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Simple Summary: The PI3K/Akt/mTOR pathway plays a crucial role in cancer, including leukemia.
Abnormalities in this pathway drive carcinogenesis by inducing uncontrolled growth, increased
survival, and treatment resistance. The abovementioned pathway is also disrupted in various
types of leukemia, which makes it a potential therapeutic target for this disease. Current treatment
approaches for leukemia are limited and fraught with numerous side effects. This review article aims
to summarize recent research data on inhibitors of the PI3K/Akt/mTOR pathway. Inhibition of this
pathway may potentially provide improved treatment outcomes for leukemia.

Abstract: Blood malignancies remain a therapeutic challenge despite the development of numerous
treatment strategies. The phosphatidylinositol-3 kinase (PI3K)/protein kinase B/mammalian target
of rapamycin (PI3K/Akt/mTOR) signaling pathway plays a central role in regulating many cellular
functions, including cell cycle, proliferation, quiescence, and longevity. Therefore, dysregulation of
this pathway is a characteristic feature of carcinogenesis. Increased activation of PI3K/Akt/mTOR
signaling enhances proliferation, growth, and resistance to chemo- and immunotherapy in cancer
cells. Overactivation of the pathway has been found in various types of cancer, including acute and
chronic leukemia. Inhibitors of the PI3K/Akt/mTOR pathway have been used in leukemia treatment
since 2014, and some of them have improved treatment outcomes in clinical trials. Recently, new
inhibitors of PI3K/Akt/mTOR signaling have been developed and tested both in preclinical and
clinical models. In this review, we outline the role of the PI3K/Akt/mTOR signaling pathway in
blood malignancies’ cells and gather information on the inhibitors of this pathway that might provide
a novel therapeutic opportunity against leukemia.

Keywords: PI3K/Akt/mTOR pathway; leukemia; PI3K inhibitors; mTOR inhibitors; dual PI3K/mTOR
inhibitors; Akt inhibitors

1. Introduction

Blood malignancies are a heterogeneous group of neoplasms arising due to the dis-
ruption of normal hematopoiesis [1,2]. They are among the most common cancer types,
accounting for 6.5% of all cancers around the world [3]. Hematologic malignancies are
generally classified into leukemias, multiple myeloma (MM), non-Hodgkin lymphomas
(NHLs), and Hodgkin lymphoma (HL) [4]. Each disease is characterized by different
morphological features, prognosis, and treatment regimens [5]. In this review, we focus on
four types of hematologic malignancies—acute lymphocytic leukemia (ALL), chronic lym-
phocytic leukemia (CLL), acute myeloid leukemia (AML), and chronic myeloid leukemia
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(CML). Activation of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin
pathway (PI3K/Akt/mTOR) has been detected in AML, CML, ALL, and CLL cells.

The PI3K/Akt/mTOR pathway is one of the most important signaling pathways
that regulates cell growth and proliferation. PI3K/Akt/mTOR activation is important
for leukemogenesis and it is associated with an unfavorable prognosis. The pathway is
apparently dysregulated in numerous human malignancies such as respiratory tumors,
digestive system tumors, kidney cancer, skin cancer, breast, and ovarian cancer, to name a
few [6,7]. The activation of the PI3K/Akt/mTOR axis has been detected in hematologic
malignancies, including ALL, CLL, AML, and CML. PI3K/Akt/mTOR activation is impor-
tant for leukemogenesis and it is associated with unfavorable prognosis. Inhibition of this
pathway through specific inhibitors results in reduced leukemic cell proliferation [8,9]. In
T-ALL, mutations and deletions leading to the phosphatase and tensin homolog (PTEN)
loss are the most common reasons for the upregulation of the PI3K/Akt/mTOR signaling,
as PTEN is a major negative regulator of this pathway. PTEN loss contributes to increased
cell proliferation and chemoresistance in AML, ALL, and CML [10]. The PI3K/Akt/mTOR
pathway is also known to play an important role in CLL, where it promotes autophagy and
thus contributes to improved cell survival [11]. Moreover, the PI3K/Akt/mTOR axis is
associated with several mutations in hematological malignancies. For instance, FLT3 muta-
tions in AML promote proliferation through mTOR signaling, whereas BCR-ABL kinase
in CML activates the PI3K/Akt/mTOR pathway by binding to the p85 PI3K regulatory
subunit [11,12].

For the abovementioned reasons, inhibition of the PI3K/Akt/mTOR pathway may
represent a new therapeutic opportunity against leukemia. In this review, we gathered the
latest knowledge about the role of the PI3K/Akt/mTOR pathway in blood cancer, phar-
macological inhibitors of the pathway, and their application in hematologic malignancies
treatment.

2. The PI3K/Akt/mTOR Signaling Pathway

PI3K is a lipid kinase family that phosphorylates inositol’s 3′-OH group in phospho-
lipids on the plasma membrane [13]. Human cells contain three classes of PI3Ks. Class
I PI3Ks consist of a catalytic isoform and a regulatory subunit which mediate the kinase
activity. This class is divided into two subclasses—IA, activated by receptor tyrosine kinases
(RTKs), and IB, activated by G protein-coupled receptors (GPCR) [14,15]. Genes PIK3CA,
PIK3CB, and PI3KCD encode the class IA catalytic subunit isoforms p110α, p110β, and
p110δ, respectively. These catalytic isoforms can form heterodimers with any of the regulat-
ing subunit isoforms, p85α, p55α or p50α (PIK3R1), p85β (PIK3R2), and p55γ (PIK3R3), all
of which are p85α splicing variants. PIK3CG encodes the class IB p110γ catalytic subunit,
which forms heterodimers with regulatory isoforms—p101 or p87, encoded, respectively,
by PIK3R5 and PIK3R6. Interestingly, while p110α and p110β are ubiquitously expressed
in all tissues, p110δ and p110γ expression seems to be highly restricted to leukocytes and
the hematopoietic system [14,16–18]. Class II PI3Ks contain only the catalytic subunit. This
subunit has three isoforms—PI3K-C2α, PI3K-C2β, and PI3K-C2γ, encoded, respectively,
by PIK3C2A, PIK3C2B, and PIK3C2G. Class III PI3Ks consist of Vps34 (vacuolar protein
sorting 34), which is encoded by PIK3C3 [15,19] (Table 1).

PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidyli-
nositol 3,4,5-triphosphate (PIP3). PIP3 is the second messenger that enables the interaction
of phosphoinositide-dependent kinase 1 (PDK1) and Akt, resulting in Akt phosphorylation.
Akt then promotes the phosphorylation of proteins responsible for enhancing cell growth,
proliferation, and protein synthesis. Akt activity is maximal when it Is phosphorylated at
both sites at Thr308 and Ser473 [15,20].

Tumor suppressors, such as phosphatase and tensin homolog (PTEN) and inositol
polyphosphate 4-phosphatase type II (INPP4B), are involved in dephosphorylation of
PIP3 to PIP2, therefore suppressing the activity of Akt and its downstream effectors. The
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Akt/protein kinase B (PKB) has three isoforms—Akt1 (PKBα), Akt2 (PKBβ), and Akt3
(PKBγ), all of which share similar structure and functions [21,22].

Once Akt is phosphorylated, it is able to promote protein synthesis and inhibit
proapoptotic proteins such as BCL-2-antagonist of cell death (BAD), forkhead box protein
O1 (FoxO1), BCL-2-like protein 11 (BIM), and pro-caspase-9. Akt activation also results in
p53 degradation via phosphorylation of mouse double minute 2 homolog (MDM2) [23].
Akt can activate mTOR which is a serine/threonine protein kinase able to interact with
different protein molecules by creating two complexes: mTOR complex 1 (mTORC1) and
mTOR complex 2 (mTORC2) [20]. mTORC1 function can be modulated by the PI3K/Akt
pathway and rapamycin, whereas mTORC2 is sensitive to growth factors and insensi-
tive to rapamycin, unless the exposure to rapamycin is prolonged [24,25]. Contrary to
mTORC1, mTORC2 possesses the ability to regulate Akt activity upon PDK1 direct signal
transduction [15]. It is worth mentioning that the mTORC1 signaling pathway is better
characterized than mTORC2 [26]. Upon activation, mTORC1 stimulates cell growth and
modulates protein synthesis by means of eukaryotic translation initiation factor 4E-binding
protein 1 (4E-BP1), ribosomal protein S6 kinase 1 (p70S6K or S6K1), forkhead/winged helix
box class O (FOXO) family, RAS/ERK, and many other pathways. On the other hand,
mTORC2, by phosphorylating Akt, can control signaling of several growth factors [20,25].
Furthermore, phosphorylation of protein kinase C (PKC)δ, PKCζ, PCKγ, and PKCε by
mTORC2 can also promote cytoskeleton construction [26] (Figure 1).
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Figure 1. Schematic representation of the main molecular consequences of phosphoinositide 3-
kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway activation. Stimulation
of growth factor receptor activates PI3K, which in turn causes phosphorylation of phosphatidyli-
nositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3). This process can
be reversed by phosphatase and tensin homolog (PTEN). Increased activity of PIP3 results in re-
cruitment of phosphoinositide-dependent kinase 1 (PDK1), which subsequently phosphorylates and
activates Akt. Activation of Akt degrades p53, increases protein synthesis, and inhibits the activity of
several proapoptotic proteins. Akt, through activation of mTOR, enables the formation of the two
complexes—mTORC1 and mTORC2. mTORC1 phosphorylates and activates eukaryotic translation
initiation factor 4E-binding protein 1 (4E-BP1) and p70S6 kinase (p70S6K), which are responsible for
cell growth and protein synthesis. mTORC2, on the other hand, regulates cytoskeletal architecture
through protein kinase C (PKC) phosphorylation.
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Table 1. The table presents the fundamental classes of the phosphatidylinositol-3 kinase (PI3K), along
with their subclasses and isoforms. The table also includes genes encoding a given PI3K class.

PI3K Class Subunits Isoforms Encoding Gene

IA

Catalytic subunits
+

regulating subunit
isoform

p110α, p110β, p110δ PIK3CA, PIK3CB,
PI3KCD

IB - p110γ PIK3CG

II Only the catalytic subunit PI3K-C2α, PI3K-C2β,
PI3K-C2γ

PIK3C2A, PIK3C2B,
PIK3C2G

III Vps34 - PIK3C3

3. The Role of PI3K/Akt/mTOR Pathway in Cancer Cells

The PI3K/Akt/mTOR pathway plays a crucial role in various hallmarks of cancer;
these include sustaining proliferative signaling, evading growth suppressors, activating
invasion and metastasis, and deregulating cellular energetics [27]. Moreover, it is known
to promote resistance to commonly used therapeutic methods like chemotherapy and
immunotherapy, which, therefore, leads to disease progression [28].

Overactivation of the PI3K/Akt/mTOR axis in tumor cells can be caused either by
genetic mutations or, more frequently, by post-translational modifications. One of the
most important epigenetic regulators of the pathway constitutes of small noncoding RNAs
called microRNAs (miRNAs) [29]. The most common alterations in the PI3K/Akt/mTOR
pathway found in human cancers include activating mutations in PIK3CA, loss of function
mutations and deletions in PTEN, amplification and activation of specific PI3K-activating
receptor tyrosine kinases like EGFR and HER2, and amplification and gain-of-function
mutations in AKT1, AKT2, or AKT3 [30]. Mutation in the PIK3CA oncogene is connected
with inhibition of apoptosis and acquirement of chemoresistance in triple-negative breast
cancer (TNBC) [31]. The ability of Akt signaling to promote cell survival, growth, and
proliferation partially results from altering cellular metabolism. Akt can either cause imme-
diate changes by phosphorylating, thereby regulating the activity of metabolic enzymes, or
influence metabolism indirectly, by controlling several transcription factors (e.g., FOXO
family members) [32].

3.1. Glucose Metabolism

Akt drives glucose uptake into cells through glucose transporters GLUT1 and GLUT4
due to direct inhibition of thioredoxin-interacting protein (TXNIP) [33]. In addition, Akt
phosphorylates and activates enzymes directly or indirectly involved in glycolysis, such
as hexokinase 2 (HK2) [34] and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase
(PFKFB2) [35]. The phosphorylation of HK2 occurs as a result of Akt/mTORC2 signaling
activation [36]. Phosphorylated HK2 binds to the outer mitochondrial membrane and
exerts antiapoptotic function [37]. Akt-mediated overactivation of HK2 has been found to
correlate with tumor progression and unfavorable prognosis in various malignancies, such
as hepatocellular carcinoma and gastric and colorectal cancer [38].

FOXO family members, hypoxia-inducible factor 1 (HIF1), and Myc are among the
main Akt-dependent downstream transcription factors engaged in glucose metabolism.
HIF1 and Myc regulate glucose uptake and glycolysis by inducing expression of most gly-
colytic enzymes and major glucose transporters, mainly GLUT1, which plays a crucial role
in glucose uptake into cancer cells. Moreover, the inhibition of FOXO through the PI3K/Akt
axis contributes to the same effect, as FOXO is known to suppress Myc function [39]. The
abovementioned mechanisms occur both physiologically and in cancer pathology. Under
conditions of pathological PI3K/Akt signaling in cancer cells, a constitutive induction of
the Warburg effect occurs, which enables the synthesis of cellular macromolecules. Both
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mTOR complexes show the ability to induce this phenomenon: mTORC1 by regulating
glucose metabolism and mTORC2 by promoting the expression of glycolytic enzymes [40].

3.2. Lipid Synthesis

The PI3K/Akt/mTOR pathway stimulates anabolic processes in tumor cells. For
instance, Akt initiates de novo lipid synthesis by direct phosphorylation and, thus, acti-
vation of ATP-citrate lyase (ACLY). ACLY is an enzyme which promotes the production
of cytosolic acetyl-CoA, a precursor of sterols and fatty acids [41,42]. Furthermore, Akt-
mediated ACLY activity increases histone-acetylation levels in cancer cells, particularly in
glucose-limited conditions [43]. Another mechanism by which Akt signaling influences
lipid synthesis is the activation of the sterol regulatory element binding proteins (SREBPs)
family of transcription factors. SREBPs stimulate the expression of enzymes involved in
fatty acids and sterols synthesis, which is necessary for building membranes and production
of second messengers [44]. Among other mechanisms, Akt can increase SREBPs activity via
mTORC1. Moreover, Akt inhibits glycogen synthase kinase 3 (GSK3) by phosphorylating
its autoinhibitory N-terminal serine (Ser9/Ser21) [45], which in turn promotes the stability
of processed, active forms of SREBPs [46].

3.3. Nucleotide Synthesis

Nucleotides, which are required for the synthesis of nucleic acids (RNA and DNA),
play a major role in cell growth and proliferation [47]. Thus, in cancer cells, de novo syn-
thesis of purines and pyrimidines is upregulated through various mechanisms, including
aberrations in PI3K/Akt/mTOR signaling. The PI3K/Akt/mTOR axis is responsible for
glycolytic carbon flux into both oxidative and nonoxidative branches of the pentose phos-
phate pathway (PPP), which enables the generation of ribose for nucleotide synthesis [48].
Akt directly enhances carbon flow through the nonoxidative PPP by phosphorylating trans-
ketolase, a key enzyme for this pathway. As a result, purine synthesis is increased [49]. Akt,
via mTORC1, promotes oxidative PPP flux by activating SREBPs, which induces the expres-
sion of glucose 6-phosphate dehydrogenase (G6PD) [50]. PPP-related enzymes, including
transketolase (TKT) and G6PD, are overexpressed in several malignancies like breast, lung,
ovarian, and colorectal cancer, wherein they are known to promote the development of
chemoresistance [51]. Another way in which Akt signaling controls nucleotide synthesis is
the regulation of Myc activity, as Myc increases the expression of metabolite precursors and
many enzymes involved in purine and pyrimidine synthesis [52]. The activation of mTOR
downstream branch of PI3K/Akt signaling regulates nucleotide synthesis de novo on both
the transcriptional and posttranslational levels. mTORC1 directly influences pyrimidine
synthesis by activating the first enzyme in their biosynthetic pathway (CAD—carbamoyl-
phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase) by S6K1-mediated
phosphorylation [53]. Meanwhile, purine synthesis is driven by mTORC1 through tran-
scriptional mechanisms involving Myc, SREBPs, and activating transcription factor 4
(ATF4) [54].

3.4. Protein Synthesis and Degradation

Enhanced protein synthesis is one of the key mechanisms enabling the growth of
tumor cells. As a downstream effector of the PI3K/Akt pathway, mTOR plays a major
role in regulating protein synthesis and degradation in cancer cells. mTORC1 promotes
the cap-dependent initiation of translation by phosphorylating 4E-BP1 [55]. Other crucial
targets of mTORC1 are ribosomal protein S6Ks: S6K1 and S6K2. S6Ks, phosphorylated and
activated by mTORC1, modulate the functions of translation initiation factors, as well as
contribute to cell growth [56].

Apart from enhancing protein synthesis, mTORC1 prevents protein degradation
through autophagy inhibition [57]. mTORC1 has been found to phosphorylate mammalian
autophagy-initiating kinase Ulk1 at Ser757 [58] and transcription factor EB (TFEB) at Ser142
and Ser211 [59], leading to their inactivation. Furthermore, mTORC1 controls autophagy
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by phosphorylating, and thus inactivating, several autophagy-related (Atg) proteins, such
as mammalian Atg13 [60]. mTORC1-mediated autophagy regulation plays a vital role in
cancer biology. Autophagy inhibition leads to accumulation of reactive oxygen species
(ROS) which increases DNA damage and therefore promotes carcinogenesis [61]. Another
mechanism by which mTORC1 controls protein degradation is influencing the ubiquitin
proteasome system (UPS) [62]. Nevertheless, despite numerous studies, more data are
needed to establish the exact biochemical connection between mTOR and proteasomal
protein degradation [63].

4. Application of PI3K/Akt/mTOR Pathway Inhibitors in Blood Malignancies

Depending on the mechanism of action, PI3K/Akt/mTOR pathway inhibitors are
divided into PI3K kinase inhibitors, Akt kinase inhibitors, and mTOR kinase inhibitors.
There are also dual inhibitors that inhibit both PI3K and mTOR kinase. Nowadays, the Food
and Drug Administration (FDA) has approved two inhibitors of the PI3K/Akt/mTOR
pathway for leukemia treatment; these are Idelalisib and Duvelisib, for the treatment of
CLL. We gathered all PI3K/Akt/mTOR pathway inhibitors in preclinical and clinical trials
and approved by the FDA for leukemia treatment in Table 2.

4.1. PI3K Inhibitors

PI3K inhibitors are classified as isoform-specific, pan-PI3K (targeting all four isoforms,
α, β, δ, and γ of class I PI3K), and dual PI3K/mTOR inhibitors. Among all pan-PI3K
inhibitors, only Copanlisib has been approved by the FDA. The other known pan-PI3K
inhibitors are Buparlisib and ZSTK474. Idelalisib and Umbralisib inhibit the δ isoform,
whereas Duvelisib inhibits the δ/γ isoforms of PI3K [64].

Idelalisib is a PI3Kδ inhibitor approved in 2014 by the FDA. It is used for treating
CLL in combination with Rituximab in disease resistance or relapse after at least one line
of therapy. Idelalisib is the first-line agent for patients with del17p or TP53 mutations
ineligible for immunochemotherapy. Idelalisib is also approved in follicular lymphoma
(FL) after two lines of therapy [65]. Despite the FDA approval of Idelalisib for treating
CLL and FL, studies on the efficacy of this drug combined with other drugs are constantly
underway. The study with Idelalisib in combination with Rituximab presents increased
PFS (progression-free survival) in patients with relapsed CLL, compared to placebo plus
Rituximab administration. Median PFS in the Idelalisib plus Rituximab (I–R) group was
20.3 months after a median follow-up time of 18 months. Patients who received I–R in the
main study and continued treatment with Idelalisib alone had a median PFS of 20.3 months
(95% CI, 17.3–26.3 months), and an overall response rate (ORR) of 85.5%. Median OS
(overall survival) was 40.6 months and 34.6 months for patients assigned randomly to I–R
and placebo plus Rituximab groups, respectively. Treatment with Idelalisib did not increase
the incidence of elevated liver aminotransferases; however, it increased the incidence
of diarrhea, colitis, and pneumonia [66]. On the other hand, another study revealed
that treatment with I–R proved less effective for patients with relapsed/refractory CLL
than monotherapy with Acalabrutinib—a Bruton’s tyrosine kinase inhibitor. Median
PFS and estimated 12-month PFS were significantly longer in the case of Acalabrutinib
monotherapy compared with I–R or Bendamustine plus Rituximab (B–R) therapy. Serious
adverse events (Aes) occurred in 29% of patients treated with Acalabrutinib monotherapy,
56% treated with I–R, and 26% treated with B–R. Deaths occurred in 10%, 11%, and
14% of patients receiving Acalabrutinib monotherapy, I–R, and B–R, respectively [67].
Altogether, it has been concluded that I–R therapy is less effective and has more side effects
in relapsed/refractory CLL than Acalabrutinib.

Duvelisib is an orally available dual inhibitor of PI3K-δ approved by the FDA for use in
relapsed/refractory CLL or small lymphocytic lymphoma (SLL) after at least two prior ther-
apies [68]. In a Phase I study, Duvelisib monotherapy in patients with relapsed/refractory
CLL resulted in an ORR of 56% [69]. Studies on the efficacy of Duvelisib in combination
with other drugs are ongoing. One study analyzed the efficacy and toxicity of Duvelisib in
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combination with Rituximab (ARM 1) and Duvelisib with Bendamustine and Rituximab
(ARM 2) in patients with relapsed/refractory non-Hodgkin lymphoma (NHL) and CLL.
Patients with CLL had better treatment outcomes in ARM 1 (ARM 1—partial response
(PR) 88.9%, ORR 88.9% vs. ARM 2—PR 50%, ORR 75.0%). Duvelisib in combination with
Rituximab or Bendamustine and Rituximab did not increase treatment toxicity [70]. The
combination of Duvelisib with Rituximab may become a new, promising treatment strategy.
However, more studies are needed to confirm their combined efficacy.

The other Inhibitor of pan-PI3K is Buparlisib. Buparlisib therapy in patients with
refractory/relapsed CLL resulted in an ORR of 46% with a median duration of response of
15.5 months. The most common side effects after Buparlisib administration were hyper-
glycemia, fatigue, anxiety, and gastrointestinal toxicities [71,72]. However, in a Phase I trial
with patients with refractory/relapsed AML and refractory/relapsed ALL, Buparlisib was
less effective, with a median survival time of 75 days [72]. On the other hand, Buparlisib
was more cytotoxic against B-CLL cells than Idelalisib in in vitro studies [73].

The next studied PI3K inhibitor is Umbralisib. Umbralisib inhibits PI3Kδ isoform
as well as casein kinase-1ε. Patients with CLL have reached a PFS of 23.5 months with
Umbralisib therapy [74]. Therapy based on Umbralisib plus Ibrutinib in patients with re-
lapsed/refractory CLL achieved an ORR of 90%, and PR/PR with lymphocytosis accounted
for 29% [75]. Every AE was graded according to the Common Terminology Criteria for
Adverse Events grade. The most common Aes were diarrhea, nausea, and fatigue, and
the most common grade 3 or higher AEs were anemia and thrombocytopenia. The most
common AEs leading to early discontinuation of therapy were rash, arthralgia, and atrial
fibrillation [74,76,77].

Another pan-PI3K inhibitor applied in preclinical studies is ZSTK474. ZSTK474
inhibited the cell growth of AML and ALL in in vitro studies [78,79]. The inhibition of cell
growth was concentration-dependent. ZSTK474 monotherapy induced apoptosis both in
AML and ALL cells. Upon combination of ZSTK474 with the extracellular signal-regulated
kinase 1/2 (ERK1/2) inhibitor AZD0364, the apoptosis of ALL and AML cells was increased;
this was associated with the induction of oxidative stress and cellular antioxidant defense
mechanisms [79]. Moreover, ZSTK474 exhibited cytotoxic effects against T-ALL and B-ALL
cells [80,81]. In a separate study, ZSTK474 reduced CML cells viability and proliferation
by inducing cell cycle arrest at the G1 phase. Further, the combination of ZSTK474 with
Imatinib showed a synergistic effect, improving the effectiveness of therapy also in the
multidrug-resistant counterpart cells [82]. Another in vitro study tested the efficacy of
ZSTK474 in combination with Imatinib, Nilotinib, and the BCR-ABL inhibitor GZD824 on
Philadelphia chromosome-positive B-ALL cells. The combination of these drugs decreased
cell viability and induced apoptosis and autophagy [83].

4.2. mTOR Inhibitors

The next group of drugs described herein is mTOR inhibitors, already used in im-
munosuppression and cancer treatment. The first generation of mTOR inhibitors comprises
natural rapamycin (Sirolimus) and its synthetic analogs, known as rapalogists. These
inhibitors bind to the FKBP-rapamycin-binding (FRB) domain. Second-generation ATP-
competitive mTOR inhibitors (TOR-Ki) can effectively block both mTORC1 and mTORC2
by binding to the ATP-binding pocket of the kinase catalytic domain (KIN). The third
generation of mTOR inhibitors is called RapaLinks or bi-steric mTORC1 inhibitors; these
are made by connecting rapamycin and TOR-Ki. This generation embraces the action of
both first- and second-generation mTOR inhibitors [84,85].

Everolimus is an oral mTOR kinase inhibitor used to prevent the rejection of trans-
planted organs and treat breast cancer, pancreatic-derived neuroendocrine tumors, and
renal cell carcinoma, among others [86]. In a randomized trial in patients with AML,
Everolimus did not increase relapse-free survival, the cumulative incidence of relapse, or OS.
The study randomized patients to receive Everolimus between consolidation chemotherapy
courses. The study terminated due to excess mortality in the Everolimus arm, without any



Cancers 2023, 15, 5297 8 of 18

evidence of beneficial disease control [87]. In a study of childhood patients with relapsed
ALL, therapy with Everolimus combined with Vincristine, Prednisone, Pegaspargase, and
Doxorubicin led to complete remission in 19 of 22 consecutive patients. Complete remission
occurred in all six patients with a known KMT2A or iAMP21 rearrangement. The combina-
tion of Everolimus with the drugs mentioned above was well tolerated [88]. Everolimus
combined with HyperCVAD (Cyclophosphamide + Vincristine + Doxorubicin + Dexam-
ethasone) chemotherapy resulted in better treatment outcomes than first-line HyperCVAD
alone—partial response (PR) or complete response (CR) of 63.6% and 53.3%, respectively.
The results were not statistically significant, however, and additional studies on a larger
group of patients are needed to confirm the effectiveness of the therapy. The therapy of
Everolimus plus HyperCVAD was also well tolerated [89].

Rapamycin (Sirolimus—trade name) is an mTOR inhibitor that was approved by the
FDA in 1999 for the prevention of kidney transplant rejection. Rapamycin is a macrocyclic
lactone produced by Streptomyces hygroscopicus, which was isolated from soil samples in
the late 1960s. Rapamycin or its rapalogues are also applied in the prevention of restenosis
after coronary angioplasty and used in oncology—the FDA approved the use of rapamycin
to treat patients with pancreatic cancer in 2011 [90,91]. In a clinical trial in high-risk AML
patients treated with Sirolimus in combination with MEC (Mitoxantrone + Etoposide +
Cytarabine), the ORR was 47% (CR 33%, complete remission with incomplete hematologic
recovery 2%, PR 12%). Moreover, ORR was not significantly different between participants
with and without baseline mTORC1 activity (52% vs. 40%, respectively). Sirolimus therapy
together with MEC was well tolerated [92]. In another Phase II study in patients with
relapsed/refractory AML, Sirolimus in combination with MEC had an ORR of 16%. The
study also examined the efficacy of the Carboplatin + Topotecan and Alvocidib + Cytarabine
+ Mitoxantrone scheme. The ORR accounted for 14% and 28%, respectively [93].

Temsirolimus is an mTOR inhibitor that was approved by the FDA in 2007 for the
treatment of advanced renal cell carcinoma [84]. The combination of Temsirolimus with
a UKALL R3 reinduction chemotherapy regimen (Dexamethasone + Vincristine + Mi-
toxantrone + Pegaspargase + intrathecal Methotrexate) was investigated in childhood
relapsed/refractory ALL patients. In the study, 46.6% of patients achieved remission, while
20% had residual disease of <0.01%. In therapy-related AEs, 73% of the children studied
developed neutropenic fever and 53% of patients had a documented grade 3 or 4 infection
and one grade 5 bacterial sepsis [94]. Another study examined the therapy of Temsirolimus
combined with Clofarabine in patients with AML. The treatment resulted in an ORR of
21%, of which 8% achieved CR. Median disease-free survival was 3.5 months, and median
OS was 4 months [95].

RMC-4627 is a novel bi-steric mTORC1-selective inhibitor; at this moment it is un-
dergoing preclinical studies. In in vitro research, RMC-4627 demonstrated strong and
selective inhibition of 4E-BP1 phosphorylation specifically within B-ALL cell lines, while
mTORC2 activity was unaffected. RMC-4627 reduced proliferation, decreased survival,
and significantly increased the efficacy and tolerability of Dasatinib in a Ph+ B-ALL
xenograft model [85,96]. It is worth adding that the first clinical candidate in the class
of bi-steric mTORC1 inhibitor (RMC-5552) is undergoing clinical trials in solid tumors
(NCT04774952) [97].

4.3. Dual PI3K/mTOR Inhibitors

Dual PI3K/mTOR inhibitors are another group of potential drugs undergoing ex-
tensive investigation. Dual PI3K/mTOR inhibitors can completely suppress the aberrant
activation of the PI3K/Akt/mTOR signaling pathway and prevent the compensatory
activation of the Akt/mTOR pathway; this can lead to improved treatment outcomes [98].
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Gedatolisib was found to reduce the number of ALL cells in the spleen by an aver-
age of 91.8% in patient-derived xenograft mouse models of childhood Ph-like ALL. In a
xenograft mice with cytokine receptor 2 (CRLF2)/JAK Ph-like ALL mutations, Gedatolisib
therapy reduced the viability of ALL cells by 92.2%. Gedatolisib also inhibited ALL pro-
liferation in ABL/platelet-derived growth factor receptor (PDGFR) mutant models with
a mean reduction of 66.9%. The high efficacy of Gedatolisib correlated with inhibition of
phosphorylated ribosomal protein S6 (pS6) and 4E-BP1 in Ph-like ALL models [99]. Geda-
tolisib significantly prolonged survival of mice in a xenograft model of Sorafenib-resistant
AML [100]. Furthermore, Gedatolisib treatment led to marked inhibition of T-ALL growth
compared to vehicle treatment, as well as delayed tumor growth in all treated mice [101].

Imidazoquinoline derivative BEZ235 is a dual PI3K/mTOR inhibitor. BEZ235 is
currently undergoing Phase I clinical trials. In one of the studies, in patients with refractory
or relapsed leukemia, the response was observed in 2 of 10 patients with BCP-ALL and 1 of
1 patient with T-ALL. In contrast, there was no response in any patient with AML (n = 12)
or CML (n = 1). The response to BEZ235 treatment was uncorrelated with the level of PI3K
signaling markers. BEZ235 therapy was mainly associated with gastrointestinal-related
toxicity [102]. In vitro, BEZ235 reduced viability, induced G0/G1 arrest, and increased
apoptosis of AML cells [103,104]. In xenograft models of AML MLL-AF9+/FLT3-ITD+,
BEZ235 therapy resulted in delayed tumor progression and prolonged survival [105]. It was
also found that BEZ235 inhibited AML cell migration and sensitized cells to Vincristine and
Adriamycin [104]. Furthermore, in either in vitro or in vivo models of T-ALL, inhibition
of PI3K/mTOR with BEZ235 enhanced the antileukemic effect of Dexamethasone [106].
BEZ235 also inhibited proliferation, induced apoptosis, and activated autophagy in CML
cells in both cellular and xenograft models [107,108]. Moreover, BEZ235 increased the
sensitivity of CML cells to Imatinib [108]. Another study showed that BEZ235 inhibited
proliferation of adult T-cell leukemia (ATL) cells in in vivo models. In CML cells treated
with BEZ235, PI3K/Akt/mTOR activity and the levels of the antiapoptotic protein Bcl-2
decreased, while the levels of the proapoptotic protein Bax increased [103,109]. BEZ235
also offers the opportunity to overcome resistance to Venetoclax, a selective Bcl-2 inhibitor.
Venetoclax has significantly enhanced the treatment options available to patients with
refractory and relapsed blood cancers, including those with AML. Venetoclax has fewer
side effects, which makes it more effective for elderly patients. Numerous studies have
demonstrated that the two major antiapoptotic Bcl-2 family proteins, namely, Bcl-XL and
MCL-1, serve as the primary factors that determine resistance to Venetoclax. Venetoclax has
a high binding specificity for Bcl-2; thus, the relative expression levels of Bcl-2 proteins may
be a determinant of Venetoclax resistance. Combining Venetoclax with other targeted drugs
such as BEZ235, a dual PI3K/mTOR inhibitor, offers a chance to circumvent resistance to
Venetoclax [9,11,110,111].

4.4. Akt Inhibitors

GSK2141795 is an ATP-competitive, fully reversible pan-Akt kinase inhibitor.
GSK2141795 inhibited neoplastic cell proliferation with activated Akt pathway in vitro and
in vivo [112]. A Phase II study enrolled patients with relapsed/refractory AML with an RAS
mutation, in which GSK2141795 therapy was combined with Trametinib (GSK1120212)—
a dual-specificity mitogen-activated protein kinase kinase 1 and 2 inhibitor (MEK1 and
MEK2). No patient achieved CR and CR with incomplete recovery of platelets due to
therapy, and the study was closed early due to lack of clinical activity. The median OS
amounted to 3 months. The most common AEs were diarrhea, maculopapular rash, and
mucositis. Serious AEs (grade 3–4) were observed in 39% of patients, the most frequent
being rash, mucositis, and diarrhea [113].
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Table 2. The current drug developmental stages of the specific inhibitors of the phosphoinositide
3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in preclinical
and clinical studies.

Target Compound
Name Type Current

Status

Number
of Evaluable

Patients in Trial
Results

Idelalisib PI3K inhibitor FDA-approved 220

FDA-approved Idelalisib in patients
with relapsed CLL based on a

significant PFS benefit. In relapsed
follicular lymphoma (FL) and

relapsed SLL, Idelalisib was approved
under the accelerated approval

program based on the tumor objective
response rate data [114].

Duvelisib PI3K inhibitor FDA-approved 319

Approved by the FDA for relapsed
CLL/SLL and FL. Patients with

CLL/SLL treated with Duvelisib had
a median PFS of 16.4 months and an

overall response rate of 78%. FL
patients treated with the drug had an

overall response rate of 42% [115].

PI3K

ZSTK474 PI3K inhibitor Preclinical In vitro research

AML [78] and CML cell proliferation
decrease. Combination of ZSTK474
and Imatinib indicated synergistic

effect on both cell lines [82].

Buparlisib PI3K inhibitor

CT Phase I 14
Safe, well tolerated, modest
efficacy in advanced AML

and ALL [72].

CT Phase II 12

Safe, well tolerated, promising
results in relapse or refractory

CLL—6/12 achieved PR with a
median duration of response of

15.5 months [71].

Umbralisib PI3K inhibitor

CT Phase I

22
Safe, well tolerated, promising results
in CLL—8/22 achieved CR and 14/22

achieved PR [116].

90

Safe, well tolerated, promising
results in relapsed or refractory CLL.

85% of patients with relapsed or
refractory CLL achieved an objective
response. 8 assessable patients with
high-risk cytogenetic features CLL 6

had a response, of whom 2 had a
PR [77].

CT Phase I/IB 44
Safe, well tolerated, promising results

in relapsed or refractory CLL. The
ORR was 90% [75].

CT Phase II

51
Safe, well tolerated, promising results
in CLL. The ORR was 44%—19/48 PR

and 2/48 CR [74].

28

Safe, well tolerated, encouraging
response in CLL—52% of patients

achieved undetectable minimal
residual disease [117].

RMC-4627 mTOR inhibitor Preclinical In vitro research

In in vitro cell line models of Ph+
B-ALL, RMC-4627 suppressed cell

cycle progression, reduced survival,
and enhanced Dasatinib

cytotoxicity [96].



Cancers 2023, 15, 5297 11 of 18

Table 2. Cont.

Target Compound
Name Type Current

Status

Number
of Evaluable

Patients in Trial
Results

mTOR

Everolimus mTOR inhibitor

CT Phase I

22

Safe, well tolerated, promising results
in childhood ALL with favorable

rates, second PR (86%) and low-end
reinduction minimal residual disease

(68%) [88].

Data unpublished
Data unpublished (NCT03328104,

NCT03740334, NCT01154439,
NCT00819546, NCT00636922).

CT Phase Ib 28
Safe, well tolerated, promising results

in AML—68% of patients achieved
CR [118].

CT Phase I/II

24

Safe, well tolerated, not sufficiently
efficacious to recommend further

development of the regimen in relapse
or refractory CLL—33% of patients

achieved PR but noone achieved
CR [119].

24

Safe, well tolerated, moderately
effective in relapsed ALL, and

promising response in T-ALL—ORR
was 33%, response was noted in 5 of

10 heavily pretreated T-ALL
patients [89].

27 Safe, well tolerated, no therapeutic
effect in AML [120].

Data unpublished Data unpublished (NCT00093639).

CT Phase II 22

Safe, well tolerated, modest efficacy in
relapse or refractory CLL—4 of
22 patients with CLL achieved a

PR [121].

Sirolimus mTOR inhibitor

CT Phase I

51 Safe, well tolerated, promising results
in AML—the ORR was 47% [92].

12

Combination of Decitabine and
Sirolimus was safe and well tolerated.

The primary focus of this Phase I
study was not on measuring efficacy.
However, it is worth noting that after

one cycle, most patients showed
stability or a positive response in their

disease status [122].

Data unpublished Data unpublished (NCT00068302,
NCT00874562).

CT Phase II
5

Poorly tolerated, no therapeutic effect
in refractory or relapsed ALL

(NCT01162551).

Data unpublished Data unpublished (NCT00235560).

CT Phase II
26

Safe, well tolerated, survival rates
appear comparable to other salvage
regimens in AML. The CR was 33%;

median overall survival was
7.7 months in newly diagnosed

elderly AML patients and 6.6 months
in relapsed/refractory AML

patients [123].

Data unpublished Data unpublished (NCT00776373).
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Table 2. Cont.

Target Compound
Name Type Current

Status

Number
of Evaluable

Patients in Trial
Results

mTOR Temsirolimus mTOR inhibitor

CT Phase I

16

Safe, well tolerated, promising results
in relapsed or refractory childhood

ALL—sixteen patients were included
in the study, achieving an ORR of 47%

and a CR of 27% [124].

15

Temsirolimus in combination with UK
R3 chemotherapy can induce

responses in children with ALL—this
regimen induced remission in seven
of fifteen patients with relapse ALL.
However, this intensive regimen is

associated with unacceptable
toxicity [94,125].

Data unpublished Data unpublished (NCT00101088).

CT Phase II

53

Acceptable safety profile, promising
results in AML—in 53 evaluable

patients, the ORR was 21%. Median
disease-free survival was 3–5 months,

and median overall survival was
4 months [95].

89
Safe, well tolerated, underperforming

results in CLL—one of 15 patients
with CLL had PR [126].

Data unpublished Data unpublished (NCT00084916,
NCT00086840).

Dual
PI3K/mTOR

Gedatolisib
Dual

PI3K/mTOR
inhibitor

CT Phase II 10

Safe, well tolerated, no clinical benefit
in relapse or refractor AML—no

objective response was detected for
any of the 10 patients [127].

BEZ235
Dual

PI3K/mTOR
inhibitor

CT Phase I 24

Safe, well tolerated, clinical benefit for
small subset of patients with ALL,

with no benefit in patients with AML.
CR observed in 3 of 24 patients, all of

them ALL (3/11) [102].

Akt GSK2141795 Akt inhibitor CT Phase II 24

Safe, well tolerated, no clinical benefit
in AML with RAS mutations—no

patient obtained CR. The study was
closed early due to lack of clinical

activity [113].

5. Summary and Perspective

Blood malignancies are highly heterogenous as they arise from different types of blood
cells at distinct levels of differentiation. Notwithstanding the many differences related
to origin and pathogenesis, all leukemia we described are characterized by disrupted
PI3K/Akt/mTOR signaling pathway. Consequently, the PI3K/Akt/mTOR axis supports
various hallmarks of cancer, including sustaining proliferative signaling, evading growth
suppressors, activating invasion and metastasis, and deregulating cellular energetics. Fur-
thermore, the pathway’s role in promoting resistance to traditional therapeutic approaches
like chemotherapy and immunotherapy underscores its significance in disease progression.
While advancements have been made in understanding the role of the PI3K/Akt/mTOR
pathway in cancer, there is still much to explore. The complexity of its interactions with
other cellular processes, its isoform-specific effects, and its crosstalk with various signaling
pathways present both challenges and opportunities for targeted therapeutic interventions.
Continued research into this pathway’s intricate mechanisms will likely yield novel insights
and contribute to the development of more effective and personalized treatments for cancer,
including hematological neoplasms, ultimately improving patients’ outcomes. Duvelisib
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and Idelalisib are the only PI3K/Akt/mTOR pathway inhibitors approved by the FDA
for the treatment of relapsed CLL/SLL and FL at this point. Both of them are applied in
resistant or relapsed CLL. Buparlisib shows efficacy in treating CLL but has significant side
effects. Further research is therefore needed to increase the safety of such therapy while
retaining the therapeutic effect. Umbralisib in combination with Ibrutinib shows promising
results in the treatment of relapsed/refractory CLL. However, due to the limited number of
studies on this topic, new research on efficacy of the drug is required. The abovementioned
study on Everolimus application in AML shows its ineffectiveness against this disease.
However, Everolimus combined with chemotherapy in pediatric ALL shows efficacy, al-
though further confirmation of these data is necessary. Gedatolisib shows effectiveness in
Ph+ ALL and AML in in vivo models. Nevertheless, to date, there are no clinical trials on
the drug’s efficacy in AML treatment. Given the promising results of in vivo studies, the
new clinical trials should be considered. On the other hand, BEZ235 as a dual PI3K/mTOR
inhibitor shows limited efficacy in clinical trials in BCP-ALL and T-ALL. However, due to
the very small patient population studied in Phase I clinical trials, expanded studies are
required to make a clear conclusion. Due to the lack of significant clinical activity observed
in the Phase II study of GSK2141795 in combination with Trametinib for relapsed/refractory
AML patients with RAS mutation, and the early closure of the study, it has been suggested
that this treatment approach may not be effective for this specific patient population. To
sum up, inhibition of the PI3K/Akt/mTOR signaling pathway constitutes a promising
treatment option not only for CLL but also for other blood malignancies, and this topic
should be further addressed by future studies. We look forward to the future with hope
that, one day, the application of these drugs will be expanded beyond CLL treatment and
will bring relief to more hematological patients.
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Phosphogluconate Dehydrogenase Fuels Multiple Aspects of Cancer Cells: From Cancer Initiation to Metastasis and Chemoresis-
tance. BioFactors 2020, 46, 550–562. [CrossRef] [PubMed]

52. Liu, Y.-C.; Li, F.; Handler, J.; Huang, C.R.L.; Xiang, Y.; Neretti, N.; Sedivy, J.M.; Zeller, K.I.; Dang, C.V. Global Regulation of
Nucleotide Biosynthetic Genes by C-Myc. PLoS ONE 2008, 3, e2722. [CrossRef] [PubMed]

53. Ben-Sahra, I.; Howell, J.J.; Asara, J.M.; Manning, B.D. Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through
MTOR and S6K1. Science 2013, 339, 1323–1328. [CrossRef] [PubMed]

54. Ben-Sahra, I.; Hoxhaj, G.; Ricoult, S.J.H.; Asara, J.M.; Manning, B.D. MTORC1 Induces Purine Synthesis through Control of the
Mitochondrial Tetrahydrofolate Cycle. Science 2016, 351, 728–733. [CrossRef]

55. Hay, N.; Sonenberg, N. Upstream and Downstream of MTOR. Genes. Dev. 2004, 18, 1926–1945. [CrossRef] [PubMed]
56. Ma, X.M.; Blenis, J. Molecular Mechanisms of MTOR-Mediated Translational Control. Nat. Rev. Mol. Cell Biol. 2009, 10, 307–318.

[CrossRef]
57. Cirone, M. Cancer Cells Dysregulate PI3K/AKT/MTOR Pathway Activation to Ensure Their Survival and Proliferation: Mimick-

ing Them Is a Smart Strategy of Gammaherpesviruses. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 500–509. [CrossRef] [PubMed]
58. Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and MTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nat.

Cell Biol. 2011, 13, 132–141. [CrossRef]
59. Napolitano, G.; Esposito, A.; Choi, H.; Matarese, M.; Benedetti, V.; Di Malta, C.; Monfregola, J.; Medina, D.L.; Lippincott-Schwartz,

J.; Ballabio, A. MTOR-Dependent Phosphorylation Controls TFEB Nuclear Export. Nat. Commun. 2018, 9, 3312. [CrossRef]
60. Jung, C.H.; Jun, C.B.; Ro, S.-H.; Kim, Y.-M.; Otto, N.M.; Cao, J.; Kundu, M.; Kim, D.-H. ULK-Atg13-FIP200 Complexes Mediate

MTOR Signaling to the Autophagy Machinery. Mol. Biol. Cell 2009, 20, 1992–2003. [CrossRef]
61. Poillet-Perez, L.; Despouy, G.; Delage-Mourroux, R.; Boyer-Guittaut, M. Interplay between ROS and Autophagy in Cancer Cells,

from Tumor Initiation to Cancer Therapy. Redox Biol. 2015, 4, 184–192. [CrossRef] [PubMed]
62. Zhao, J.; Zhai, B.; Gygi, S.P.; Goldberg, A.L. MTOR Inhibition Activates Overall Protein Degradation by the Ubiquitin Proteasome

System as Well as by Autophagy. Proc. Natl. Acad. Sci. USA 2015, 112, 15790–15797. [CrossRef] [PubMed]
63. Park, S.H.; Choi, W.H.; Lee, M.J. Effects of MTORC1 Inhibition on Proteasome Activity and Levels. BMB Rep. 2022, 55, 161–165.

[CrossRef] [PubMed]
64. Mishra, R.; Patel, H.; Alanazi, S.; Kilroy, M.K.; Garrett, J.T. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects.

Int. J. Mol. Sci. 2021, 22, 3464. [CrossRef]

https://doi.org/10.1371/journal.pone.0001852
https://doi.org/10.1371/journal.pone.0166230
https://doi.org/10.1038/sj.emboj.7600279
https://doi.org/10.1007/s10555-021-10012-4
https://doi.org/10.1074/jbc.M204681200
https://www.ncbi.nlm.nih.gov/pubmed/12107176
https://doi.org/10.1021/bi992159y
https://www.ncbi.nlm.nih.gov/pubmed/10653665
https://doi.org/10.1016/j.cmet.2014.06.004
https://www.ncbi.nlm.nih.gov/pubmed/24998913
https://doi.org/10.1038/sj.onc.1208802
https://doi.org/10.4161/cc.7.17.6514
https://doi.org/10.1074/jbc.M405522200
https://www.ncbi.nlm.nih.gov/pubmed/15466874
https://doi.org/10.1093/nar/gkv047
https://doi.org/10.3390/cancers11050688
https://doi.org/10.1016/j.molcel.2014.05.028
https://doi.org/10.1016/j.molcel.2010.06.022
https://doi.org/10.1002/biof.1624
https://www.ncbi.nlm.nih.gov/pubmed/32039535
https://doi.org/10.1371/journal.pone.0002722
https://www.ncbi.nlm.nih.gov/pubmed/18628958
https://doi.org/10.1126/science.1228792
https://www.ncbi.nlm.nih.gov/pubmed/23429703
https://doi.org/10.1126/science.aad0489
https://doi.org/10.1101/gad.1212704
https://www.ncbi.nlm.nih.gov/pubmed/15314020
https://doi.org/10.1038/nrm2672
https://doi.org/10.1080/10409238.2021.1934811
https://www.ncbi.nlm.nih.gov/pubmed/34130564
https://doi.org/10.1038/ncb2152
https://doi.org/10.1038/s41467-018-05862-6
https://doi.org/10.1091/mbc.e08-12-1249
https://doi.org/10.1016/j.redox.2014.12.003
https://www.ncbi.nlm.nih.gov/pubmed/25590798
https://doi.org/10.1073/pnas.1521919112
https://www.ncbi.nlm.nih.gov/pubmed/26669439
https://doi.org/10.5483/BMBRep.2022.55.4.032
https://www.ncbi.nlm.nih.gov/pubmed/35321785
https://doi.org/10.3390/ijms22073464


Cancers 2023, 15, 5297 16 of 18

65. Puła, B.; Giza, A.; Długosz-Danecka, M.; Rybka, J.; Subocz, E.; Waszczuk-Gajda, A.; Piotrowska, M.; Rej, M.; Jamroziak, K.;
Jurczak, W. Ocena Profilu Korzyści i Ryzyka Leczenia Idelalizybem u Chorych Na Przewlekłą Białaczkę Limfocytową i Chłoniaki
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