMRI may provide
useful information regarding treatment response [89]. The clinical stage alone is unreliable
for determining tumor extension beyond the bladder wall, showing significantly higher
recurrence rates and worse survival than those with organ-confined tumors [90]. Therefore,
distinguishing between organ-confined and non-organ-confined tumors is essential. The
application of mpMRI VI-RADS to the diagnosis of MIBC has shown excellent results [91].
Green et al. reported that mpMRI exhibited >80% accuracy in distinguishing between
NMIBC and MIBC [92], a key component of selecting the optimal treatment strategy. Tekes
et al. reported an accuracy of 85% in differentiating NMIBC from MIBC using gadolinium-
based postcontrast T1w images [90]. Johi et al. suggested that adding DW-MRI and the
derived ADC metric value to T2w improves the accuracy of MRI in bladder cancer detec-
tion and staging; staging accuracy was better in T2w plus DW-MRI (83%) as compared to
DW-MRI alone (77%) or T2w alone (75%) [93].

Radiomics-based signatures from mpMRI developed for precision diagnosis and treat-
ment may serve as a novel and powerful tool in modern precision medicine, determining
the extent of the invasion of bladder cancer and its locations [94]. An MRI-based radiomics
study demonstrated that image features extracted from MR images can distinguish the
tumor grade in bladder cancer and could enhance staging and support a decision-making
process [76]. Shi and Xu et al. reported that histogram and GLCM feature analysis of
T2w images exhibited significant differences between bladder cancer and the bladder
wall [95,96]. Xi et al. reported that the textural features from DW images could reflect the
difference between low- and high-grade bladder cancer, particularly GLCM features from
ADC maps [97].

3.2. mpMRI for Prediction of Treatment Response in MIBC

Treatment decisions for bladder cancer patients are mainly based on the depth of blad-
der wall invasion by the tumor. RC is the accepted standard of care (SOC) for patients with
MIBC [6]. Most patients with MIBC undergo an RC, cisplatin-based NAC, as this approach
improves survival in this population. However, this disease management significantly
impacts the quality of life (QOL), as RC affects continence, sexual function, fertility, and
bowel function [98]. Predictive biomarkers are critical to identifying patients who will
respond to NAC so that potential toxicities from cytotoxic chemotherapy can be limited
in patients who are unlikely to derive benefit [99]. Emerging immunotherapy alternatives
include the development of antibodies directly targeting tumor cells, ICI antibodies, and
chimeric antigen receptor T-cell therapies [13]. ICI therapy has revolutionized the approach
to treating metastatic disease in several cancers, including melanoma, non-small cell lung
cancer, and renal cell carcinoma [100,101].

Locally advanced or metastatic bladder cancer patients are not eligible for first-
line treatment with SOC combination cisplatin-based chemotherapy due to poor per-
formance status, impaired renal function, and other comorbidities [102]. Recently, the
antibody–drug conjugate pembrolizumab showed better antitumor activity than conven-
tional carboplatin-based chemotherapy in untreated patients with cisplatin-ineligible locally
advanced/metastatic urothelial cancer [13]. The initial studies support the safety of com-
bining checkpoint inhibitor immunotherapy with chemo–radiation in MIBC [103,104]. New
bladder-sparing treatment modalities combining ICIs simultaneously with chemoradio-
therapy (CRT) have also shown promise for MIBC patients [105,106].

Yoshida et al. performed a feasibility study with mpMRI to assess the therapeutic
response to induction CRT for MIBC [30]. They concluded that DW-MRI acquired for
bladder cancer could help predict the pathologic complete response (pCR), allowing for
more optimal patient selection in bladder-sparing protocols. Ahmed et al. reported that the
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DCE-MRI-derived wash-out rate parameter and ADC derived from DW-MRI could poten-
tially predict pCR, and their combination enhances the identification of a complete response
to NAC in MIBC [107]. A PURE-01 ICI clinical trial with neoadjuvant pembrolizumab
assessed the pCR (ypT0ypN0), using mpMRI, and concluded that this method could be an
option to develop bladder-sparing approaches in future studies [108].

Radiomic features can further quantify the spatial heterogeneity of mpMRI metrics
and be useful in predicting treatment response to NAC in patients with MIBC, providing
a decision-support tool for personalized management [99]. The mpMRI-based radiomics
nomogram has shown the potential to be a noninvasive tool for quantitatively predicting
tumor response to NAC in patients with MIBC [26]. A previous study reported that
AI-based image feature analysis showed a high diagnostic performance in predicting
MIBC [109]. Selected works from the radiomics literature on mpMRI data for bladder
cancer are summarized in Table 3.

Table 3. Summary of selected works from the radiomics literature on bladder cancer.

# Reference MRI/Segmentation/
Tools/Statistical Method Dataset Conclusion

1 Li et al. (2023) [110] T2w and DW-MRI, manual,
PyRadiomics, LASSO

3148 features, first order, shape and
size, texture, wavelet filter, and
Laplacian of Gaussian filter in

169 patients
(70% training, 30% test);

24 optimal features

Radiomics combined with
monograms can differentiate

low-from high-grade NMIBCs.

2 Zhang et al. (2022) [26] T2w, DW- and DCE-MRI,
manual, and PyRadiomics

23,688 features, first order, shape,
and grey levels (GLCM, GLRLM,
GLSZM, GLDM, and NGTDM) in

342 patients (239 training,
68 validation); 43 optimal features

T2w, DW-MRI, and DCE-MRI
radiomics models could effectively

assess the state of
muscular invasion.

3 Wang et al. (2020) [111]
T2w and DW-MRI, manual,
LASSO, logistic regression,

and SVM-RFE

1404 features, histogram,
co-occurrence matrices, run-length
matrix, and grey levels (NGTDM
and GLRSZM) in 106 patients (64

training, 42 validation),
36 optimal features

Features selected by SVM-RFE
reflect the regional heterogeneity
of tumor tissues and can better

characterize tissue heterogeneity
differences between NMIBC

and MIBC.

4 Xu et al. (2019) [112]
T2w, DW- and

DCE-MRI, manual,
SVM-RFE and LASSO

1872 features, histogram,
co-occurrence matrices, run-length

matrix, and grey levels (NGTDM and
GLSZM) in 71 patients (50 training,
21 validation), 24 optimal features

The radiomics–clinical nomogram
has potential in the preoperative
prediction of the first two years

after transurethral resection of the
bladder tumor.

5 Zheng et al. (2021) [113]
T2w and DCE-MRI, manual,

PyRadiomics, and
SMOTE-LASSO

2436 features, 179 patients (70%
training, 30% validation),

10 optimal features

The applied model could predict
the Ki67 expression status and was
associated with survival outcomes.

6 Kimura et al. 2022 [114] ADC maps, manual and
LIFEx, LIFEX, RF, and SVM

46 features: histogram, shape, grey
levels (GLCM, GLRLM, GLZLM,

and NGLDM) in 45 patients,

The radiomics model can predict
the CRT response and serve as a

novel imaging biomarker.

Note: gray-level co-occurrence matrix (GLCM), gray-level dependence matrix (GLDM), gray-level run-length
matrix (GLRLM), gray-level size-zone matrix (GLSZM), Least Absolute Shrinkage and Selection Operator (LASSO),
neighborhood gray-tone difference matrix (NGTDM), synthetic minority oversampling technique (SMOTE),
support vector machines (SVMs), and Recursive Feature Elimination (RFE).

3.3. Artificial Intelligence in Bladder Cancer

Figure 4 shows an example of an AI workflow in bladder cancer imaging. AI-specific
tasks have a role in each cycle of the workflow, from protocol selection and image acqui-
sition to interpretation and, finally, use in clinical decision making. A summary of select
works from the AI literature on bladder MRI is provided in Table 4. A common limitation
of the current AI literature is single-institution studies with small sample sizes. Multisite
studies using larger patient cohorts are essential to address issues, including the bias in AI
algorithms. Federated learning techniques may help remove some of the barriers multisite
studies face in combining patient data across institutions.
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The precise segmentation of bladder walls and tumor regions is essential for non-
invasive identification for grading and staging and avoiding partial volume errors in
quantifying QIBs derived from mpMRI. In recent years, AI algorithms have been employed
for automated tumor identification, staging, grading, bladder wall segmentation, prediction
of recurrence, treatment response, and overall survival [115].
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Figure 4. Artificial intelligence in the clinical radiology workflow, with examples from bladder MR
imaging on a 44-year-old volunteer and a 73-year-old bladder cancer patient.

Bladder segmentation with DL techniques has been explored primarily using CT
images [116–121]. The autosegmentation of bladder walls and tumors using mpMRI is
challenging due to bladder shape variations; weak boundaries; diverse intensity and
inhomogeneity in urine; and variability across the population, particularly in tumor ap-
pearance [122]. A few studies from Table 4 used various DL-based autosegmentation and
denoising methods for T2w MR images [122–127]. Dolz et al. used a deep CNN model with
progressive dilated convolutional modules to segment multiple regions in T2w images of
60 bladder cancer patients [123]. They achieved a higher level of accuracy, with a mean
Dice similarity coefficient of 0.98, 0.84, and 0.69 for inner wall, outer wall, and tumor region
segmentation, respectively. They concluded that the DL method had a better diagnostic
performance, shorter processing time, and robust generalizability relative to radiologists
using VI-RADS, thus indicating good potential for diagnosing MIBC. Moribata et al. per-
formed an autosegmentation in bladder cancer on MRI using CNN and investigated the
robustness of image features automatically extracted from ADC maps [128]. This study
demonstrated that multicontrast MR images exhibit a higher segmentation performance
than single-contrast models. Image features calculated from the automatic segmentation
results showed high reproducibility for the first-order, shape-based, and higher-order fea-
tures. Thus, AI technology has been recognized as a promising tool for MBIC imaging.
However, its performance needs validation with independent datasets, and integrating
AI into routine clinical practice remains challenging. AI systems often fail to generalize to
local populations and imaging protocols, offer opaque reasoning, or demonstrate fragility
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in complex real-world conditions [129–133]. Hence, substantial work is still needed in this
field for clinical translation.

Table 4. Summary of selected works on artificial intelligence from the literature on bladder cancer.

# Application Reference Dataset Methods Conclusion

1

Segmentation

Dolz et al. (2018) [123] 60 patients (training 40,
validation 5, test 15)

U-Net yields precise
segmentation of bladder walls

and tumors on T2w.

Higher accuracy than standard
CNN, especially for tumors.

2 Li et al. (2020) [122] 1092 MR images
U-Net with priors is applied to

segment bladder walls and
tumors on T2w.

The method improved the
accuracy of bladder
wall segmentation.

3 Yu et al. (2022)
[126]

245 patients (training 220,
test 25)

Path augmentation U-Net
segmentation for bladder walls

and tumors on T2w.

It can precisely extract bladder
structures, especially

small tumors.

4 Coroamă et al. (2023) [127] 33 patients

A low-complexity 3D U-Net with
less than five layers for

segmentation of bladder walls
and tumors on T2w.

System for automated diagnosis of
bladder tumors that can lead to

higher reporting accuracy.

5 Moribata et al. (2023) [128] 170 patients (training 140,
test 30)

U-Net could segment bladder
cancer, and robust high-order

radiomics features were extracted
from ADC maps.

The model performed accurate
segmentation of bladder cancer,

and the extracted radiomics
exhibited high reproducibility.

6

Classification

Zou et al. (2022) [130] 468 patients
Inception V3, CNN on T2w,
recognizes the position of
bladder walls and tumors.

Reliable method that can be more
focused on features from the

surrounding area of the tumor.

7 Sevcenco et al. (2018) [131] 51 patients (training 36,
test 15)

A multilayer perceptron with one
hidden layer on ADC maps.

Classifier model combining the
ADC values with

clinical–pathological information
can identify patients at high risk

for survival.

8 Li et al. (2023) [133]

Multicenter cohort of
89 (121) patients (tumors),
61 (93) from center 1, and

28 (28) from center 2.
Tumors for training 93,

test 28

3D ResNet50 CNN on T2w as a
multitask model exhibits good

diagnostic performance in
predicting MIBC.

The method was lesion-focused
and more reliable for

clinical decisions.

9

Denoising

Taguchi et al. (2021) [124] 68 patients

VI-RADS validation
CNN, with denoising
reconstruction on T2w,

discriminates between NMIBC
and MIBC.

Combining VI-RADS with
denoising CNN might improve

diagnostic accuracy.

10 Watanabe et al. (2022) [125] 163 patients

VI-RADS validation
CNN with denoising

reconstruction on T2w and DW-
predicts accurate MIBC without

using DCE-MRI.

It achieved a comparable
predictive accuracy for MIBC to
that of conventional VI-RADS.

4. Discussion

A precise assessment of bladder cancer is an essential step toward personalized patient
treatment. Qualitative and quantitative mpMRI offers excellent contrast resolution for
preoperative staging, local recurrence detection, and treatment response assessment for
bladder cancer. The VI-RADS scoring system was developed to meet the consensus need
for qualitative mpMRI to improve tumor staging and has proven to be a robust predictor for
differentiating MIBC and NMIBC [21,23]. Many studies confirm that the standardization
and high degree of inter-reader agreement to discriminate NMIBC from MIBC supports
the VI-RADS implementation in routine clinical practice for bladder imaging [20].

The quantitative numerical values for ADC maps, reflecting tumor cellularity, pro-
vided by DW-MRI have shown promise for clinical application in bladder cancer [134–137].
The advanced DW-MRI acquisition protocols can include high b-values, offering the ability
to quantify the DKI-derived metrics interrogating tissue microstructure, in addition to ADC,
which has shown promise in differentiating MIBC from NMIBC [69]. DCE-MRI-derived
metrics are surrogates of tumor perfusion and permeability and have shown encouraging
results for assessing tumor responses to treatment in MIBC [19,34]. The emerging role of
radiomics in bladder cancer offers distinct morphologic characteristics and more insights
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into tumor heterogeneity [77]. Integrating radiomics with VI-RADS improved clinical
performance compared to VI-RADS alone [138].

AI-based methods are revolutionizing routine diagnostic procedures [139]. Manual
segmentation is time-consuming and subject to high inter-reader variability, making this
common clinical task one of the first areas in which AI can contribute to imaging data
analysis. Different AI architectures have been proposed to tackle the difficult task of
separating the inner and outer bladder walls and the bladder from the background with
MR images (Table 4). Some bladder regions are more challenging to segment because of
the thicker appearance of the walls. Image features were included in a newly designed
CNN model, yielding excellent reproducibility and reliability [140]. AI developments
focused on narrow tasks using mpMR images will allow researchers to identify new AI-
QIBs for clinical endpoints in bladder cancer. Multisite studies using larger patient cohorts
are needed to increase AI training sets, improve generalizability, reduce bias, and enable
clinical translation.

5. Conclusions

mpMRI-derived physiological biomarkers and radiomic features are important in
bladder cancer clinical applications. Most recently, AI is starting to be applied to bladder
cancer, and the first results suggest that it may offer a significant advantage for staging and
grading. New AI methods are expected to appear with a significant impact on diagnosis
tools and therapeutic protocols. Clinical studies and trials may benefit from new AI
methods, dramatically improving the patient’s quality of life.
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