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Simple Summary: Primary malignant tumors of the brain are relatively rare, but their contribution
to death due to cancer is disproportionately large. The use of multimodal data in machine learning
techniques (such as deep learning) is still relatively new, but its implications for predicting brain
tumor characteristics, treatment response, and patient survival are robust. In this study, we sought
to review the current state of glioma prognostication using deep learning methods. A systematic
review of the deep learning-based prognostication of gliomas was performed in accordance with
PRISMA guidelines. All included studies focused on the prognostication of gliomas, and predicted
overall survival, overall survival along with genotype characteristics, and response to immuno-
therapy. Multimodal analyses were varied, with 6 studies combining MRI with clinical data; 6 studies
integrating MRI with histologic, clinical, and biomarker data; 3 studies combining MRI with genomic
data; and 1 study combining histologic imaging with clinical data. Overall, the use of multimodal
data in deep learning assessments of gliomas leads to a more accurate prediction of overall patient
survival as compared to unimodal models. As data collection and computational capacity expands,
further improvements are likely from the continued integration of different data modalities into deep
learning models.

Abstract: Malignant brain tumors pose a substantial burden on morbidity and mortality. As clinical
data collection improves, along with the capacity to analyze it, novel predictive clinical tools may
improve prognosis prediction. Deep learning (DL) holds promise for integrating clinical data of
various modalities. A systematic review of the DL-based prognostication of gliomas was performed
using the Embase (Elsevier), PubMed MEDLINE (National library of Medicine), and Scopus (Elsevier)
databases, in accordance with PRISMA guidelines. All included studies focused on the prognos-
tication of gliomas, and predicted overall survival (13 studies, 81%), overall survival as well as
genotype (2 studies, 12.5%), and response to immunotherapy (1 study, 6.2%). Multimodal analyses
were varied, with 6 studies (37.5%) combining MRI with clinical data; 6 studies (37.5%) integrating
MRI with histologic, clinical, and biomarker data; 3 studies (18.8%) combining MRI with genomic
data; and 1 study (6.2%) combining histologic imaging with clinical data. Studies that compared
multimodal models to unimodal-only models demonstrated improved predictive performance. The
risk of bias was mixed, most commonly due to inconsistent methodological reporting. Overall, the
use of multimodal data in DL assessments of gliomas leads to a more accurate overall survival
prediction. However, due to data limitations and a lack of transparency in model and code reporting,
the full extent of multimodal DL as a resource for brain tumor patients has not yet been realized.

Keywords: machine learning; deep learning; multimodal; brain tumor; glioma; radiomics; genomics;
prognostication
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1. Introduction

Brain tumors pose a substantial morbidity and mortality burden globally, affecting
330,000 people in 2016 [1]. While primary malignant tumors of the CNS are relatively
rare, their contribution to cancer mortality is disproportionately large. High-grade gliomas
(WHO grade 3 or 4) are the most commonly diagnosed primary malignant brain tumor,
accounting for 78% of cases [2]. The prognosis for malignant gliomas remains poor, despite
advancements in molecular characterization and data availability for these tumors [3]. The
development of tools that can accurately predict prognosis, using multimodal data, could
aid in decision-making for targeted therapies and designing treatment plans.

In recent years, remarkable deep learning (DL) advances have yielded greater capa-
bilities than traditional machine learning methods [4]. DL is based on artificial neural
networks arranged in multiple, non-linear layers, each of which perform calculations based
on input from the previous layer. Multilayered calculations allow for the amplification of
important aspects of input, while simultaneously suppressing irrelevant variations [4,5].

DL research has made substantial advances in various medical fields. Several studies
have demonstrated the applications of DL in clinical situations, such as predicting real-time
risk scores for mortality, diagnostic evaluations, and assisting in medical error reduction [6].
For instance, a recent study demonstrated a model that predicts automated breast cancer di-
agnosis and early-stage lymph node metastasis from whole slide images (WSI) [7]. Another
study illustrated an integrated model that can predict Alzheimer’s disease progression
using multimodal time series data [8]. These results have illustrated the enormous impact
that DL may have on medical analysis, diagnosis, and prognosis in the coming years.

Despite the extraordinary applications of DL models, they are currently rare in clinical
practice. Integration of DL models into practice faces several barriers, including a high
complexity leading to limited interpretability and the potential for algorithmic biases [6].
In addition, DL model performance is dependent on the availability of training data, which
may vary across clinical settings [4].

As data collection and availability continues to improve, DL may prove a useful
prognostic tool for patients with gliomas [5]. Many previous DL glioma prognostication
efforts have centered around a unimodal analysis of radiological imaging data [9,10]. The
increasing availability of digitalized WSI, detailed phenotyping and comprehensive multi-
omic datasets, such as The Cancer Genome Atlas (TCGA), provides an opportunity to
integrate multimodal data into DL models. An integrated approach can provide a more
comprehensive analysis than single-modal approaches and is a promising way to improve
clinical performance [11]. However, as interest in multimodal methods increases, ongoing
efficacy evaluation is needed to ensure patient safety. Here, we present a systematic review
of multimodal DL methods for glioma prognosis and assess their effectiveness.

2. Methods

We systematically reviewed the literature on multimodal DL applications for brain
tumor prognosis, in accordance with the Preferred Reporting Items for Systematic Reviews
and Meta-analyses guidelines [12]. The Embase (Elsevier), PubMed MEDLINE (National
library of Medicine), and Scopus (Elsevier) databases were queried using search terms
pertaining to prognosis, deep learning, and medical imaging. This search strategy is
described in full in the Supplementary Materials (Supplemental Digital Content).

Following duplicate record removal, title and abstract screening was performed,
followed by a full-text review for final inclusion. Study inclusion was based on the following
inclusion criteria: peer-reviewed original research, full length article, English language, full
text available, and the use of a DL model within a workflow using multimodal data to the
perform prognosis of a glioma. DL was defined in accordance with LeCun et al. [4] and
included any neural network model with at least one hidden layer. Multimodal data were
defined as any dataset including imaging data (e.g., MRI, WSI), in addition to one other
form of clinical data, such as genomic data or clinical variables.
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Screening was independently performed by two reviewers (K.A. and E.K.). Any
disagreements were reconciled by discussion. Data were extracted per prespecified criteria
by two reviewers (K.A. and E.K.). Due to heterogeneity in the included studies, data were
synthesized qualitatively to characterize the applications and outcomes of multimodal DL
methods for brain tumor prognosis. The prediction model’s risk of bias assessment tool
(PROBAST) was used to assess the risk of bias for the included studies (L.Z.) [13]. PROBAST
uses 20 signaling questions across 4 key domains (participants, predictors, outcome, and
analysis) to determine the risk of bias of studies that develop clinical outcome prediction
models. Apart from item 4.9, which evaluates the assignment of predictor weights in
the final model and is not applicable to DL models due to their complexity, all signaling
questions were assessed to perform the risk of bias determination.

3. Results

The literature search was performed on July 8, 2022 and it identified 767 unique
records (Figure 1). Of these, 87 full text articles were reviewed and 16 were included in the
final analysis. Table 1 summarizes the characteristics of these studies. Eight (50%) studies
originated from North America, 7 (43%) from Asia and 1 (6%) from Europe. The most fre-
quently represented countries were the United States of America (7, 43%), China (2, 12.5%),
India (2, 12.5%), and Singapore (2, 12.5%).
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Table 1. Summary of studies reviewed.

Author Year Country Disease Procedure Outcome Predictors Data Source Size Model Type Key Findings

Alex 2018 India Glioma (LGG,
HGG)

Patients treated
independently

Overall Survival
Time

Radiomic,
clinical data BRaTS 241 FCNN

After using FCNN for segmentation the
BraTS 2017 validation data and test data,

the regressor accuracy was 52% and
47%, respectively.

Asthana 2022 India Glioma (LGG,
HGG)

Patients treated
independently Overall survival Radiomic,

clinical data BRaTS 989 U-net

U-Net-based semantic segmentation of
tumors and the pervasive learning model
to calculate the weights of the regression
model had accuracies of 64.2% on Brats
2018, 59.8% on Brats 2019, and 60.5% on

Brats 2020 datasets.

Braman 2021 United
States

Glioma (LGG,
GBM)

Patients treated
independently

Overall survival
with predicted

risk score

Radiomic,
histologic,

genomic, and
clinical data

TCIA 176

Deep Orthogonal
Fusion model,

multiple-input CNN,
SNN, pre-trained

VGG-19

The multimodal deep orthogonal full
fusion model (rad, path, genetics and
clinical data) outperformed various

combinations of unimodal, pairwise and
triple fusion models (except for the rad,

path and genetics triple fusion
MMO loss).

Chaddad 2022 Canada Glioma (LGG,
GBM)

Patients treated
independently Overall survival Radiomic,

clinical data

The Cancer
Imaging

Archive (TCIA)
151 3D CNN

Combining DRFs (using 3D CNN),
clinical features and immune cell markers

as input to a random forest classifier
discriminated between short and long

survival outcomes.

Choi 2021 South Korea Glioblastoma Patients treated
independently

Overall survival
via iAUC

Radiomic,
genetic, clinical

data
Institutional 120 CNN

When CNN radiomics was combined
with clinical and genetic prognostic

models for overall survival and
progression free survival in glioblastoma
patients, the prognostic value increased.

Fathi 2022 United
States Glioblastoma

Preoperative
mpMRI followed

by surgical
resection

Overall survival

Radiomic,
genomic,
MGMT

methylation,
clinical data

MRI scans from
the hospital of
the University

of Pennsylvania
between

2006–2018

516 VGG-16 CNN

The survival prediction performance was
highest in the fusion model, combining

clinical data,
MGMT methylation, radiomics, and

genomics, with a c-index of 0.75 and an
IBS reduction of 24.8%
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Table 1. Cont.

Author Year Country Disease Procedure Outcome Predictors Data Source Size Model Type Key Findings

Han 2020 United
States Glioblastoma

Maximal surgical
resection and

radiation therapy
(w/temozolomide
or bevacizumab)

Overall survival Radiomic,
clinical data

World Health
Organization IV

GBM, TCGA
178 CNN (VGG-19 for

deep features)

Using radiomics and CNN deep learning
features extracted from GBM MRIs for a

machine learning-based statistical
analysis allowed for discrimination

between short and long-term survivors.

Islam 2021 Singapore Glioblastoma Patients treated
independently Overall survival Radiomics,

genomic data TCGA-GBM 285 FCN, cGAN, SVM,
ANN

Performance almost doubled after fusing
genomic features with radiomic and SVM

model outperforms ANN model.

Jeong 2019 United
States Glioblastoma

Resection and
subsequent

chemoradiation

Progression free
survival

Radiomics,
clinical data

PET database at
Children’s
Hospital of
Michigan

21 U-net

Glioma delineation by PET-based deep
learning and clinical multimodal MRI

data achieved the highest AUC (0.66) for
survival outcome prediction.

Jiang 2021 United
States

Glioma
(grades 2 and 3)

Patients treated
independently

IDH mutational
status and

overall survival

Histologic,
genetic, clinical

data
TCGA 296

End-to-end deep
learning models

(Resnet18)

The performance of the deep learning
model, based on only WSIs, is better than

the model based on the primary
diagnosis and some demographic

variables, such as race and gender, but
not as good as age at diagnosis.

Kao 2019 United
States Glioma Patients treated

independently Overall survival Radiomic,
clinical data TCIA 347

Deep neural networks,
hard negative mining,
patch-based 3D U-nets,

DeepMedic, SVM
classifier with linear

kernal

The use of normalized brain parcellation
data and tractography data achieved a
survival prediction accuracy of ~0.7 on

the training data set.

Li 2021 China Glioma (LGG) Patients treated
independently

Immunotherapy
response risk

score

Radiomics,
immune

molecular
biomarkers,

genetic, clinical
data

TCGA 665 Neural network deep
learning

Patients at lower risk were more likely to
be predicted in the low IMriskScore risk
group by the imagingomics deep learning

model and have higher survival rates

Mi 2022 United
Kingdom Glioblastoma Patients treated

independently Overall survival Radiomic,
clinical data

45 from in house
glioblastoma

data set, 51 from
TCGA-GBM

data set

132 2D U-net CNN

U-net trained with DL had highest
performance and was better than BCEL

and HDL for temporalis segmentation to
determine cross sectional measurements.
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Table 1. Cont.

Author Year Country Disease Procedure Outcome Predictors Data Source Size Model Type Key Findings

Sun 2021 China Glioma (LGG) Patients treated
independently Overall survival Radiomic,

genomic data TCIA, TCGA 44

Combining MRI and gene expression
data in DNN led to more accurate disease

specific survival statistics for LGG
patients than when tested separately.

Tang 2019 United
States Glioblastoma Patients treated

independently

Overall survival
and tumor
genotype
prediction

Radiomic,
genomic

biomarker,
clinical data

Department of
Radiology at
University of

North Carolina
at Chapel Hill

120 Integrated multitask
CNN

The combination of imaging phenotype
and genotype data input to CNN

for OS time
prediction for GBM outperformed the

mono-task CNN-based and
radiomics-based random forest methods.

Wijethilake 2020 Singapore Glioblastoma Patients treated
independently Overall survival Radiomics,

genomics TCGA 59
Hypercolumn-based

convolutional
network, ANN

Hypercolumn-based CNN Radiogenomic
data achieved higher survival prediction
accuracies than just radiomic or genomic
data alone when predicted using ANN,

SVM and linear regression models.
CNN: convolutional neural network; RNN: recurrent neural network; FCNN: fully convolutional neural network; SNN: spiking neural network; ANN: artificial neural network; ML:
machine learning; OS; overall survival; LGG: low grade glioma; HGG: high grade glioma; GBM; glioblastoma; SVM: support vector machine; AUC: area under the receiver operating
characteristic curve; TCGA: The Cancer Genome Archive; TCIA: The Cancer Image Archive; MRI: magnetic resonance imaging.
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All included texts studied adult primary glial tumors (gliomas). The most common
tumor grade studied were WHO grade 4 gliomas, known as glioblastoma multiforme
(GBM; 8 studies, 50%). There were 6 (37.5%) studies that included both high-grade glioma
(HGG; grade 3–4) and low-grade gliomas (LGG; grade 1–2), followed by exclusively LGG
(2 studies, 12.5%). The most common predicted outcomes were overall survival (13, 81%),
followed by overall survival with genotype prediction (2, 12.5%) and finally the response
to immunotherapy risk score (1, 6%).

The primary data sources were external databases (11, 68%), followed by institutional
databases (6, 38%) and 1 (6%) study that used both. The external databases used were
BraTS, The Cancer Imaging Archive (TCIA), and The Cancer Genome Atlas (TCGA). The
median dataset size was 177. Diagnostic imaging was used by 14 studies in combination
with one or more data types, including genomics, biomarker presence, methylation status,
and clinical data. One study used histologic imaging in combination with clinical data,
while the remaining study used both diagnostic imaging and histologic imaging.

In 14 studies (87.5%), the development and training of a DL model was performed,
while 2 studies (12.5%) used pretrained DL models. Convolutional neural networks (CNN)
were used in 12 studies (75%), 7 of which used existing DL architecture, such as U-net,
VGG-16, and ResNet-18. Two studies (12.5%) used artificial neural networks (ANN) and
1 study (6%) used a fully convolutional neural network (FCNN). Training hardware was
reported in 8 studies (50%) and hyperparameters were provided in 7 studies (44%).

Integrated Multimodal Data Types

MRI and Clinical data: We identified 6 studies [14–19] that fused MRI imaging with
patient clinical data to predict overall survival. The clinical data included age, gender,
resection status, and tumor location. One study [13] also used treatment type, including
chemoradiation, chemotherapy, targeted molecular therapy, and immunotherapy. The
primary metrics used to evaluate the DL models were accuracy [14,15], AUC [16], hazard
ratio [17], and cross-validation [18]. Multimodal models were compared to unimodal mod-
els in 2 of the 5 studies [16,18] and both showed improved performance over a unimodal
approach. One study [19] integrated MRI and clinical data (age, gender, weight, and tumor
size) to predict tumor genotype of four biomarkers (MGMT, 1q/19q, IDH, and TERT)
and OS time. They then integrated the genotype features into the OS prediction model,
improving OS time prediction accuracy.

MRI and Genomic data: There were 3 studies [20–22] that fused MRI imaging and
genomic data to predict overall survival. All genomic datasets were taken from TCGA.
Two studies [20,22] included the expression data of 1740 genes while 1 study [21] used a DL
model to extract 20,530 genetic features from the TCGA dataset, then integrated the features
with imaging data. All three of the integrated models showed a superior performance to
unimodal models.

Histologic Images and Clinical Data: One study [23] utilized whole slide histologic
imaging and clinical data to predict the prognosis and IDH mutational status. Clinical data
included age, gender, extent of tumor resection, and tumor grade. The model achieved a
C-index of 0.715 (95% CI; 0.569, 0.830) for predicting prognosis and an AUC of 0.667 (0.532,
0.784) for predicting the IDH mutation status in grade 2 gliomas.

MRI with multiple data types: There were 6 studies [24–29] that integrated MRI data
with multiple different data types, such as histologic, clinical, and biomarker data.

Braman et al. included MRI imaging, WSI, genomic, biomarker, and clinical data to
predict the overall survival risk score using a pretrained VGG-19 CNN [24]. The genomic
data included mutational and copy number variant status, the clinical data included patient
demographics and treatment type, and the biomarker data included IDH-mutant and
1p/19q-codeletion status. This model predicted overall survival with a median C-index
of 0.788 ± 0.067, which considerably outperformed the best performing unimodal model
with a C-index of 0.718 ± 0.064 (p = 0.023).
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Choi et al. integrated MRI scans, biomarker data, and clinical data to calculate overall
survival (OS) and the progression-free survival (PFS) prediction via an integrated time-
dependent area under the curve (iAUC) [25]. The genetic data included of the IDH1
mutation and MGMT promotor methylation status, while clinical data included age, gender,
treatment types, and tumor location. The performance improved when radiomic data was
added to the clinical model (iAUC: OS, 0.62–0.73; PFS, 0.58–0.66) and the biomarker model
(iAUC: 0.59–0.67; PFS, 0.59–0.65); however, the combined model (radiomics, biomarker
and clinical) showed superior OS and PFS prognostic performance (iAUC: 0.65–0.73; PFS,
0.62–0.67).

Kazerooni et al. used MRI, biomarker status (MGMT methylation), genomic data
(next-generation sequencing of 45 genes including BRAF alteration), and clinical data (age,
gender, resection status) to classify patient survival time into high risk (<6 months) and low
risk (>18 months) groups [26]. The multimodal model had a superior performance when
compared to unimodal models.

Jeong et al. integrated radiomic data (MRI and AMT-PET), biomarker expression
(IDH1 mutation and MGMT methylation status), and clinical data (age, Karnofsky per-
formance status and resection status) to predict the 6-month PFS outcome [27]. When
compared to unimodal models, the multimodal model showed a superior performance
predicting the 6-month PFS (0.86 sensitivity, 0.63 specificity).

Li et al. integrated MRI scans, the presence of genomic biomarkers (immunophenoscore-
associated mRNAs, MHC-related molecules, immune checkpoints, immunomodulators,
and suppressor cells) and clinical data (age, gender, treatment type, and tumor grade) to
calculate a risk score predictive of a patient’s response to immunotherapy [28].

Mi et al. used MRI scans, temporalis muscle area, MGMT methylation status, and
clinical (age, gender) data to predict overall survival [29]. The study used 2D U-net CNN
to compute the temporalis muscle cross-sectional area, then classified patients into high
and low risk groups.

The risk of bias was assessed in four domains, and the overall risk of bias was low in
7 studies (44%), unclear in 3 studies (19%), and high in 6 studies (37%) (Table 2).

Table 2. Risk of Bias.

ROB Applicability Overall

Author Year Participants Predictors Outcomes Analysis Participants Predictors Outcomes ROB Applicability

Alex 2018 ? + + - + + + - -

Asthana 2022 ? ? ? ? ? ? ? ? ?

Braman 2021 + + + ? + + + ? ?

Chaddad 2022 + + + - + + + - -

Choi 2021 + + + + + + + + +

Fathi 2022 + + + + + + + + +

Han 2020 ? + + - + + + - -

Islam 2021 ? + + - + + + - -

Jeong 2019 + + + - + + + - -

Jiang 2021 + + + + + + + + +

Kao 2019 + + + + + + + + +

Li 2021 + + + + + + + + +

Mi 2022 + + + + + + + + +

Sun * 2021 ? ? ? - ? ? ? - -

Tang 2019 ? + + ? + + + ? ?

Wijethilake 2020 ? + + + + + + + +

ROB = risk of bias; * + indicates low ROB/low concern regarding applicability; - indicates high ROB/high concern
regarding applicability; and ? indicates unclear ROB/unclear concern regarding applicability.
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4. Discussion

More than ever, multimodal DL is being used to predict glioma characteristics and,
more recently, as a tool for predicting prognosis. Overall, multimodal DL models provided
more accurate survival predictions, compared to unimodal DL approaches. The most
common multimodal DL combination of radiomics and genomics improved accuracy when
compared to predictions based on only radiomic or genomic data. Furthermore, inputting
more information, such as clinical features, immune cell markers, MGMT methylation
status, and pathology data, into the DL models yielded even more accurate survival time
predictions. Bimodal predictions outperformed unimodal predictions, and as more “-omics”
were fused, survival predictions improved. As clinical data collection continues to expand
in parallel with the computational capacity to analyze it, further improvements are likely
to result from the continued integration of different data modalities in DL models.

4.1. Applications of Multimodal DL

The use of multimodal data in DL is still relatively new, but its implications for
predicting tumor characteristics, treatment response, and survival outcomes are robust.
While the use of DL for glioma segmentation from imaging is well-studied, adding other
components, in conjunction with deep radiomic features, is a new development and an
important area for ongoing research.

Our review suggests that fusing multiple types of data into a DL model is most useful
for predicting survival outcomes. A better understanding of the tumor type and genetic
features from a DL model also have the potential to aid in decision making; this is in regard
to treatment options to pursue, by informing the selection of possible chemotherapy agents
based on tumor-specific targets. For example, the DL model DrugCell simulates 1235 tumor
cell lines’ responses to 648 drugs, as well as various drug combinations using genomic
and pharmacologic data [30]. Additionally, the fusion of radiomic and clinical data, using
DL, can provide an additional option for gaining detailed information regarding tumor
characteristics. Overall, a better understanding of tumor characteristics in general via
multimodal DL, drawing on multiple types of data from a single patient, can lead to a more
optimal treatment plan and can potentially improve a variety of associated outcomes. In
the case of non-small cell lung cancer, a PET/CT-based deep learning model served as an
effective tool for determining EGFR mutational status and could serve to predict whether
a patient will have a longer progression-free survival, in response to EGFR-TKIs or ICIs,
based solely on imaging data [31].

However, there is still work to be performed to ensure that the use of multimodal
data in DL makes accurate assessments of gliomas. Although there are many benefits to
implementing this approach in the clinical setting, areas of improvement and development
in an implementation strategy remain. There are additional data types yet to be included
in DL algorithms that may yield even more accurate and detailed predictions of tumor
characteristics. Moreover, further work is needed to compare multimodal and unimodal
strategies head-to-head between the different DL models that have been reviewed. Certain
methodologies may be better suited to the incorporation of multiple data modalities, yet
there is great heterogeneity among DL strategies, limiting direct comparisons between
studies. Further exploration is needed to elucidate more optimal areas of research. Growth
in this area of DL has the potential to provide critical information for a more personalized
treatment approach.

4.2. Use in the Clinical Workflow

Upon implementation in the clinical workflow, the multimodal DL approach may
serve as an effective tool in segmenting and diagnosing a patient’s specific type of brain
tumor. DL analysis of imaging, in conjunction with a radiologist’s interpretation, can
provide a more detailed report in certain cases [32]. However, DL performance is not
yet able to match to the diagnostic expertise of radiologists and should not be used as a
replacement, but rather as an additional tool to improve accuracy. Jiang et al. outlines
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the many functions DL can serve in tumor pathology for all types of tumors, ranging
from proper subtyping to prognosis prediction. However, these studies require validation,
correction, and the oversight of a pathologist [33].

The use of DL to analyze deep features of scans can aid in the precise identification of
the tumor type, already leading to a stronger understanding of the diagnosis before surgery
and pathology results. The incorporation of a real-time automatic intensity-modulated
radiotherapy DL model, which exhibited good plan quality and efficiency when used
for prostate cancer, could be developed for use in brain tumor patients [34]. This has
the potential to reduce the workload, improve workflow, and lead to more timely care
for the patient.

4.3. Challenges for Implementation in Clinical Workflow

A large barrier to the clinical implementation of multimodal DL methods is the lack of
data availability and reporting, which impedes clinical validation. Of note, two included
studies omitted key information concerning data selection, as well as model development
and evaluation, resulting in unclear determinations of the risk of bias. The potential risk of
bias should always be carefully considered by researchers and clinicians when considering
the published literature. The varying levels of risk of bias, among the included studies,
highlights the need for the uniform adoption of reporting standards to ensure integrity and
reproducibility of results [5].

Although many of the machines trained in this study utilized the BraTS database, they
also included data from other institutions, including imaging, genetic information, and
clinical data, not all of which have been published. The patient cohorts from institutions
were typically small. Furthermore, most of the code and models used were not published,
hindering the further testing of those models using different data by other researchers.
Multimodal DL methods require large amounts of additional data, especially in studies
involving triple and quadruple fusions. Not all of this information is included in the
BraTS dataset, leading researchers to rely on data from their own institutions, which can be
incomplete and lead to a low amount of training and testing data.

The BraTS dataset has played an instrumental role in the development and refinement
of DL for studying gliomas. The yearly BraTS challenge calls for submissions regarding
the use of novel methods (many of them DL) to segment and, more recently, predict
MGMT promoter methylation status using their imaging dataset. Further additions to
databases may include expanded detail, regarding factors known to feature heavily in
clinical outcomes; these include the histological type of tumors, comprehensive surgical,
chemotherapeutic, and radiotherapeutic data, and the molecular characteristics of tumors.
More high-quality data resources such as this can lead to significant improvements in the
lack of data and encourage new developments in DL to be tested in these challenges.

Even though datasets, such as BraTS, are helpful, they do not include the full range of
information necessary for a multimodal approach. For example, datasets do not include
protected health information and such additional data may be useful to feed into the DL
algorithm. The integration of clinical data in DL has the capacity to provide accurate
survival predictions up to 30 years in the future, as evidenced by the novel DL method
Multiserv, which input six different types of data and was used to predict survival for
33 types of cancer [35]. Increased collaboration and the sharing of data, models and codes
among researchers is necessary to overcome this limitation and enhance the performance
and use of multimodal DL in the care of patients with gliomas.

4.4. Limitations

There are several limitations to this review. This search focused on the use of DL for
the prognostication of gliomas, based on multimodal data. Thus, studies using DL for
tumor segmentation, typing, and genetic predictions, based on imaging data, were not
included in this review. The focus on prognostication was selected to investigate potential
for direct impact on clinical decision-making. Additionally, since there is a wide and ever-
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evolving range of DL methods and associated terminology, the literature search may not
have captured all the articles that may otherwise have been relevant to this review. Finally,
the PROBAST tool, employed to determine the risk of bias, was not developed solely for
the DL studies. Bias among raters may vary with respect to their backgrounds and the risk
of bias assessment is subjective.

5. Conclusions

Overall, the use of multimodal data in DL assessments of gliomas leads to a more
accurate overall survival prediction. Improvements are further compounded with the
inclusion of additional types of data sources fed into the DL algorithm, such as fusing
radiomic, genomic, and clinical data. The determination of a more accurate prognosis is not
the only benefit of multimodal DL, as certain mutations can be identified via non-invasive
means and may therefore inform treatment. The full extent of using multimodal DL as a
resource for glioma patients is not realized: barriers include data limitations and a lack
of transparency in regards to model and code reporting. Additionally, a strong clinical
workflow needs to be established for proper implementation. Additional research into
optimizing data and model combinations for more accurate survival predictions in glioma
patients is clearly needed. Inputting other types of data, not reviewed in this paper, into
the DL approach could also improve accuracy. Finally, multimodal DL utilization may also
lend improvements to the prediction of other outcomes, such as predicted response to a
specific drug or drug class. As data collection grows more comprehensive and models
evolve in sophistication, multimodal DL approaches have tremendous potential to improve,
via the enhanced integration of clinical knowledge.
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