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As the primary cause of death for >90% of cancers, metastasis is the fourth and final
stage of cancer during which cells gain the ability to leave their primary site, invade sur-
rounding tissues, and disseminate to distant organs [1]. Research over the last two decades
has been instrumental in revolutionizing our understanding of cancer progression and
metastasis. While tumorigenesis was previously thought to have a predominantly genetic
basis, recent studies have shown that the cellular and structural components of the tumor
microenvironment (TME)—initially believed to be bystanders in tumorigenesis [2]—serve
an equally important function [3,4]. The TME constitutes of the extracellular matrix (ECM),
the basement membrane (BM), tumor cells, immune cells, endothelial cells, pericytes, and
signaling molecules involved in the regulation of tumor progression [5,6]. Depending on
the primary site of the tumor, the characteristics of cancer cells, the traits of patients, and
the stage of the tumor, the cellular and structural features of the TME can vary and can
either help support or suppress tumors.

In the review entitled “The Role of Tumor Microenvironment in Cancer Metastasis:
Molecular Mechanisms and Therapeutic Opportunities”, published in the 13th volume
of Cancers in 2021, Neophytou and co-authors address the roles of various cellular and
structural TME components in the invasion-metastatic cascade; TME-targeting strategies to
inhibit tumorigenesis; and approaches to reorganizing the TME and improving therapeutic
efficacy during metastasis [7].

As pointed out by Neophytou et al. [7] in their article, immune cells constitute an
important part of the TME, owing largely to their crucial functions within the TME through
their interactions with, and actions on, cancer cells at various stages of metastatic pro-
gression [8]. In particular, CD8+ T cells and natural killer (NK) cells play pivotal roles
in helping restrict metastasis, and when they are depleted or dysfunctional in tumors,
it leads to increased metastasis [9,10]. Tumor-associated macrophages (TAMs) can have
both tumor-supporting and tumor-suppressing functions, depending on their subtype [11].
M1-type TAMs suppress tumors through phagocytosis or by inducing immune responses
targeting cancer cells. On the other hand, M2-type TAMs exert tumor-supporting effects,
which include promoting metastasis, immunosuppression, angiogenesis, and anticancer
drug resistance [11,12]. Mesenchymal stem cells (MSCs) have been shown to promote
the proliferation and migration of cancer cells through the secretion of exosomes carrying
miRNAs [13,14]. Cancer-associated fibroblasts (CAFs) secrete signaling molecules that
promote cancer cell survival, in addition to reorganizing the ECM and creating tracks for
cancer cells to directionally migrate [15,16].

Additionally, the ECM plays several determinant roles in tumorigenesis and metastasis.
In tumorigenesis, the ECM serves as a biological barrier preventing the dissemination of
tumor cells from the primary site to distant organs. During tumor progression, however,
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the ECM is remodeled, creating metastasis-promoting conditions [17]. This remodeling
of the ECM is characterized by excess collagen synthesis which leads to fibrosis. Fibrosis
increases tissue stiffness and mechanical compression of tumor cells, which often facilitates
the migration of cancer cells [18]. Tumor stiffening also induces hypoxia, which stimulates
angiogenesis, thus increasing the supply of oxygen and nutrients to the tumor, in addition
to inducing numerous signaling cascades which promote proliferation, migration, and
metastasis.

At various stages of metastatic progression, the authors [7] describe how cellular
components of the TME can be targeted by pharmaceuticals to combat metastasis. Targeting
TAMs at the primary site of the tumor is one encouraging approach. TAMs are known
to facilitate epithelial-to-mesenchymal transition (EMT) in cancer [19], a process whereby
epithelial cells convert to a mesenchymal phenotype and can therefore migrate out of the
primary site and disseminate to other organs. This step in the TME can be targeted by JWH-
015, a cannabinoid receptor 2 (CB2) agonist which inhibits EMT [20] and downregulates
the expression of matrix metalloproteinases (MMPs) secreted by TAMs and other TME
cells. MMP activity, a major driver for angiogenesis, has additionally been shown to be
inhibited by several compounds, including bisphosphonates, carbamoylphosphonates, and
thiols [21–23]. Clinical studies, however, have found these approaches to have limited
efficacy [24–26]. Moreover, dose-limiting side-effects of MMP inhibitors have posed a
difficulty—many studies indicate that the dosages used in clinical trials are insufficient
to inhibit MMP expression [27–29]. Colony-stimulating factor-1 (CSF-1/M-CSF), which is
pivotal in the recruitment of TAMs to the tumor site, is another promising cellular target;
pharmaceuticals inhibiting the interaction of CSF and the CSF-R1 receptor can help block
metastasis [30]. Furthermore, exosomes loaded with taxol, or miR-124 and miR-145 mimics,
have been reported to significantly reduce the migration of tumor cells and the growth
of metastatic tumors [7,31]. The blood microenvironment can also be targeted through
the inhibition of platelet function, or through the modulation of cytokine content, which
leads to the blocking of metastasis. A number of drugs have been researched for their
anti-platelet activity, including APT102, an ADPase that restricts platelet activity, and the
BMP22 ATX inhibitor, which reduces metastasis through the inhibition of the LPA/ATX
signaling axis [32,33].

Physiological aberrations in the TME can be countered through vascular remodeling
and stroma normalization. The vascular remodeling strategy seeks to re-establish normal
vasculature through restoring the normal balance between pro- and anti-angiogenic sig-
naling. One important target for this approach is VEGF signaling, which can be regulated
through the drug Bevacizumab that prevents the binding of VEGF to its receptor [34].
Anti-angiogenic peptides—endostatin, growth factors, and chemokines, for example—have
also demonstrated high success rates for vascular remodeling in clinical studies [7]. On
the other hand, the stroma normalization strategy aims to restore normal vessel function
by reducing the compression of intratumoral vessels and tumor stiffening that leads to
metastasis [35,36]. This can be achieved via CAF reprogramming and ECM remodeling.
CAFs take part in ECM deposition, which increases tissue stiffness, in addition to being
involved in inflammatory signaling. Targeting CAFs has been reported to decrease tissue
stiffness and interstitial fluid pressure in tumors, as well as improve the activity of anti-
cancer agents such as taxol and 5′-fluorouracil [37]. Moreover, combined targeting of the
immunosuppressive ligand TGF-β secreted by CAFs and the PD-1/PD-L1 axis has shown
significant anti-tumor effects [38].

As novel therapeutic approaches to metastasis continue to be developed, Neophytou
et al. highlight the need to take into account the variation between the TME at the primary
and secondary sites of the tumor. A study by Cacho-Diaz et al. notes that the tissue in
which the tumor originated at the primary site impacts the type of tumor that develops at
the secondary site, as well as the metastatic outgrowth [39]. These findings suggest that
while regulating one component of the TME at a time may have limited clinical efficacy,
strategies targeting multiple TME components are likely to demonstrate greater success
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in combating metastasis. As research on the development of combination therapies for
cancer continues to grow, taking into account the characteristics of TME components is an
important step to optimize drug delivery and the therapeutic response.
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