
Citation: Mao, Z.; Nie, Y.; Jia, W.;

Wang, Y.; Li, J.; Zhang, T.; Lei, X.; Shi,

W.; Song, W.; Zhang, X. Revealing

Prognostic and

Immunotherapy-Sensitive

Characteristics of a Novel

Cuproptosis-Related LncRNA Model

in Hepatocellular Carcinoma Patients

by Genomic Analysis. Cancers 2023,

15, 544. https://doi.org/10.3390/

cancers15020544

Academic Editor: J. Chad Brenner

Received: 29 November 2022

Revised: 5 January 2023

Accepted: 10 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Revealing Prognostic and Immunotherapy-Sensitive
Characteristics of a Novel Cuproptosis-Related LncRNA Model
in Hepatocellular Carcinoma Patients by Genomic Analysis
Zhenzhen Mao 1,2,† , Ye Nie 2,†, Weili Jia 1,2 , Yanfang Wang 1,2, Jianhui Li 1,2 , Tianchen Zhang 1,2,
Xinjun Lei 1,2, Wen Shi 1,2, Wenjie Song 2,* and Xiao Zhang 3,4,*

1 Xi’an Medical University, Xi’an 710021, China
2 Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University,

Xi’an 710032, China
3 The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology,

Fourth Military Medical University, Xi’an 710032, China
4 Research Office of the Institute of Tropical Medicine, Hainan Hospital of PLA General Hospital,

Sanya 572013, China
* Correspondence: wjsong@fmmu.edu.cn (W.S.); xzhang89@fmmu.edu.cn (X.Z.)
† These authors contributed equally to this work.

Simple Summary: Hepatocellular carcinoma (HCC) remains a major health concern. Immunother-
apy combined with targeted therapy brings hope to patients with HCC, but its primary beneficia-
ries have not been identified. Recent studies have found that copper induces cell death, which is
named cuproptosis. As we know, cell death is closely related to tumor therapy, in which some non-
coding RNAs involved. Therefore, we focused on whether some long non-coding RNAs (LncRNAs)
are related to cuproptosis, and the cuproptosis-related LncRNAs (crLncRNAs) can classify tumor
treatment-sensitive populations. In the study, we explore a model of crLncRNAs with excellent
specificity and sensitivity that is capable of predicting the prognosis of HCC patients and classifying
tumor immunotherapy-sensitive populations, thereby providing new insights for the development of
appropriate clinical strategies.

Abstract: Immunotherapy has shown strong anti-tumor activity in a subset of patients. However,
many patients do not benefit from the treatment, and there is no effective method to identify sensitive
immunotherapy patients. Cuproptosis as a non-apoptotic programmed cell death caused by excess
copper, whether it is related to tumor immunity has attracted our attention. In the study, we
constructed the prognostic model of 9 cuproptosis-related LncRNAs (crLncRNAs) and assessed its
predictive capability, preliminarily explored the potential mechanism causing treatment sensitivity
difference between the high-/low-risk group. Our results revealed that the risk score was more
effective than traditional clinical features in predicting the survival of HCC patients (AUC = 0.828).
The low-risk group had more infiltration of immune cells (B cells, CD8+ T cells, CD4+ T cells), mainly
with anti-tumor immune function (p < 0.05). It showed higher sensitivity to immune checkpoint
inhibitors (ICIs) treatment (p < 0.001) which may exert the effect through the AL365361.1/hsa-miR-17-
5p/NLRP3 axis. In addition, NLRP3 mutation-sensitive drugs (VNLG/124, sunitinib, linifanib) may
have better clinical benefits in the high-risk group. All in all, the crLncRNAs model has excellent
specificity and sensitivity, which can be used for classifying the therapy-sensitive population and
predicting the prognosis of HCC patients.

Keywords: cuproptosis-related LncRNAs (crLncRNAs); immunotherapy; tumor immune
microenvironment (TIME); immune checkpoint inhibitors (ICIs); AL365361.1
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1. Introduction

Liver cancer is the sixth most common cancer worldwide and the third leading cause of
cancer death [1]. Hepatocellular carcinoma (HCC) is the most common type of liver cancer,
accounting for approximately 80% of cases, and its 5-year survival rate is less than 20% [2].
Chronic hepatitis B virus infection is the main pathogenic factor for HCC in China. After
chronic hepatitis progresses to cirrhosis, about 85% of patients with cirrhosis are diagnosed
with HCC [3]. Early diagnosis of HCC is difficult, with two-thirds of patients being unable
to undergo radical surgery, and for remaining one-third, the recurrence rates are high, and
the survival rate is low. Targeted therapies have emerged, but with low treatment response
rate and high drug resistance [4]. The increase in drug toxicity and side effects aggravates
the poor prognosis of patients with advanced HCC. Immune checkpoint inhibitors (ICIs) are
promising therapies for HCC based on early efficacy data. Therefore, the pembrolizumab
monotherapy [5], the combination of ezetimibe and bevacizumab [6], and nivolumab plus
ipilimumab combination [7] have received the US Food and Drug Administration (FDA)
approval successively. Although the application of ICIs has improved the prognosis of HCC
patients who showed a good response [8], the response rate is less than 30% [9]. Biomarkers
such as tumor immune microenvironment (TIME) [10], tumor mutation load (TMB) [11],
immune checkpoint genes [12], immune score, and IPS score [13] may predict sensitivity
to ICI treatment, providing the possibility of identifying patients who are sensitive to ICI
treatment, but this approach still lacks specificity and accuracy. Immunotherapy combined
with targeted therapy has a low response rate and high drug resistance. Therefore, it
is particularly important to identify susceptible individuals [14,15]. Given the limited
therapeutic strategies for HCC, new prognostic models need to be developed for prognosis
and to identify sensitive treatment options, which may improve the survival rate of patients
with HCC by guiding treatment decisions.

Long non-coding RNAs (LncRNAs) are one kind of non-coding RNA with more than
200 nucleotides in length, which play a variety of roles in regulating immune response
and affecting tumor progression [16]. For example, LncRNA MIR155HG upregulates the
expression of PD-L1 through the miR-223-STAT1 axis and promotes the immune escape
of HCC [17]. Previous studies have found that LncRNA is involved in the regulation of
pyroptosis, ferroptosis, and other common programmed cell death modes during tumor
progression, so it can be used as a biomarker to predict the prognosis of cancer patients
and the response to immunotherapy. For instance, pyroptosis-related LncRNAs (HPN-
AS1, MED8-AS1, SREBF2-AS1, MKLN1-AS, and ZNF232-AS1) can predict the response to
immunotherapy in HCC patients [18]. Similarly, ferroptosis-related LncRNAs (MKLN1-AS,
LINC01224, LNCSRLR, LINC01063, PRRT3-AS1, and POLH-AS1) are reliable in predicting
the prognosis and immunotherapy response in HCC patients [19]. Hence, we believe
LncRNAs may play a significant role in multiple forms of cell death, and the recent
discovery of cuproptosis has attracted our attention. Cuproptosis is a newly defined
programmed cell death type [20]. Copper ions induce a proteotoxic stress response by
binding to thioacylated tricarboxylic acid cycling-related enzymes that ultimately lead to
cell death [21]. A disorder of copper metabolism can lead to the metabolites disrupting the
tricarboxylic acid cycle. Copper ion levels are significantly changed in the tumor tissues of
many cancer patients [22,23], and they affect tumor progression by affecting mitochondrial
energy metabolism [24–26]. It has been demonstrated that blocking Cu2+ transport induces
an ATP decrease, activates AMP-activated protein kinase, and ultimately inhibits the
proliferation of tumor cells [27]. However, whether LncRNAs participate in the regulation
of tumor cuproptosis has not been reported previously. Therefore, we hope to clarify the
relationship between them and assess how the LncRNAs might affect tumor progression by
regulating cuproptosis. In addition, we attempted to use the cuproptosis-related LncRNAs
(crLncRNAs) as novel biomarkers for immunotherapy and targeted therapy in patients
with hepatocellular carcinoma to establish a prognostic model.
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In this study, we designed to provide a promising biomarker to predict the prognosis
of HCC patients, the tumor microenvironment, classify the treatment-sensitive population,
and provide new insights for developing appropriate clinical strategies.

2. Materials and Methods
2.1. Data Acquisition and Screening

We downloaded RNA-seq data and corresponding clinical characteristics from the
Cancer Genome Atlas (TCGA) database (424 HCC samples, including 50 normal samples
and 374 tumor samples), which updated its data after April 2022 (https://portal.gdc.cancer.
gov/, accessed on 31 May 2022). Considering the possibility of non-cancer death, HCC
patients whose survival time was <30 days or uncertain were excluded. Subsequently, data
from 343 patients were analyzed. The baseline characteristics of patients are summarized in
Supplementary Table S1. TCGA is a public database and does not require ethical approval.

2.2. Identification of CrLncRNAs

A validated list of genes (NFE2L2, NLRP3, ATP7B, ATP7A, SLC31A1, FDX1, LIAS,
LIPT1, LIPT2, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH, and DLST)
associated with cuproptosis was obtained from a recent study by Tsvetkov et al. [28].
Spearman correlation coefficients were calculated based on cuproptosis-related mRNA and
LncRNA expression profiles to identify crLncRNAs (|R| > 0.4 and p < 0.001).

2.3. Construction of the Prognostic Model of CrLncRNAs

The crLncRNAs correlated with HCC survival time were determined by univariate
Cox regression analysis (p < 0.05). The 343 patients were randomly assigned to either the
training cohort or the test cohort in a ratio of 3:2. Supplementary Table S1 summarizes
the baseline characteristics of the two groups. For the training cohort, LASSO regression
analysis was performed using the R project ‘Glmnet’ package. Parameter selection was
adjusted by a round of cross-validation to prevent overfitting, and the partial likelihood
deviation met the minimum criterion. Then, the multivariate Cox regression was performed
on the 9-crLncRNA generated, and the corresponding coefficients were multiplied to obtain
the score of each sample. The formula was determined as follows: Risk score = AC026412.3
* 2.54199 + AC026356.1 * 1.87356 + SLC6A1-AS1 * (−0.71370) + AC011462.4 * 1.19584 +
MIR548XHG * 0.62675 + AL031985.3 * 0.96845 + AL117336.2 * 0.77657 + MCM3AP-AS1 *
2.69411 + AL365361.1 * (−2.99107).

2.4. Confirmation of the Prognostic Signatures of 9-CrLncRNA

Patients in the training and validation cohorts were divided into high- and low-risk
groups according to the median risk score. Principal component analysis (PCA) of the
9-crLncRNA was performed by the ‘scatterplot3d’ R package. The Kaplan–Meier survival
analysis was conducted using the ‘survminer’ R package, with the log-rank test comparing
the overall survival (OS) and progression-free survival (PFS) between high- and low-
risk groups. ROC curves were constructed to verify the predictive power of features,
and the area under the ROC curves (AUC) values for 1, 3, and 5 years were calculated
by the ‘timeROC’ R package. Risk curves, survival status, and heatmaps of risk gene
expression profiles were generated by the ‘pheatmap’ R package. In addition, univariate
and multivariate Cox regression analyses were performed, and a conformance index (C-
index) was used to assess whether the risk score could be an independent predictor of OS
in HCC patients.

2.5. Nomogram Construction and Assessment

The R packages ‘regplot’ and ‘rms’ were used to construct the nomogram of the risk
score, and the prognosis of HCC patients in it at years 1, 3, and 5 were estimated. Finally,
the ROC curve, decision curve analysis (DCA) curve, and calibration curve were used to
evaluate the nomogram’s accuracy and reliability.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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2.6. Enrichment Analysis

High- and low-risk groups of differentially expressed genes (DEGs) were filtered
through ‘limma’ R package (log2 |FC| > 1, FDR < 0.05). Gene Ontology (GO) functional
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were
performed using the ‘clusterProfiler’ R package (FDR < 0.05, p < 0.05).

2.7. Evaluation of Immune Cell Infiltration and Immune Microenvironment

CIBERSORT is an analysis tool that transforms expression data into the absolute
abundance of immune and stromal cell expression profiles, assessing the proportion of
22 human immune cell subpopulations (http://CIBERSORT.stanford.edu/, accessed on
31 May 2022). The CIBERSORT algorithms were used to quantify the relative infiltration
levels of different immune cell subsets. ESTIMATION algorithms were used to calculate the
immune/estimate/stromal scores and the purity of tumor in HCC patients [29,30]. Finally,
we used the single sample gene set enrichment analysis (ssGSEA) method to analyze
immune-related functions and immune cell infiltration profiles between the high-risk and
low-risk groups.

2.8. Assessment of the Options of Specific ICIs Treatment

The immunophenoscore (IPS) of HCC patients was obtained from the Cancer Im-
munome Atlas (https://tcia.at/, accessed on 31 May 2022) to compare the potential uti-
lization of immunotherapy in the high- and low-risk subgroups. Immune checkpoint
gene expression is associated with ICIs response, so we analyzed differences in immune
checkpoint gene expression between the two subgroups. In addition, Spearman correlation
analysis identified 9 crLncRNAs that are most closely associated with immune checkpoints.

2.9. GSVA Analysis

GSVA analysis boosts the ability to detect subtle changes in pathway activity in sample
populations. The ‘GSEABase’ and ‘GSVA’ R packages were used to analyze the correlation
between the KEGG pathway and the prognostic signatures of 9 crLncRNAs, paving the
way for the construction of pathway-based biological models.

2.10. Prediction of Targeted MiRNAs

We predicted microRNA targets through TargetScan (https://www.targetscan.org/
vert_71/, accessed on 18 October 2022). The miRNA–LncRNA relationship was pre-
dicted through DIANA Tools (https://diana.e-ce.uth.gr/lncbasev3/interactions, accessed
on 18 October 2022). Some diagrams were used online graphic drawing sites (https:
//app.rawgraphs.io/, accessed on 18 October 2022) (https://www.omicstudio.cn/tool,
accessed on 18 October 2022). Based on the online Venn diagram tool, we screened
two common genes (https://bioinfogp.cnb.csic.es/tools/venny/index.html, accessed on
18 October 2022).

2.11. Copy Number Variation (CNV) Analysis

Statistical data of heterozygous and homozygous CNV mutation were displayed as
pie charts, and the gene expression significantly affected by CNV was obtained via the
Pearson correlation analysis. (http://bioinfo.life.hust.edu.cn/web/GSCALite, accessed on
22 June 2022).

2.12. Drug Sensitivity Analysis

The gene set drug resistance analysis from Genomics of Drug Sensitivity in Cancer
(GDSC) IC50 drug data. The Spearman correlation analysis was used to determine the drug
sensitivity and gene expression profile data of tumor cell lines. (http://bioinfo.life.hust.
edu.cn/web/GSCALite, accessed on 22 June 2022).

http://CIBERSORT.stanford.edu/
https://tcia.at/
https://www.targetscan.org/vert_71/
https://www.targetscan.org/vert_71/
https://diana.e-ce.uth.gr/lncbasev3/interactions
https://app.rawgraphs.io/
https://app.rawgraphs.io/
https://www.omicstudio.cn/tool
https://bioinfogp.cnb.csic.es/tools/venny/index.html
http://bioinfo.life.hust.edu.cn/web/GSCALite
http://bioinfo.life.hust.edu.cn/web/GSCALite
http://bioinfo.life.hust.edu.cn/web/GSCALite
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2.13. HCC Tissue Specimens

With the informed consent of HCC patients in Xijing Hospital, 10 pairs of fresh frozen
tumors and adjacent normal tissues were collected. These patients did not receive any
treatment before surgery. This research was approved by the Medical Ethics Committee of
the First Military Medical University.

2.14. Real-Time Quantitative PCR Analysis

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract total RNA from
fresh HCC tissues from Xijing Hospital according to the instructions. 1 µg of RNA was
employed to synthesize cDNA using the PrimeScript RT Reagent Kit Perfect Real Time
(TaKaRa, Dalian, China) or the miScript II RT Kit (Qiagen, Hilden, Germany). In order to
detect the mRNA and LncRNA levels of target genes, fluorescent qRT-PCR was used, with
GAPDH as the internal control. The expression level of miR-17-5p in HCC tissues was
detected by qRT-PCR, and the expression of U6 snRNA (sn-RNU6) was used as the internal
control. All the primers were obtained from AuGCT (Beijing, China), and the reactions
were repeated three times. The relative expression levels of LncRNA, miRNA, or mRNA
were obtained and analyzed using the Bio-Rad C1000 thermal cycling apparatus (Bio-Rad,
Hercules, CA, USA). The primer sequences are listed in Supplementary Table S2.

2.15. Statistical Analysis

We used R version 4.2.0 to statistically analyze our data and graph visualization. The
Kaplan–Meier curve was adopted to plot the prognostic survival curve for the subgroups,
and the log-rank test was performed to evaluate if the differences in OS were statistically
significant. The Spearman method was used to calculate the correlation between two vari-
ables. The differences in the proportions of clinical characteristics were analyzed by the
chi-squared test. The Wilcoxon test was used for the analysis of differences between the
two independent groups. p < 0.05 was considered statistically significant.

3. Results
3.1. Construction and Validation of 9-CrLncRNA Prognostic Model in HCC

The flow chart of our study is shown in Figure 1. The TCGA transcriptome data
included 50 normal cases and 374 HCC patients. A total of 16,876 LncRNAs, 19,938
mRNAs, and 19 cuproptosis-related genes’ transcriptome data were obtained from TCGA.
The co-expression network of mRNAs and crLncRNAs is plotted in Figure 2A. Finally, a
total of 394 crLncRNAs were obtained by Spearman correlation analysis, and 147 of them
are closely related to patient survival. The cvfit and lambda curves are shown in Figure 2B,C.
The prognostic risk model was based on 9 crLncRNAs (AC026412.3, AC026356.1, MCM3AP-
AS1, AL031985.3, AL117336.2, AL365361.1, SLC6A1-AS1, MIR548XHG, AC011462.4). The
cuproptosis-related mRNAs and the 9-crLncRNA signatures were significantly correlated,
among which, the 9-crLncRNA signatures significantly correlated with GLS, LIPT1, MTF1,
ATP7A, and NLRP3 (Figure 2D).

In this model, the following formula was used to calculate the risk score for each HCC
patient in the TCGA database: Risk score = AC026412.3 * 2.54199 + AC026356.1 * 1.87356 +
SLC6A1-AS1 * (−0.71370) + AC011462.4 * 1.19584 + MIR548XHG * 0.62675 + AL031985.3 *
0.96845 + AL117336.2 * 0.77657 + MCM3AP-AS1 * 2.69411 + AL365361.1 * (−2.99107) (note:
the name of LncRNA indicates their expression level in TCGA database).
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Figure 1. Flow chart of this study. A total of 343 HCC patients with complete survival information 
in the TCGA database were divided into two cohorts, i.e., training and testing. Using the expres-
sion data of 147 prognostic crLncRNA genes in the training cohort, the 9-crLncRNA signatures 
based on LASSO and COX regression analyses were obtained, and the optimal penalty parameter 
(λ) of the LASSO model was constructed. The KM curves, ROC curves, PCA analysis, DCA curves, 
and nomogram were applied to evaluate the accuracy and reliability of the 9-crLncRNA prognos-
tic model. Subsequently, a series of analyses, including ssGSEA, KEGG, GO, GSVA, immune-

Figure 1. Flow chart of this study. A total of 343 HCC patients with complete survival information in
the TCGA database were divided into two cohorts, i.e., training and testing. Using the expression
data of 147 prognostic crLncRNA genes in the training cohort, the 9-crLncRNA signatures based
on LASSO and COX regression analyses were obtained, and the optimal penalty parameter (λ) of
the LASSO model was constructed. The KM curves, ROC curves, PCA analysis, DCA curves, and
nomogram were applied to evaluate the accuracy and reliability of the 9-crLncRNA prognostic
model. Subsequently, a series of analyses, including ssGSEA, KEGG, GO, GSVA, immune-related,
immunecheckpoint-related genes, somatic mutations, and drug sensitivity analyses, were applied to
explore the potential of classifying the population as sensitive to treatment and its mechanism.
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Figure 2. Identification of crLncRNAs in HCC patients, the prognostic model of crLncRNAs and
its prediction potential. (A) The co-expression network of mRNAs and LncRNAs associated with
cuproptosis, which was visualized by Sankey diagram according to Spearman correlation analysis
(|R| > 0.4, p < 0.001). (B) A cross-validation to adjust the parameter selection in the LASSO Cox
regression model. (C) The LASSO coefficient curve of 9 crLncRNAs. (D) The heatmap of correlation
analysis of cuproptosis-related genes and the 9-crLncRNA signatures. * p < 0.05, ** p < 0.01, and
*** p < 0.001. Principal components analysis between low- and high-risk groups based on the expres-
sions of (E) entire genes (F) 19 cuproptosis-related genes (G)147-crLncRNA, and (H) 9-crLncRNA.

The PCA showed that our prognostic prediction model could separate the two groups’
patients (p < 0.05, Figure 2E–H). We first validated the predictive ability of the prognostic
model in HCC patients with different clinical characteristics. There were significant dif-
ferences between G1 and G3 and grades G2 and G3, between stages I and II and III and
IV, and between T1 and 2, and T3 and 4 (p < 0.05) (Figure 3A–C). Interestingly, the OS rate
of HCC patients can be well predicted by the risk scores for age (<65, ≥65), sex (female,
male), grade (G1-2, G3-4), stage (III–IV), stage T (T3-4), M0, and N0 (p < 0.05). And, within
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these clinical-characteristic groups, patients in the high-risk group had a worse prognosis
when compared to the low-risk group (Figure 3D,I,K,L,N,O). However, patients in stages
I–II and T1–2 had a better prognosis when compared to the low-risk group and may not
be classified by risk scores (p > 0.05) (Figure 3J,M). These results indicate that the survival
of patients with advanced HCC can be predicted based on risk scores in different clinical
characteristic groups.
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Figure 3. Validation of the 9-crLncRNA prognostic model by clinical characteristics. Based on the 
median risk score, the entire sample was divided into high-risk group (165 cases) and low-risk 
Figure 3. Validation of the 9-crLncRNA prognostic model by clinical characteristics. Based on
the median risk score, the entire sample was divided into high-risk group (165 cases) and low-
risk group (178 cases). The differences in (A) grade, (B) stage, and (C) T stage were analyzed in
HCC patients. * p < 0.05, ** p < 0.01, and *** p < 0.001, and ns means no significance. The K-M
plotters of clinical characteristics: (D) <65, (E) ≥65, (F) FEMALE, (G) MALE, (H) G1-G2, (I) G3-G4,
(J) stage I–II, (K) stage III–IV, (L) M0, (M) T1-T2, (N) T3-T4, and (O) N0. p < 0.05 was considered
statistically significant.

3.2. The 9-CrLncRNA Model Has High Reliability in Predicting the OS and Application Value
in Clinical

Subsequently, we assessed the prognostic value of the 9-crLncRNA. According to the
risk and survival status distributions of the visualized risk score, the sample distribution
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was reasonable. The up-regulated genes of AC026412.3, AC026356.1, MCM3AP-AS1,
AL031985.3, AL117336.2, MIR548XHG, and AC011462.4 in the high-risk groups of the
TCGA-HCC database were considered risk crLncRNAs. AL365361.1 and SLC6A1-AS1
were protective crLncRNAs, as they were downregulated in the high-risk group (blue: low
expression level; red: high expression level, Figure 4A). The OS rate of HCC patients in the
high-risk group was lower than that in the low-risk group (Figure 4D). In addition, the areas
under the curve (AUC) in the training group were 0.836, 0.780, and 0.794 in 1, 3, and 5 years,
respectively, indicating that features had a strong ability to predict survival time (Figure 4G).
The multi-indicator ROC curve indicated that the risk score was significantly better than
traditional clinical characteristics at predicting the OS rate (AUC = 0.836) (Figure 4J). To
further evaluate the predictive validity of this 9-crLncRNA model, dual validation was
performed in both the validation group and the entire group using distribution maps, heat
maps, Kaplan–Meier survival curves, and ROC curves. Samples from the two risk groups
were also reasonably distributed in the validation group (Figure 4B,E,H,K) and the entire
group (Figure 4C,F,I,L). As expected, the high-risk group has a higher mortality rate than
the low-risk group. All of the above results indicate that our model has a good specificity
and sensitivity.

First, the univariate Cox regression analysis showed that the stage, T staging, and
risk scores of the 9-crLncRNA characteristics were correlated with the OS rate (p < 0.001)
(Figure 5A). Furthermore, risk score was an independent risk prognostic factor for pre-
dicting the OS rate (HR > 1, p < 0.001) (Figure 5B). Risk score concordance is higher than
other clinical features, suggesting that the model could predict survival better than others
(Figure 5C). The nomogram calculated the likelihood of survival for these patients by
summing scores of clinical characteristics (Figure 5D). The calibration plot of 1-, 3-, and
5-year survival probabilities showed that the nomogram based on risk score had good
predictive ability in clinical application (Figure 5E). Moreover, the multi-indicator ROC
curves and DCA curves showed that while both nomogram (AUC = 0.805) and risk score
were good predictors of OS, the latter was better (AUC = 0.824) (Figure 5F,G). Therefore,
the risk score of our model has a high application value in clinical settings and is reliable in
predicting the OS of HCC patients.

3.3. The 9-CrLncRNA May Be Closely Related to Tumor Immunity

We obtained 357 DEGs associated with cuproptosis, including 125 up-regulated genes
and 132 down-regulated genes (Figure 6A). The KEGG pathway analysis indicated that
cuproptosis-related DEGs were mainly enriched in the p53 signaling pathway (hsa04115),
cell cycle (hsa04110), oocyte meiosis (hsa04114), etc. (Figure 6B). In the biological process
category, GO analysis showed that DEGs were mainly enriched in immune-response related
pathways, such as cell recognition, complement activation, humoral immune response
mediated by circulating immunoglobulin, phagocytosis (recognition and engulfment), B
cell receptor signaling pathway, positive regulation of B cell activation, etc. In the cellular
component category, the DEGs were mainly enriched in immunoglobulin complex, etc.
In the molecular function category, the DEGs were mainly enriched in antigen binding,
immunoglobulin receptor binding, etc. (Figure 6C). All in all, the cuproptosis-related
DEGs are mainly enriched in the cell cycle (hsa04110), antigen binding (GO:0034987) and
immune response related pathway mediated by circulating immunoglobulin (GO:0042571)
(Figure 6D,E). Therefore, the DEGs obtained according to our 9-crLncRNA signatures
grouping were mainly related to tumor immunity, which is convenient for further study.
We have reasons to believe that 9-crLncRNA may be closely related to tumor immunity.
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Figure 4. Validation of the 9-crLncRNA prognostic model in the training, validation and entire
groups. The training group was further divided into the high-risk group (101 cases) and the low-risk
group (105 cases) based on the median risk score. The validation sample was then divided into the
high-risk group (64 cases) and the low-risk group (73 cases). Each sub-graph of Figure 4 shows the
risk score curves, survival status distribution maps, the 9-crLncRNA expression heatmaps (A–C),
Kaplan–Meier survival curves (D–F), the ROC curves of the overall survival at years 1, 3, and 5 (G–I),
and the ROC curves of the risk score and other relevant clinical characteristics of the 9-crLncRNA
(J–L) for the training, validation and entire groups, respectively. p < 0.05 was considered statistically
significant.
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Figure 5. Evaluation of the predictive ability of the 9-crLncrNA prognostic model. The univariate
(A) and multivariate (B) Cox regression analyses were performed to evaluate the independent
predictive potential of OS of the risk score and relevant clinical characteristics. *** p < 0.001. (C) The
C-index was used to evaluate the predictive power of the model. (D) The nomogram was used for
the prediction of 1-, 3-, and 5-year survival. (E) The calibration curves were used to examine the
capability of predicting the OS at 1, 3, and 5 years. (F) The multi-indicator ROC curve and (G) the
DCA curve were used to evaluate the predictive ability of the nomogram and risk score.
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Figure 6. The GO biofunction and KEGG pathway enrichment analysis of two risk groups based
on the 9-crLncRNA. (A) The volcano map reflects the 357 differentially expressed genes between
two risk groups (log2|FC| > 1, p < 0.05). Green, red, and gray represent downregulated, upregulated,
and no difference genes, respectively. Bubble graphs for KEGG pathways (B) and GO enrichment
(C) Circle diagrams of significant GO functional items (D) and significant KEGG pathways (E). The
latter contains the name of the dataset, the number of genes in the dataset, and the proportion of
crLncRNAs in the pathway. The outer ring is the name of the dataset, the inner circles are the number
of genes in the dataset and the proportion of crLncRNAs in the pathway. p < 0.05 was considered
statistically significant.
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3.4. The Low-Risk Group Was More Likely to Have a Higher Immune Response

To further explore the relationship between the prognostic signatures of 9-crLncRNA
and tumor immunity in HCC patients, we used the CIBERSORT algorithm to determine
the immune cell infiltration in all HCC patients from the TCGA database. We analyzed
the stromal score (substrate cells in tumor tissue), immune score (infiltrating immune cells
in tumor tissue), and estimated score (the sum of the stromal and immune scores from
individual cases) in the high- and low-risk groups. A higher immune score indicates a better
outcome, and as expected, the immune score was significantly higher in the low-risk group
(p < 0.001, Figure 7A). We compared the differences in each immune cell between the low-
and high-risk groups and found that CD8+ T cells and macrophage M0 were significantly
different between the two groups (Figure 7B). Subsequently, the ssGSEA was applied to
the RNA sequencing data of HCC samples to assess immune cell infiltration and related
functions. Immune cell populations, including naive B cells, B cell memory, plasma cells,
CD8+ T cells, CD4+ T cell memory resting, M0 macrophages, and dendritic cells activation,
were found to be significantly different between the two groups (Figure 7C). The high-risk
group had a poor prognosis, which was characterized by low ratio of B cell naive, resting B
cell memory, plasma cells, CD8+ T cells and CD4+ T cells memory, and the high activation of
M0 macrophages and dendritic cells. In addition, a comparison of immune characteristics
between high- and low-risk patients showed that low-risk patients have higher APC_co-
inhibition, APC_co-stimulation, chemokines and chemokine receptors (CCR), checkpoint,
cytolytic activity, HLA, inflammatory promotion, parainflammation, T_cell_co-inhibition,
and T_cell_co-stimulation, type-I IFN response, and type-II IFN response (Figure 7D).
This means that patients in the low-risk group are more likely to have a higher immune
response, and they can benefit more from immunotherapy. Finally, the expression level
of each patient’s immune cells and immune cell-related functions between different risk
groups is summarized in Figure 7E. Patients in the low-risk group had higher expression
levels. It is consistent with the conclusion that patients in the low-risk group may have a
higher immune response. We speculate that the 9-crLncRNA may change the TIME, one
of the biomarkers representing sensitivity to ICIs treatment, by influencing immune cell
infiltration. Therefore, the risk score based on 9-crLncRNA may be able to identify the
population susceptible to ICIs treatment.

3.5. Patients in the Low-Risk Group May Have a Higher Sensitivity to ICIs

The TIME was different between the two risk groups in our study; therefore, we
hypothesized that there may be differences in the efficacy of ICIs treatment. Due to the
importance of ICI in the immunotherapy of hepatocellular carcinoma, we further analyzed
the differential expression of immune checkpoint genes between the two groups, and found
that the expression in the low-risk group is higher, while the results for TNFSF4 and CD276
are the opposite (Figure 8A). This means that patients in the low-risk group may benefit
from ICIs treatment. Interestingly, the IPS, IPS_CTLA4 + PD1, IPS_CTLA4, and IPS_PD1 in
low-risk groups had higher values (Figure 8B–E). This means that patients in the low-risk
group may have higher ICIs sensitivity and benefit from immune checkpoint inhibitor
therapy, whether they are treated with a CTLA-4 inhibitor alone, a PD-1 inhibitor, or both.
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Figure 7. Immune profiles between different risk groups. (A) The boxplots of the stroma, immune,
and estimate scores of the two groups, and the Wilcoxon test is used for comparison. (B) The
comparison of immune cell subtypes in the low- and high-risk groups. The differences of (C) immune
cell infiltration and (D) immune function between the two risk groups according to ssGSEA. (E) The
heatmap summarized stroma, immune, estimate scores, tumor purity, immune cell infiltration, and
immune function between the two groups. * p < 0.05, ** p < 0.01, and *** p < 0.001, ns means
no significance.
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Figure 8. The comparison of the expressions of immune checkpoint genes and sensitivity to immune
checkpoint inhibitors between high- and low-risk groups. (A) The boxplots for comparing the
immune checkpoints genes between the two risk groups. The violin figures are for comparing the
two risk groups of the treatment for using (B) none of CTLA4 or PD1, (C) CTLA4 + PD1, (D) CTLA4
alone, and (E) PD1 alone. * p < 0.05, ** p < 0.01, and *** p < 0.001.

3.6. AL365361.1 May Be the Main Tumor Immune-Related Molecule of the 9-CrLncRNA Model

Our 9-crLncRNA model has excellent specificity and sensitivity to identify the sensitive
population of immune checkpoints inhibitor treatment. Therefore, further analysis of the
potential function of the 9 crLncRNAs may provide the possibility of finding valuable
therapeutic targets. Figure 9A shows the potential pathways involved in the prognostic
signatures of 9-crLncRNA analyzed by GSVA. It was found that 9-crLncRNA mainly
mediated immune-related pathways (such as T cell receptor, B cell receptor, and JAK-STAT
signaling pathway). Subsequently, we analyzed the correlation between 9 crLncRNAs
and 22 immune cells and their immune-related functions (Figure 9B). AL365361.1 was
significantly correlated with T cells, APC, immune checkpoint, and CCR (p < 0.001). As
mentioned above, immune checkpoint genes were differentially expressed between the low-
risk and high-risk groups, so we analyzed the association between the 9 crLncRNAs and
immune checkpoint genes (Figure 9C). The data showed that AL365361.1 was significantly
correlated with immune checkpoints CD28 and CD40LG (p < 0.001), which have been
reported to synergistically regulate exhaustion of tumor-infiltrating lymphocytes (TILs) and
response to PD-1 blockade [31,32]. This implies that AL365361.1 plays a tumor suppressive
role in HCC patients. To confirm the possibility of this relationship, we collected fresh
tissues and performed qRT-PCR to examine the expression level of AL365361.1 in HCC
tissues and adjacent normal tissues from the HCC patients (Figure 9D). The result showed
that the expression of AL365361.1 in HCC tissues is significantly lower than that in adjacent
normal tissues. According to the above results, AL365361.1 may be the main tumor
immune-related molecule between the two risk groups.
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Figure 9. The connection between 9-crLncrNA prognostic signature and the immune landscape.
(A) Correlation heatmap of KEGG pathways by GSVA. (B) The 9-crLncrNA correlates with 22 immune
cells and immune-related functions on a heatmap. (C) The heatmap of the correlation between the
9-crLncrNA and immune checkpoint genes. (D) The differential analysis plots show the expression
of AL365361.1 in HCC tissue and adjacent normal tissue from HCC patients. * p < 0.05, ** p < 0.01,
and *** p < 0.001.

3.7. Sensitive Drugs for NLRP3 Mutation May Improve OS in High-Risk Group

AL36536.1 is closely related to tumor immunity and screened from cuproptosis-related
genes. Whether it affects tumor immunity by mediating cuproptosis-related genes has
triggered our thinking. At the same time, although our model was able to distinguish the
sensitive population of immune checkpoints inhibitor therapy well, we hope to use it not
only to distinguish the sensitive population but also to propose new treatment options for
patients in the high-risk group who are not sensitive to ICIs, thereby prolonging the OS of
the high-risk group. Therefore, we analyzed the correlation between 9 cuproptosis-related
genes and 22 immune cells and their immune-related functions (Figure 10A). Interestingly,
NLRP3 was also significantly associated with T cells, APC, immune checkpoints, and CCR
(p < 0.001), like AL365361.1. Our previous results showed that AL365361.1 and NLRP3 are
highly expressed in the low-risk group. This supports our previous findings that patients
in the low-risk group may be sensitive to ICIs.
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Figure 10. The analysis of drug sensitivity in high-risk group. (A) The heatmap of correlation between
cuproptosis-related genes and 22 immune cells and immune-related functions. (B) The pathways
pie chart of cuproptosis-related genes, with red representing activation and green representing
inhibition. (C) The pie charts of cuproptosis-related genes with CNV in HCC. (D) The CNV status of
the cuproptosis-related genes in heterozygous and homozygous HCC patients was shown above and
below the figure, respectively. (E) The differential analysis plots show the expression of NLRP3 in
HCC tissue and adjacent normal tissue from HCC patients. (F) The correlation between cuproptosis-
related gene expression and sensitive targeted therapy drugs obtained by the spearman correlation
analysis. The red represents positive correlation, indicating that the gene is highly expressed and
resistant to drugs, whereas the blue represents the drug sensitivity of the gene. * p < 0.05, ** p < 0.01,
and *** p < 0.001.

We found that NLRP3 may be an important target for improving OS in high-risk
patients. The proportion of NLRP3 activation/inhibition pathways was analyzed and
visualized by GSCALite (Figure 10B). NLRP3 mainly activates epithelial-to-mesenchymal
transition (EMT) and hormone pathways. NLRP3 in HCC tumors and adjacent normal
tissues were analyzed for copy number variation (CNV) (Figure 10C,D). NLRP3 had the
most significant changes, mainly with CNV mutations (>60%). Furthermore, the expres-
sion of NLRP3 in HCC tissues is significantly lower than that in adjacent normal tissues
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(Figure 10E). Genomic resistance analysis showed that VNLG/124, sunitinib, and linifanib
were sensitive drugs in the inflammatory body NLRP3 mutant population (Figure 10F).
Our previous results showed that NLRP3 was poorly expressed in the high-risk group; it is
dominated by NLRP3 mutation and insensitive to immune checkpoint inhibitors. Thus, in
high-risk groups, NLRP3 mutation increased susceptibility to VNLG/124, sunitinib, and
linifanib. This may extend the survival of high-risk group patients who are not sensitive
to ICIs.

3.8. The Potential Regulation Axis between AL365361.1 and NLRP3

The risk score based on 9-crLncRNA can identify the sensitive population for ICIs
treatment, and the mechanism involved in the regulation of core molecules has aroused
our attention. Our previous results showed that AL365361.1 was positively correlated
with NLRP3 (Figure 11A), and both of them were positively correlated with anti-tumor
immunity. In conclusion, we speculated that NLRP3 may cooperate with AL365361.1 to
regulate the tumor microenvironment, ICIs response, and play a tumor suppressor role in
HCC. We consider that microRNAs (miRNAs) also play a crucial bridging role between
AL365361.1 and NLRP3. Thereafter, target gene prediction software was used to find
the possible hub between them. The sunburst diagram shows 51 miRNAs may target
NLRP3, 61 miRNAs may be targeted by AL365361.1, and 6 common miRNAs among them
(Figure 11B). There were 77 and 209 miRNAs co-expressed with TILs and ICIs related
miRNAs, respectively (|R| > 0.2 and p < 0.001). Based on the online Venn diagram
tool, we screened two common miRNAs from miRNA-NLRP3, AL365361.1-miRNA, TILs-,
and ICIs-related miRNAs (Figure 11C). The two common genes were hsa-miR-17-5p and
hsa-miR-93-5p. The correlation heatmap between the two common genes and the main
immune checkpoint genes showed that hsa-miR-17-5p and hsa-miR-93-5p might play a
carcinogenic role in HCC (Figure 11D). In addition, by visualizing miRNAs targeting
NLRP3 (Figure 11E), we found a significant interaction between hsa-miR-17-5p and NLRP3.
Meanwhile, we performed qRT-PCR to examine the expression level of hsa-miR-17-5p in
HCC tissues and adjacent normal tissues from the HCC patients. The result showed that
the hsa-miR-17-5p expression in HCC tissues is significantly higher than that in adjacent
normal tissues (Figure 11F). The correlation of three molecules between the expression
levels in 10 pairs of HCC patients’ tissues (Figure 11G–I) was analyzed, respectively. The
results showed that AL365361.1 was negatively correlated with hsa-miR-17-5p, NLRP3
was negatively correlated with hsa-miR-17-5p, and AL365361.1 was positively correlated
with NLRP3. These are consistent with our predictions. Therefore, we hypothesized that
the AL365361.1/hsa-miR-17-5p/NLRP3 axis may be related to the ICIs sensitivity of HCC
patients, which is the main reason for the difference in immune response and OS between
the two risk groups.
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relation of the expression levels between AL365361.1 and hsa-miR-17-5p (G), NLRP3 and hsa-miR-
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combined with targeted therapy brings hope to these patients, but it is difficult to identi-
fy sensitive populations and patients prone to drug resistance now [14]. LncRNAs have 
been reported to be used as biomarkers to predict the efficacy of chemotherapy, targeted 
therapy, and immunotherapy, but the potential clinical value and regulatory mechanism 
of crLncRNAs in HCC have not been studied [34,35]. There, we hope to provide a sensi-

Figure 11. The regulatory network between AL365361.1 and NLRP3. (A) The scatter plot of correlation
showing the correlation of the expression levels between AL365361.1 and NLRP3. (B) The sunburst
diagram shows predicted microRNA targets of NLRP3 and AL365361.1. (C) The Venn diagram
containing four lists of miRNAs. (D) The correlation heatmap between the 2 common miRNAs
and the main immune checkpoint genes. (E) The network of the potential regulation of miRNAs
to NLRP3. (F) The differential analysis plots show the expression of miR-17-5p in HCC tissue and
adjacent normal tissue from HCC patients. The scatter plot of correlation shows the correlation of
the expression levels between AL365361.1 and hsa-miR-17-5p (G), NLRP3 and hsa-miR-17-5p (H),
AL365361.1 and NLRP3 (I). * p < 0.05, ** p < 0.01. p < 0.05 was considered statistically significant.

4. Discussion

Patients with hepatocellular carcinoma have a poor prognosis, most of them lost
the opportunity for surgery when they are in the advanced stage [33]. Immunotherapy
combined with targeted therapy brings hope to these patients, but it is difficult to identify
sensitive populations and patients prone to drug resistance now [14]. LncRNAs have
been reported to be used as biomarkers to predict the efficacy of chemotherapy, targeted
therapy, and immunotherapy, but the potential clinical value and regulatory mechanism of
crLncRNAs in HCC have not been studied [34,35]. There, we hope to provide a sensitive
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biomarker to predict the prognosis of HCC patients and immunotherapy efficacy, which
will guide the selection of ICIs and targeted drugs by constructing the prognostic model
of crLncRNAs, thus serving as a basis for formulating appropriate clinical strategies. The
preliminary exploration of the potential mechanism of 9-crLncRNA in dividing the ICIs-
sensitive population also provides a research direction for basic research.

Recently, researchers have verified that cuproptosis-related genes could assess prog-
nosis in patients with clear cell renal cell carcinoma [36], melanoma [37], and hepatocel-
lular carcinoma. Compared with the recently established crLncRNA prognostic model in
HCC, our model, which consists of nine crLncRNAs (AC026412.3, AC026356.1, MCM3AP-
AS1, AL031985.3, AL117336.2, AL365361.1, SLC6A1-AS1, MIR548XHG, AC011462.4), has
higher specificity and sensitivity (1-, 3-, and 5-year AUC of 0.828, 0.781, and 0.779, re-
spectively) [38,39]. Patients are divided into high- and low-risk groups based on the risk
score, and the OS in each group can be predicted. The low expressions of AL365361.1 and
SLC6A1-AS1 in the high-risk group may play an anti-tumor role, while the other seven
crLncRNAs have the opposite effect. It has been reported that AC026412.3 can predict
patient survival in hepatocellular carcinoma and is associated with immune invasion and
the tumor microenvironment [40]. MCM3AP-AS1 promotes hepatocellular carcinoma
growth by targeting the miR-194-5p/FOXA1 axis [41]. AL031985.3 is associated with
ferroptosis-related hepatocellular carcinoma and predicts patient survival and immunother-
apy response [42]. It is possible to predict early recurrence of hepatocellular carcinoma
after curative resection with AL365361.1 [43]. Although some of the nine crLncRNAs have
been reported to be able to predict the prognosis of HCC by other studies, these predictive
LncRNAs were not used to jointly construct the prognosis model. Therefore, we have
constructed the model to predict the prognosis and ICIs treatment efficacy of HCC patients,
and explored the potential function of the nine crLncRNAs in the model. This is the first
time nine crLncRNAs have been used as a biomarker to predict the efficacy of ICIs therapy
in patients with HCC.

Our results showed that patients in the low-risk group, divided according to their
risk score, had better OS, better treatment efficacy of ICIs, and were more likely to benefit
from ICIs treatment. The reason may be that immune cell infiltration in the low-risk group
enhanced their immune reactivity. The nine crLncRNAs are enriched in the tumor immune
pathway and may be related to tumor immunity. The results also explain why our model
can divide the population with different immunotherapy efficacies. Some studies have
screened sensitive targeted therapeutic drugs by GDSC analysis and verified the effect of
sensitive drugs on tumor progression through experiments [44,45]. Therefore, the genomic
resistance analysis using Cancer Drug Sensitivity Genomics (GDSC) IC50 drug data is
feasible for the patients in the high-risk group with low immunotherapy sensitivity. The
results show that patients in the high-risk group may have higher sensitivity to VNLG/124,
sunitinib, and linifanib and better clinical benefits. Therefore, our prognostic model can
predict the OS of HCC patients, evaluate the sensitivity of ICIs, and choose the appropriate
treatment for different groups.

Interestingly, AL365361.1 is the core molecule of crLncRNA in the model and may
be the main factor affecting the difference in ICIs response between low- and high-risk
populations. We found that AL365361.1 may affect the interaction between immune check-
points, probably mainly CD28 and CD40LG. CD28 is essential for maintaining immune
homeostasis and ensuring T cell survival [46,47]. CD28 may enhance effector T function
and block the inhibitory function of Treg cells [48]. CD40/CD40L molecular pairs can
mediate bidirectional signaling between T cells and APC, through reverse signaling that
leads to activation and differentiation of APC as well as positive signaling that leads to
activation and differentiation of T/B cells [49,50]. Our results showed that AL365361.1
expression in HCC tissue is significantly lower than in adjacent normal tissue, as expected.
This implies that higher expression of AL365361.1 by affecting CD28 and CD40LG leads
to a higher immune response in the low-risk group. Therefore, we further explored and
verified the regulatory network of AL365361.1 in HCC tissues. It is exciting to find that
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the AL365361.1/hsa-miR-17-5p/NLRP3 axis may inhibit HCC progression and may be
related to the ICIs sensitivity of HCC patients, which is the main reason for the difference
in immune response and OS between the two risk groups. Moreover, it has been reported
that hsa-miR-17-5p promotes the progression of HCC and is related to sorafenib resis-
tance [51]. Sorafenib is a receptor tyrosine kinase inhibitor that can significantly suppress
HCC growth [52]. Previous studies did not pay attention to the effect of AL365361.1 on
immunotherapy efficacy in HCC, or the effect of hsa-miR-17-5p and its target NLRP3, on
drug resistance. By intervening with the AL365361.1/hsa-miR-17-5p/NLRP3 axis, it is
possible to increase the objective response rate of ICIs, while at the same time providing
new treatment options for ICIs-insensitive populations.

Although CD8+ cytotoxic T cells play key roles in eliminating tumor cells, they of-
ten experience exhaustion late in development and are unable to control tumor progres-
sion [53]. NLRP3 may be a bidirectional valve for the interaction between inflammation and
EMT [54,55]. Activation of NLRP3 can drive an inflammatory response, while inhibition of
NLRP3 may aggravate immune exhaustion in patients with advanced HCC, which is not
conducive to ICIs treatment and leads to poor efficacy of ICIs treatment in patients in the
high-risk group [56–58]. Genomic mutations that influence clinical responses to therapy
can guide the selection of targeted drugs. NLRP3 may be a valve for reversing treatment
outcomes in high-risk patients, and we screened sensitive drugs (VNLG/124, sunitinib,
and linifanib) for NLRP3 mutation. VNLG/124 was reported to be able to enhance the
anticancer activity of breast and prostate cancer cells in vitro [59]. TACE plus sunitinib
can prolong the survival of patients with unresectable HCC [60]. Sunitinib can increase
the anti-tumor immune response by inhibiting the hepatocyte growth factor (HGF) and
vascular endothelial-derived growth factor (VEGF) signaling pathways [61,62]. Linifanib
achieved OS similar to sorafenib in advanced HCC patients with sorafenib intolerance [63].
These clearly verify the efficacy of VNLG/124, sunitinib, and linifanib in the treatment of
HCC, and when NLRP3 is mutated, the sensitivity may be enhanced in the high-risk group
of patients with low NLRP3 expression, thus bringing better clinical benefits.

The research may predict patient survival and guide the selection of immunotherapy
and targeted therapy for patients in high- and low-risk groups. Furthermore, our study
could evaluate the efficacy of immunotherapy, and provide a feasible approach for iden-
tifying significant challenges in treating sensitive populations. Inevitably, our study has
limitations, and more prospective data are needed to verify the clinical application value of
our 9-crLncRNA prognostic model in guiding treatment selection.

5. Conclusions

The study found that the prognostic model based on 9-crLncRNA had excellent
specificity and sensitivity and was able to predict the prognosis of HCC patients and
identify ICIs sensitive populations. Additionally, tumor immunity may be connected to
tumor cuproptosis. According to the crLncRNA model, patients in the low-risk group may
have higher ICIs sensitivity and benefit from ICIs therapy, and the crLncRNA AL365361.1
may affect the immune response to ICIs through the AL365361.1/hsa-miR-17-5p/NLRP3
axis. It is possible to improve the treatment outcomes by using NLRP3 mutation-sensitive
drugs (VNLG/124, sunitinib, and linifanib) in the high-risk group of patients who are not
sensitive to ICIs and have low expression of NLRP3. In a word, our study may provide
new insights into the development of appropriate clinical strategies.
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