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Simple Summary: By integrating large-scale transcriptomic and genomic data, this study identified
immune-related pathways with aging characteristics among 25 cancer types. We found that the
perturbation of immune-related pathways showed a cancer-specific expression pattern. Moreover,
the aging- and cancer-related dysregulated patterns of pathways were in the same direction in most
cancer types. Furthermore, the study found that aging-related immune pathways with clinical
relevance improved immunotherapy benefits in melanoma and non-small cell lung cancer patients.
Using a network-based method, this study predicted potential drug targets for immunotherapy and
treatment combinations. Collectively, this study may provide insight into cancer immunotherapy,
thus improving treatment benefits.

Abstract: (1) Background: Perturbation of immune-related pathways can make substantial contributions
to cancer. However, whether and how the aging process affects immune-related pathways during
tumorigenesis remains largely unexplored. (2) Methods: Here, we comprehensively investigated the
immune-related genes and pathways among 25 cancer types using genomic and transcriptomic data.
(3) Results: We identified several pathways that showed aging-related characteristics in various cancers,
further validated by conventional aging-related gene sets. Genomic analysis revealed high mutation
burdens in cytokines and cytokines receptors pathways, which were strongly correlated with aging in
diverse cancers. Moreover, immune-related pathways were found to be favorable prognostic factors
in melanoma. Furthermore, the expression level of these pathways had close associations with patient
response to immune checkpoint blockade therapy in melanoma and non-small cell lung cancer. Applying
a net-work-based method, we predicted immune- and aging-related genes in pan-cancer and utilized
these genes for potential immunotherapy drug discovery. Mapping drug target data to our top-ranked
genes identified potential drug targets, FYN, JUN, and SRC. (4) Conclusions: Taken together, our
systematic study helped interpret the associations among immune-related pathways, aging, and cancer
and could serve as a resource for promoting clinical treatment.

Keywords: pan-cancer; aging; immunotherapy; prognosis; biomarker

1. Introduction

Evidence from accumulating studies has substantiated that aging is one of the most
fundamental causes of a broad range of cancer [1–3]. The tumor incidence and mortality
risk increase dramatically during aging [4]. Another well-established hallmark of cancer is
the perturbation of the immune system [5–7]. Aging of the immune system leads to the
impairment of both innate and adaptive immune processes in the body, which can create
an inflammatory environment [8–10]. An inflamed tumor microenvironment could thus
influence the immune landscape [11].

Immunotherapy has proven a promising strategy for cancer treatment, for which
impressive results have been achieved in various cancers [12]. By inhibiting checkpoint
molecules, such as programmed cell death 1 (PD-1), programmed cell death 1 ligand 1
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(PD-L1), and cytotoxic T-lymphocyte associated protein 4 (CTLA-4), patients have achieved
durable benefits after immune checkpoint blockade (ICB) therapies [13,14]. The main targets
of ICB therapy are T cells, which can construct and maintain the immune landscape [15,16].
The decline of the immune system during the aging process could lead to the dysfunction
of T cells; thus, patients do not respond to ICB therapy [17]. Current studies from a
multi-omic view have identified biomarkers related to immunotherapy response, such
as the expression of PD-L/PD-L1 [18,19]. However, rather than being isolated from each
other, genes often interact closely when they function [20]. The role of the immune-
related pathway in aging and cancer remains elusive. Comprehensively characterizing
the role of the immune-related pathway in aging and cancer might help better understand
immunotherapy resistance mechanisms.

We integrated genomic and transcriptomic data of 25 cancer types to refine these
gaps further. In this study, we systematically analyzed the age- and cancer-associated
differences in immune-related pathways in pan-cancer. We noticed that the perturbation of
immune-related pathways during aging showed cancer-specific characteristics. Besides, the
age-related alteration patterns of these pathways were investigated. We identified several
immune-related pathways that could predict the patient response to immunotherapy in
melanoma and non-small cell lung cancer. Potential drug targets of ICB therapies were
predicted by a network-based method. Collectively, our results might help elucidate the
age-associated roles of immune-related pathways in tumorigenesis and possibly inform
immunotherapy options.

2. Materials and Methods
2.1. Data Collection

The transcripts per million (TPM) of RNA-seq data for 25 cancer types from the
Cancer Genome Atlas data portal (TCGA) and non-cancerous tissues from Genotype-
Tissue Expression (GTEx) consortium were downloaded from the UCSC Xena platform [21]
(http://xena.ucsc.edu/, accessed on 19 November 2020) (Supplementary Table S8). TCGA
and GTEx transcript expression were integrated using UCSC TOIL pipeline [22], and 19,725
protein-coding genes were retained. Clinical and phenotype data were also downloaded
from the UCSC Xena platform.

Cancer types included for further analysis were as follows: adrenocortical carcinoma
(ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocarci-
noma (COAD), esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), kidney
chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary
cell carcinoma (KIRP), brain lower grade glioma (LGG), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian
serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), prostate adeno-
carcinoma (PRAD), rectum adenocarcinoma (READ), skin cutaneous melanoma (SKCM),
stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT), thyroid carcinoma
(THCA), thymoma (THYM), uterine corpus endometrial carcinoma (UCEC) and uterine
carcinosarcoma (UCS).

Half maximal inhibitory concentration (IC50) value of drugs in tumor cell lines was
obtained from Genomics of Drug Sensitivity in Cancer (GDSC) database [23] (https://
www.cancerrxgene.org/, accessed on 22 May 2022). Gene expression profile of cancer
cell lines was downloaded from Cancer Cell Line Encyclopedia (CCLE) database (https:
//sites.broadinstitute.org/ccle, accessed on 22 May 2022) (Supplementary Table S9).

2.2. Identification of Dysregulated IRPs in 25 Cancer Types

Seventeen immune-related pathways including 1793 genes were obtained from the
Immunology Database and Analysis Portal (ImmPort) project [24] (http://www.immport.
org, accessed on 11 March 2021). We applied single-sample gene-set enrichment analysis
(ssGSEA) to calculate the immune-related pathways (IRP) scores across 25 cancer types
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based on ImmPort genesets (Supplementary Table S10), IRP scores were scaled by MinMax
normalization to the interval [0,1] by the following equation:

Xnormalized =
X− Xmin

Xmax − Xmin
(1)

where X is each IRP score across samples.

(1) Identification of differentially expressed IRPs in tumor samples

R package ‘limma’ was applied to extract dysregulated IRPs in tumor samples [25].
IRPs with Benjamini-Hochberg (BH) adjusted p-value < 0.05 were considered as differen-
tially expressed.

(2) Identification of IRPs differentially expressed with age

It must be mentioned that the actual age of samples (donors from whom the sample
was collected) from GTEx was not provided; thus, we approximated the median for each
age group to each sample, i.e., 25 for all samples from 20–29 (Supplementary Figure S6).
A linear regression model generated by limma was used to extract IRPs differentially
expressed with age [26,27]. IRPs with a p-value < 0.05 was determined as statistically
significant. Moreover, we applied Analysis of Variance (ANOVA) analysis to compare the
IRP scores differences across cancers.

2.3. Benchmark Genesets to Evaluate the Aging Characteristics of IRPs

Aging-related-genesets (ARG) were downloaded from Molecular Signatures Database [28]
(https://www.gsea-msigdb.org/gsea/msigdb, accessed on 7 May 2022), Human Aging Ge-
nomic Resources [29] (http://genomics.senescence.info/genes/, accessed on 7 May 2022) and a
previously published study [30]. We calculated ARG scores using the ssGSEA method based
on the above aging-related genesets. We applied Spearman’s rank correlation to assess the
relationship between IRPs and ARGs at the pan-cancer and cancer-specific levels. Besides, we
calculated mutual information (R package ‘MICMIC’ [31]) between IRPs and ARGs to reinforce
the results obtained from Spearman’s analysis.

2.4. Mutation Analysis

The somatic mutation data of the mutation annotation format (MAF) file was down-
loaded from the publicly available TCGA MC3 project [32]. IRP alteration frequencies were
computed as the fraction of altered samples across cancers. Besides, we calculated the
tumor mutation burden (TMB) for each sample by R package ‘maftools’ [33]. We applied
Spearman’s rank correlation analysis to assess the relations between IRP scores and TMB.

2.5. Survival Analysis

We performed the Cox regression model and log-rank tests to identify IRPs related
to overall survival in 25 cancer types. Besides, the multivariate-Cox regression model was
performed in SKCM to identify IRPs that served as independent prognostic factors. KM
survival curve grouped by the median of IRP scores were plotted by R package ‘survival’ and
‘survminer’. We constructed a nomogram by R package ‘rms’ to select independent prognostic
factors and evaluated the predictive capability of nomograms by the calibration plot.

2.6. Prediction of Immunotherapy Response of IRPs

Five cohorts of SKCM patients received immunotherapy, including GSE91061, GSE96619,
GSE35640, Gide dataset, and VanAllen dataset [34–38], and two cohorts of (non-small-cell
lung cancer) NSCLC patients after ICB therapy, including GSE135222 and GSE126044, were
obtained from previous studies [39,40]. Patients who completely or partially responded to
the treatment were considered responders (Supplementary Table S11). IRP scores in these
datasets were calculated by the ssGSEA method among protein-coding genes. In the current
study, we evaluated the predictive ability of IRP scores using two methods: (1) The Area
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Under Curve (AUCs) from Receiver operating characteristic curve (ROC) curve analysis for
discriminating responders vs. non-responders by R package ‘ROCR’; (2) Wilcoxon test (and
multi-Wilcoxon test) in patients with different responses after immunotherapy (p < 0.05 was
considered significant). Moreover, we used the Gide cohort as the training set and applied
the support vector machines (SVM) model to predict the response of patients from the TCGA
SKCM cohort. We used the R package e1071 to train the SVM model.

2.7. Network-Based Method Identifying Immune-Related Genes as Drug Targets

A protein–protein interaction network, including 141,296 interactions among 13,460 genes,
was compiled from a previous study [41]. 1509 immune-related genes (IRGs) in 17 IRPs were
obtained from the ImmPort project [24]. First, we identified IRGs that were both dysregulated
in tumors and with age in 25 cancers (same procedure as identification of dysregulated IRPs),
then the rank of each IRG in a specific cancer type was defined as

RIMG =
√

R|FC1| × R|FC2| (2)

where FC1 is the fold change of IRG in tumor and FC2 is the fold change with age.
After obtaining a ranked list of IRGs, we projected the top 10% of genes to the PPI

network in 25 cancers, separately. A random walk with a restart was employed to measure
the association between all other genes in the network and the top 10% IRGs by the
following equation [42,43]:

Pt+1 = γP0 + (1− γ)WPt (3)

where P0 is the initial probability vector in which “1” were assigned to the top 10% IRGs; γ
is the restarting probability; W denotes the adjacency matrix of the network; Pt is the final
probability vector of other nodes after iteratively reaching stability.

For each cancer type, genes that score in the top 1% after network propagation were
extracted, then we integrated the top genes shared among 25 cancers and re-performed
a random walk with a restart. Finally, we obtained a ranked gene list for drug discovery
by the Drug Gene Interaction Database (DGIdb) database [44] (https://www.dgidb.org/,
accessed on 12 June 2022). Furthermore, we used the drug sensitivity data from GDSC and
CCLE to validate our drug prediction results.

2.8. Functional Enrichment Analysis

Functional enrichment analysis consists of Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, Reactome genesets and Wikipathways was carried out using Metascape
platform [45] (https://metascape.org/, accessed on 17 June 2022).

3. Results
3.1. Disturbance of Immune-Related Pathways between Normal and Tumor Tissues among
25 Cancer Types

We first performed the ssGSEA method to calculate immune-related pathways (IRP)
scores in 25 cancer types using the RNA-seq profile from the TCGA and GTEx database.
Then we explored the differential expression of these IRPs between tumor and normal sam-
ples. We found that most IRPs were dysregulated in more than 19 cancer types (Figure 1A),
except the Interferons pathway. Almost all cancer types displayed complex expression
patterns of IRPs; however, all IRPs were significantly up-regulated in TGCT and down-
regulated in lung cancers, suggesting a distinct immune landscape in different cancer
types (Supplementary Table S1). IRP scores were highly positively correlated with each
other at the pan-cancer level, suggesting a close interaction of various immune pathways
(Figure 1B). Next, we compared the IRP scores in tumor samples among 25 cancer types. We
found that most IRP scores varied dramatically in different cancer types (ANOVA, p < 0.05),
suggesting cancer-type specific immune mechanisms (Figure 1C). In contrast, Cytokines,
Interleukins, and TGF-β family member receptors showed a narrow range of scores among
cancers (Supplementary Figure S1). These specific expression patterns were further con-

https://www.dgidb.org/
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firmed by uniform manifold approximation and projection (UMAP) analysis (Figure 1D).
Cancers with related tissue origin were clustered together, exhibiting similar IRP expression
patterns, including central nervous system cancer (LGG and GBM), genitourinary cancer
(KIRC, KIRP, KICH, BLCA, PRAD, and TGCT), thoracic cancer (LUAD, LUSC), gynecologic
cancer (OV, UCEC, CESC, and UCS) and Core gastrointestinal cancer (ESCA, STAD, COAD
and READ). Taken together, IRPs showed cancer-specific characteristics, suggesting diverse
roles in the oncogene process and tumor microenvironment.
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Figure 1. Dysregulated immune-related pathways in pan-cancer. (A) Circos heatmap showing the
comparison of IRP expression level between tumor and normal across 25 cancer types. ‘*’ denotes a
significant dysregulation. (B) Correlation heatmap of IRPs in pan-cancer. ‘X’ denotes no significant
correlations. (C) Normalized IRP scores across 25 cancer types. (D) TCGA tumor samples clustered by
Uniform Manifold Approximation and Projection (UMAP) analysis. Different colors denote various
cancer types. Cancer types included: adrenocortical carcinoma (ACC), bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), glioblas-
toma multiforme (GBM), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC),
kidney renal papillary cell carcinoma (KIRP), brain lower grade glioma (LGG), liver hepatocellular
carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian
serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma
(PRAD), rectum adenocarcinoma (READ), skin cutaneous melanoma (SKCM), stomach adenocarci-
noma (STAD), testicular germ cell tumors (TGCT), thyroid carcinoma (THCA), thymoma (THYM),
uterine corpus endometrial carcinoma (UCEC) and uterine carcinosarcoma (UCS).
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3.2. Dysregulated Immune-Related Pathways Showed Age-Associated Characteristics
among Cancers

As we have identified differentially expressed IRPs in tumor samples among 25 cancer
types, we then assessed the association between patients’ age and IRP score in pan-
cancer. Using a linear regression model, we obtained a list of IRPs that showed sig-
nificantly differential expression with age (Figure 2A, Supplementary Table S2). The results
were further validated by Spearman’s correlation rank and mutual information analysis
(Supplementary Table S3). The strongest negative association was found in TGCT as all 17
IRPs were down-regulated with age in TGCT. On the other hand, none of the IRPs showed
age-associated characteristics in KICH. Despite different expression patterns, all IRPs were
dysregulated with age in at least ten cancer types (Figure 2A). Next, Fisher’s exact test was
used to perform an overlap analysis between dysregulated tumor-IRPs and dysregulated
age-IRPs in 25 cancer types (Figure 2B (right), Supplementary Figure S2). Although 17
IRPs showed diverse changing directions between tumor and age across cancer types,
significant overlaps found in most cancer types (led by BRCA) were IRPs changed in the
same direction between tumor and age (Figure 2B,C). Results suggested a simultaneous
molecular changing pattern between aging and tumor development. However, in LGG and
THCA, the overlap was significant for IRPs changed in the opposite direction. Due to the
small number of dysregulated tumor-IRPs and age-IRPs in several cancers, including ACC,
CESC, and KIRC, no significant overlaps were found. In LGG, 13 in 17 IRPs presented
increased expression with age and tumor. Different changing direction cases were found
in READ, LUAD, and THYM, whereas in cancers like GBM, all IRPs showed only one
changing direction with no significant overlaps (Figure 2C, Supplementary Figure S2).

3.3. Benchmark Gene Sets Validated the Aging-Related Characteristics of IRPs

Several studies have collected essential genes associated with age. Here, we obtained
ten gene sets from different sources to evaluate the aging-related value of 17 IRPs [28–30].
First, ssGSEA were used to calculate age-related gene sets (ARG) scores in both pan-cancer
and cancer-specific level. Next, Spearman’s rank correlation analysis was used to calculate
the correlation coefficient between IRP and ARG scores. We found that most IRP scores
and ARG scores showed significantly positive correlations, both at the all- and tumor-
sample level; the results were further validated by mutual information analysis (Figure 3A,
Supplementary Table S4). Strikingly, we found that the IMM-AGE gene set showed the
strongest positive correlation with most of the 17 IRPs (Rho > 0.3, p < 0.05) at all levels.
IMM-AGE is a gene signature developed by multi-omic-based approaches to explore
immune-aging dynamics at high resolution [30]. The high correlation values suggested
that IRP was a meaningful metric for aging in tumorigenesis. In addition, HAGR and
GO_AGING gene sets were also conventional aging benchmarks; our analysis showed that
the TCR signaling pathway was highly correlated with the above gene sets at the pan-cancer
level, suggesting potential roles of T cell receptors in aging (Figure 3B). Consistent with
the pan-cancer analysis, the strongest positive correlations were found between IMM-AGE
and TCR signaling pathway in almost all cancer types (Supplementary Table S5). Besides,
HAGR and GO_AGING were also highly correlated with the TCR signaling pathway in
cancer-specific analysis, including GBM, STAD, TGCT, and STAD. Taken together, our
results might indicate that TCR and BCR signaling pathways could serve essential roles in
aging and cancer (Figure 3C).
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3.4. Cytokine Receptors Pathway Showed a High Alteration Frequency among 25 Cancer Types

Numerous studies have proved the essential role of tumor mutation burden in aging.
During the aging process, accumulated somatic mutations were associated with increased
or decreased risks of tumorigenesis. Besides, ongoing studies have revealed the relevance of
TMB and immune checkpoint blockade (ICB) therapy response [46]. Herein, we calculated
the sample alteration frequencies for each IRP in 25 cancer types (Figure 4A). Tumor
samples with at least one alteration of pathway genes were considered altered samples.
Results showed that the TCR signaling pathway, Cytokines, Cytokines receptors, and
Antimicrobials had relatively high alteration frequencies across all cancer types (Figure 4D),
which was consistent with previous studies [42]. Using logistic regression adjusting for
cancer type, we found that 9 in 17 IRPs were positively correlated with age at the pan-
cancer level; the strongest correlation was found between Cytokine receptors and age
(Figure 4B). In cancer-specific analysis, all but Interferon-related pathways had significant
correlations with at least one cancer type (Figure 4C). The strongest correlations were found
in STAD, whereas mutations in 3 IRPs were more common in younger than older UCEC
patients, which was partially due to the higher proportion of hypermutated tumors in
young patients [26] (Figure 4C,E). On the other hand, negative correlations found in lung
cancers might be partly due to the smoking status of young patients [26] (Figure 4C,E,
Supplementary Figure S3A). Next, we computed the TMB of each tumor sample using
maftools. Then we assessed the correlation between IRP score and TMB at a cancer-specific
level by a linear regression model. Results showed complex relations between IRP scores
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and TMB in pan-cancer. Although 17 IRP scores correlated with sample TMBs in different
directions across cancers, an overall negative correlation between multiple IRP scores and
sample TMB was found across several cancer types, including GBM, LIHC, and THCA
(Supplementary Figure S3B). In summary, these findings from a genomic view established
a strong relation between immune-related pathways, aging, and cancer development.
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Figure 4. Alterations in immune-related pathways among 25 cancer types. (A) Heatmap showing
the alteration frequencies of IRPs in various cancer samples, color intensities represent different
percentages. (B) Volcano plots showing the associations between age and mutations in IRPs in pan-
cancer. IRPs with significant positive correlations are highlighted in red. (C) Dotplot of associations
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regression coefficients. (D) Boxplot showing the alteration frequencies of IRPs in various cancer
samples. The color of dots denotes different cancer types (see Figure 1D). (E) Oncoplot of IRPs in
STAD and UCEC.

3.5. IRPs Displayed a Strong Clinical Relevance among 25 Cancer Types

Given the significant associations between IRPs and aging in cancer, we thus investi-
gate whether IRPs could serve as valuable markers with prognostic value. A univariate
Cox regression model was used to evaluate the association between IRP score and overall
survival in 25 cancer types. Results showed that all IRPs had clinical relevance in at least
three cancer types (uni-Cox p-value < 0.05). 17 of 25 cancer types had at least one IRP
associated with patient survival; among them, 15 out of 17 IRPs were favorable survival
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factors (HR < 1) in SKCM (Figure 5A). KM survival curve showed that high IRP scores were
associated with better survival rates in SKCM (Figure 5B, Supplementary Figure S4). Next,
we applied a multivariate Cox regression model to test whether IRPs could serve as inde-
pendent prognostic factors in SKCM. As a result, Antimicrobials, Interferons, Interferon
receptors, and Interleukins pathway were independent OS prognostic factors in SKCM. It
is worth noting that Interleukins pathway was a protective factor in the uni-Cox analysis,
whereas becoming a risky factor of OS in multi-Cox analysis (Figure 5C). A nomogram
was constructed based on independent prognostic factors to predict 3-year and 5-years
overall survival probability and median survival time in SKCM (Figure 5D). The 3- and
5-year calibration plots showed that predicted survival probability by nomogram had a
little deviation from actual survival probability (Figure 5E). Taken together, our results
enforced that immune-related pathways had high prognostic values in pan-cancer.
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Figure 5. Clinical relevance of 17 IRPs among 25 cancer types. (A) Forest plot showing the results
of Univariate Cox regression in pan-cancer. Rectangle dots represent hazard ratio (HR) and the
error bars show the 95% confidence intervals of the HR. Orange denotes statistically significant.
(B) KM curves for SKCM patients stratified by median level of 4 IRPs. (C) Forest plot showing the
results of multivariate Cox regression in SKCM patients. ‘*’ denotes p < 0.05, ‘**’ denotes p < 0.01.
(D) Nomogram using 4 IRPs for predicting the probability of 3- and 5-years OS. (E) Calibration plot
evaluating of the predicted results by nomogram. The red and gray lines represent the difference
between predicted and observed probability.
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3.6. IRP Scores Were Associated with Immunotherapy Response of Patients

There are clear associations between IRPs and tumor immunity; thus, we speculated
that IRPs could serve as indicators for the response of patients with immunotherapy. In the
current analysis, we assessed the predictive abilities of IRPs in immunotherapy response
using patients with SKCM and NSCLC, for which we could obtain available cohorts as
much as possible. Here, we collected five cohorts of SKCM patients (1 MAGE - A3 and
4 CTLA-4 and PD-1 blockade immunotherapy) and two cohorts of NSCLC patients who
received PD-1 blockade immunotherapy. First, we computed the AUCs to evaluate the
predictive ability of each IRP in discriminating between responder and non-responder
in SKCM (Supplementary Figure S5A). As a result, six pathways, including Antigen
Processing and Presentation, Natural Killer Cell Cytotoxicity, Antimicrobials, Interleukins
Receptor, BCR Signaling, and TCR Signaling pathways, achieved AUCs greater than 0.7
in 5 independent cohorts (Figure 6B). Considering the small size of some cohorts, we
additionally applied the Wilcoxon method to avoid the unreliability of the ROC curve.
Consistent with the AUC result, these six IRP scores were significantly different between
responder and non-responder in at least three cohorts (Figure 6A).
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of IRP expression level in melanoma patients between responders and non-responders. (B) ROC
curves of 6 IRPs in 2cohorts of melanoma patients. (C) KM curve between predicted responder and
non-responder in TCGA SKCM dataset. (D) Predicted possibility to be ICB the responder among
three SKCM phenotype. ‘****’ denotes p < 0.0001, ‘ns’ denotes not significant. (E) Comparison of IRP
expression level in lung cancer patients between responders and non-responders. (F) ROC curves of
6 IRPs in 2 cohorts of lung cancer patients.
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Moreover, we used the Gide cohort to predict the immunotherapy response of TCGA
SKCM patients using the SVM model; a prolonged overall survival was found in predicted
responders (Figure 6C). We also found that SKCM patients with “immune” phenotype were
prone to respond to ICB therapy [47] (Figure 6D). The expression level of the six above path-
ways was all highest in “immune” phenotype SKCM patients (Supplementary Figure S5C).
Furthermore, we assessed the clinical implications of IRPs in patients after ICB therapy
by the Gide cohort; results indicated that IRPs were significantly related to the OS and
PFS of patients who received ICB therapy (Supplementary Figure S5B). Taken together, the
results indicated that higher IRP scores might have an association with durable benefits for
clinical immunotherapy.

Next, the same procedures were carried out in the two NSCLC cohorts. Antigen
Processing and Presentation, Interleukins Receptor, Chemokine Receptor, Natural Killer
Cell Cytotoxicity, TCR Signaling, and TGF-β family member receptors showed great
predictive power (AUC > 0.7) by ROC curve analysis (Figure 6F). The scores of these IRPs
were significantly higher in responders than in non-responders (Figure 6E).

3.7. Identification of Potential Therapeutic Target Genes and Drugs Prediction

Herein, we applied a network-based guilt-by-association approach to calculate the
proximity of each gene with dysregulated immune-related genes (IRGs) (see Materials
and Methods). After integrating cancer-specific results (Supplementary Table S6), we
obtained 13 genes (CDK2, DHX9, EEF1A1, EGFR, GRB2, IKBKE, MYC, SF3B3, SRC, TP53,
TRAF6, YWHAG, YWHAZ) that scored in the top 1% among all cancer types. Then we
re-performed a random walk with a restart with these 13 genes initially assigned the value
“1”. As a result, our prediction identified 136 genes (top 1%), which had the strongest
associations with the 13 initial genes (Figure 7A,B). Several IRGs involved in IRPs were also
in the top 1% of our list. A module consisting of 12 genes was found in the protein-protein
interaction network. Moreover, we aimed to identify potential therapeutic target genes and
drugs; thus, we used the 136 genes as the query signatures and mapped them to the DGIdb
database (Supplementary Table S7).

As a result, we obtained a list of potential compounds and their target genes (shown
in Table 1). AKT1 and EGFR have already been tested clinically for immune checkpoint
blockade (ICB) therapies in cancers, which were initially involved in the above module [13].
Besides, some of the identified compounds were proven to have a clinical utility for ICB
therapy, including TEMSIROLIMUS, BEVACIZUMAB, IBRUTINIB, and SUNITINIB [13,48].
Based on the observation, we speculated that other genes in the module might also be used
as therapeutic targets.

FYN was found to regulate autoimmunity by binding to B-lymphocyte surface antigen
CD19 [49] and interacting with immunoglobulin superfamily member CD147 [50]. Evi-
dence has shown that FYN plays a role in cancer pathogenesis and drug resistance [51].
Studies have shown the association between transcription factor JUN and drug resistance
in several cancer types [52,53]; moreover, JUN could interact with the microenvironment,
thus regulating inflammation and immunity [54–57]. The role of SRC in cancers has been
well-established [58–60]; besides, up-regulated SRC kinase in the microenvironment could
promote inflammation [61]. Numerous inhibitors have been developed to target SRC
kinase [62]. The results might indicate that our prediction might have clinical implications
for ICB therapeutic strategies. Moreover, we combined the cell line gene expression file
and IC50 value of drugs from GDSC and CCLE to further validate our prediction. Results
showed that the up- or down expression of drug targets could cause tumor cells to be
resistant or sensitive to specific inhibitors (Figure 7D).

Functional enrichment analysis of the 136 genes showed that top-ranked genes were
enriched in the initial 17 IRPs (BCR, TCR signaling, etc.) and other immune-related
pathways; besides, several oncogene pathways were enriched, including Hippo, PI3K-AKT,
WNT, etc. Moreover, aging- and longevity-related pathways, as well as drug-resist-related
pathways, were also enriched in our prediction (Figure 7C).



Cancers 2023, 15, 342 13 of 20Cancers 2022, 14, x  15 of 23 

 

 
Figure 7. IRP scores were associated with patient response to immunotherapy. (A) Overview of 
identifying genes proximal to immune-related genes in pan-cancer in a PPI network. Seed genes are 
displayed in orange and projected onto a PPI network, followed by network propagation. (B) Pro-
tein–protein interaction network of top 1% genes in our prediction. The subnet in the box is the 
module identified by MCODE. (C) Bar plot showing the result of functional enrichment analysis, 
colors represent different data sources. (D) Correlation curves of the expression level of predicted 
drug targets and drugs in various cancer types. Dots represent the correlation between drug IC50 
value and gene expression, and the blue line represents the curve fitting. The gray area represents 
the confidence interval. 

Table 1. Predicted compounds and rank of the selected genes. 

Symbol Entrez ID Rank in Our Prediction Compound 
AKT1 207 0.906% TEMSIROLIMUS 
TP53 7157 0.030% BEVACIZUMAB 

Figure 7. IRP scores were associated with patient response to immunotherapy. (A) Overview
of identifying genes proximal to immune-related genes in pan-cancer in a PPI network. Seed
genes are displayed in orange and projected onto a PPI network, followed by network propagation.
(B) Protein–protein interaction network of top 1% genes in our prediction. The subnet in the box is
the module identified by MCODE. (C) Bar plot showing the result of functional enrichment analysis,
colors represent different data sources. (D) Correlation curves of the expression level of predicted
drug targets and drugs in various cancer types. Dots represent the correlation between drug IC50
value and gene expression, and the blue line represents the curve fitting. The gray area represents the
confidence interval.
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Table 1. Predicted compounds and rank of the selected genes.

Symbol Entrez ID Rank in Our Prediction Compound

AKT1 207 0.906% TEMSIROLIMUS

TP53 7157 0.030%
BEVACIZUMAB
BORTEZOMIB

EGFR 1956 0.097%
BEVACIZUMAB

IBRUTINIB
SUNITINIB

FYN 2534 0.178% DASATINIB
JUN 3725 0.253% COLCHICINE

SRC 6714 0.059%
DASATINIB
BOSUTINIB

GEMCITABINE

4. Discussion

Accumulating evidence has linked immune-related pathways to cancer. However,
what remains elusive is the effect of aging on immune-related pathways. Herein we
comprehensively interrogated aging-related characteristics of IRPs and how these IRPs
contribute to tumorigenesis. We found that tumors from related tissue origin showed a
similar IRP expression pattern (Figure 1D). Most IRPs were dysregulated in tumors across 25
cancer types and the expression level changes showed a cancer-specific pattern. Specifically,
we found that all IRPs were significantly up-regulated in testicular germ cell tumors. Several
IRPs were significantly dysregulated with age in most cancer types. The strongest negative
correlation between IRPs and age was found in testicular germ cell tumors. Specifically, we
found the tumor- and age-related change of IRPs was in the opposite directions in LGG;
the same condition was found in neurodegenerative diseases [63]. The previous study has
shown connections between gliomas and neurodegenerative diseases [64]. Our conclusion
that IRPs have aging-related characteristics was also validated by several aging benchmark
genesets, including IMM-AGE, HAGR, and other GO genesets. Notably, we found the
strongest positive correlation between TCR signaling pathways and conventional aging-
related genesets (Figure 3) at both pan-cancer and cancer-specific levels. Previous studies
have demonstrated the relationship between aging and TCR signaling in disease [65–67].
Collectively, our results demonstrated a complex relationship between immune-related
pathways, aging, and cancer. Moreover, we also assessed the IRP differences between
female and male. As a result, we found that IRPs showed the strongest gender-related
differences in BRCA and THCA (Supplementary Figure S7). Further study on gender-
related IRPs in cancer might complement our study.

The prognostic value of immune-related genes (PD-1, PD-L1, CTLA-4, etc.) in cancers
has been well-established [68–72]. Here, we extended our analysis to immune-related
pathways and the results showed that at least one IRP had clinical associations in 17 cancer
types. Specifically, based on our inspection of SKCM, all but TGF-β pathways could serve as
prognostic markers in SKCM. Huge breakthroughs have been achieved in immunotherapies
of melanoma [6,73,74]. Our results hint at the indispensable roles of immune-related
pathways in cancer prognosis, especially in melanoma. Genetic alterations in oncogenic
signaling pathways are typical hallmarks of cancer [75], which led us to evaluate the
alterations in immune-related pathways. Of note, Cytokines and Cytokine Receptors
pathways showed the highest frequency of alterations in pan-cancer, which were in line
with a previous study [42]. Cytokines were proven essential in controlling host immune
and inflammatory responses [76,77]. Increasingly studies have shown that cytokines are
significant biomarkers in cancer and immunotherapy [78]. Our result suggested that
genomic alterations in Cytokines pathways might serve as critical mediators in aging and
cancer immunotherapy.

Unprecedented breakthroughs have been achieved in cancer treatment with the emer-
gence of immune checkpoint blockade immunotherapy [79]. Durable benefits have been
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produced by inhibiting PD-1, PD-L1, CTLA-4, and other immunosuppressive checkpoint
molecules [43]. Despite all the achievements, only a limited number of patients benefited
from immune checkpoint blockade immunotherapy. Ongoing studies have been devoted
to explaining the underlying mechanisms of adverse events after ICB immunotherapy.
However, most current studies only focused on several essential checkpoint genes; the
relationship between immune-related pathways and ICB responses has not received much
attention. In the current study, up-regulated Antigen processing and presentation path-
ways in responders were found in melanoma and non-small cell lung cancer. In line
with previous studies, members in the Antigen processing and presentation pathway
could be a great signature in discriminating responders from non-responders [43,80]. Be-
sides, the TCR signaling pathway also had a high discriminating power; a previously
published in vivo study of mice supported this result [81,82]. Our findings revealed the
indispensable roles of immune-related pathways in cancer immunotherapy. If more data
are available in the future, our study is expected to be applied to more cancer patients who
received immunotherapy.

Ongoing clinical tests have approved several drug combinations of checkpoint in-
hibitors, including ipilimumab [83–86], pembrolizumab, nivolumab [87,88], and atezoli-
mumab [12]. Our study attempted to predict possible drug combinations for better im-
munotherapy response. We identified aging- and cancer-related genes by a random walk
with a restart method in pan-cancer; using these136 genes as input, DGIdb helped suggest
several potential drugs. Dasatinib is an inhibitor of SRC family kinases; targeting inhibition
of SRC with dasatinib has been well-applied in various cancers [89–94]. Moreover, FYN
has been validated to be one of the kinase targets of dasatinib [95–97]. Gemcitabine is
a frontline agent in pancreatic cancer therapy [98], which could rewire immune-related
pathways in the tumor microenvironment [99]. The combination of gemcitabine and anti-
PD-1 enhanced the activity of M1 macrophages and CD8+ T cells in vivo [100,101]. Our
result might provide more preclinical choices to help patients benefit from immunotherapy.
Future experimental validation would improve our results and our work could provide
potential candidates for future studies.

In this study, we used only 17 genesets from Immport, which curated immunologically
relevant gene lists related to specific immune functions. In the future, applying more
available datasets from other sources will further improve the research in related fields.
Collectively, our systematic analysis of immune-related pathways in pan-cancer identified
the aging-and tumor-related characteristics of these pathways and suggested that several
pathways might help improve the response to cancer immunotherapy. Our results were
instrumental in fully understanding the potential of immune-related pathways in cancer
immunity and providing actionable strategies to broaden clinical tumor therapy.

5. Conclusions

In conclusion, our work established a link between aging, immunity, and cancers by
applying transcriptomic and genomic analysis to immune-related genes and pathways.
This study found a perturbation of expression and mutation pattern of immune pathways
with aging characteristics in human cancer. These pathways could serve as potential
biomarkers for cancer immunotherapy. Our work highlighted the importance of immune-
related genes and pathways with oncogenic roles in the aging process, which could further
provide insights into immunotherapy for patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15020342/s1, Figure S1. Normalized IRP scores across
25 cancer types. Figure S2. Venn diagrams showing the overlap between dysregulated tumor- and
age- IRPs. Figure S3. A Oncoplot of IRPs in different cancers. B Dotplot of associations between
IRP scores and mutations in IRPs across various cancers. Figure S4. KM curves of IRPs in SKCM.
Figure S5. A Boxplots of the area under the ROC curve (AUCs) in 5 cohorts. B Forest plot showing
the results of Univariate Cox regression of OS and PFS in Gide cohort. Rectangle dots represent
hazard ratio (HR) and the error bars show the 95% confidence intervals of the HR. Orange denotes
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statistically significant. C IRP scores among three SKCM phenotype. Figure S6. Age distribution of
samples from TCGA and GTEx samples. Figure S7. Gender-related differences of IRPs. A Heatmap
showing IRP expression level dysregulated in different gender groups across 19cancer types (Only
cancer patients with more than one gender). ‘*’ denotes a significantly dysregulation. B Boxplot
showing the IRP differences between males and females in BRCA and THCA (wilcox.test p < 0.05).
Table S1. Dysregulated IRPs in tumor across 25 cancer types. Table S2. Dysregulated IRPs with
age across 25 cancer types. Table S3. Validation of the significant relations between IRPs and age.
Table S4. Correlation between IRPs and ARGs using Pearson, Spearman and Mutual information
analysis. Table S5. Cancer-specific results of correlations between IRPs and ARGs. Table S6. Top 1%
ranked genes across 25 cancers. Table S7. Drug prediction of top 1% genes in pan-cancer. Table S8.
Dataset sources and sample size statistics. Table S9. Details of cancer cell lines from CCLE database.
Table S10. Details of Immport genesets. Table S11. Datasets used for ICB response analysis.
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