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Simple Summary: Head and neck squamous cell carcinoma (HNSCC) accounts for hundreds thou-
sands deaths annually. We hereby propose a retrospective in silico study to shed light on gene–miRNA
interactions and topological biomarkers driving the development of HNSCC. To achieve this, gene
and miRNA profiles are holistically reevaluated using protein–protein interaction (PPI) and bipartite
miRNA–target networks. The landscape of our findings depicts a concerted molecular action in
activating genes promoting cell cycle and proliferation, and inactivating those suppressive. In this
scenario, genes, including VEGFA, EMP1, PPL, KRAS, MET, TP53, MMPs and HOXs, and miR-
NAs, including mir-6728 and mir-99a, emerge as key players in the molecular interactions driving
HNSCC tumorigenesis.

Abstract: Head and neck squamous cell carcinoma (HNSCC) is among the most common cancer
worldwide, accounting for hundreds thousands deaths annually. Unfortunately, most patients are
diagnosed in an advanced stage and only a percentage respond favorably to therapies. To help fill
this gap, we hereby propose a retrospective in silico study to shed light on gene–miRNA interactions
driving the development of HNSCC. Moreover, to identify topological biomarkers as a source for
designing new drugs. To achieve this, gene and miRNA profiles from patients and controls are
holistically reevaluated using protein–protein interaction (PPI) and bipartite miRNA–target net-
works. Cytoskeletal remodeling, extracellular matrix (ECM), immune system, proteolysis, and energy
metabolism have emerged as major functional modules involved in the pathogenesis of HNSCC. Of
note, the landscape of our findings depicts a concerted molecular action in activating genes promoting
cell cycle and proliferation, and inactivating those suppressive. In this scenario, genes, including
VEGFA, EMP1, PPL, KRAS, MET, TP53, MMPs and HOXs, and miRNAs, including mir-6728 and
mir-99a, emerge as key players in the molecular interactions driving HNSCC tumorigenesis. Despite
the heterogeneity characterizing these HNSCC subtypes, and the limitations of a study pointing
to relationships that could be context dependent, the overlap with previously published studies is
encouraging. Hence, it supports further investigation for key molecules, both those already and not
correlated to HNSCC.

Keywords: head and neck cancer; miRNAs; DEGs; PPI network; bipartite network; network topology;
hubs

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) indicates a group of heterogeneous
tumors that are derived from the squamous epithelium of the oropharynx, hypopharynx,
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oral cavity, and larynx. It is the 7th most common cancer worldwide, and it accounts for
more than 325,000 deaths annually [1]. In approximately two thirds of the patients, it is
diagnosed at the advanced stages, i.e., III/IV, and despite therapeutic advancement, the
survival probability is considerably low [2].

The main treatment of HNSCC remains as surgery and radiotherapy with/without
conventional therapy, including boron neutron capture therapy (BNCT), first approved in
Japan in March 2020 [3], as well as sonodynamic therapy [4]. Platinum-based chemotherapy
is the typical systemic treatment in recurrent metastases, but less than 20% of patients
respond favorably [5]. This gap requires the discovery of new diagnostic and prognostic
markers to give a boost for developing more specific and effective therapies. Recently,
neoadjuvant immunotherapy has shown potential to improve clinical outcomes by increas-
ing the antitumor immune response. In particular, EGFR targeting monoclonal antibody ce-
tuximab was approved for the treatment of late-stage HNSCC, while the anti-programmed
death-1 (PD-1) immune checkpoint inhibitors nivolumab and pembrolizumab were both
approved for the treatment of patients with recurrent or metastatic HNSCC [6].

Epigenetic processes, including DNA methylation, histone modifications, and post-
transcriptional gene downregulation following the action of non-coding RNAs, play a key
role in the development and progression of HNSCC [7–9]. These changes regulate the
accessibility of DNA to the cellular machinery responsible for transcription, replication,
and repair, influencing various cellular processes. In this scenario, miRNAs have been
demonstrated to have an impact on HNSCC, affecting its initiation, progression, metastasis,
angiogenesis and resistance to therapeutic interventions [10]. Their marked variations
in malignant tissues suggest the potential utility of miRNAs as standalone prognostic
indicators [11]. Indeed, miRNA expression is specific to various tumor sites, and its
analysis can help in determining clinical and pathological features, such as the degree of
differentiation, or a predilection to metastasize [12].

Many miRNAs have been found to be differentially expressed in human cancers [13].
The impact of their dysregulation may be both tumor promoting and tumor suppressive [14].
In the context of oral cancer, epigenetic mechanisms, such as DNA hypermethylation, have
been shown to disrupt the normal expression patterns of miRNAs [15]. Furthermore,
an array of investigations have showcased a robust correlation between altered miRNA
expression patterns and the principal risk factors implicated in the development of oral
cancer, such as tobacco, alcohol, and viral infections [16,17]. For instance, the epigenetic
silencing of miR-329 and miR-410 may be induced by arecoline, a carcinogenic ingredient
of betel quid. It was associated with the upregulation of the Wnt-β-catenin pathway and
the induction of expression of CCND1 and c-MYC, which plays a significant role in oral
carcinogenesis [18]. Also, there is evidence that miRNAs themselves can act on epigenetic
regulators, such as DNA methyltransferase, creating a complex feedback loop affecting the
overall epigenetic landscape [17].

In addition to tobacco and alcohol, currently, the human papilloma virus (HPV) is
considered another independent risk factor for HNSCC [19], mainly in oropharyngeal
squamous head and neck cancer, where the prevalence of HPV ranges from 50 to 90% [20].
This infection is recognized to play a role in HNSCC pathogenesis, and HPV+ and HPV−
patients show both clinically and biologically distinct features with reported genome-wide
hypomethylation and promoter hypermethylation in HPV+ [21].

Since miRNAs play a significant role in clinical outcome, their presence in the blood
of cancer patients may be used for monitoring the disease states, holding the potential to
facilitate timely diagnosis and the design of targeted therapies [22]. The main upregulated
miRNAs associated with HNSCC include miR-21, miR-455-5p, miR-155-5p, miR-372, miR-
373, miR-29b, miR-1246, miR-196a, and miR-181, while those that are downregulated
comprise miR-204, miR-101, miR-32, miR-20a, miR-16, miR-17 and miR-125b [23]. A study
on nasopharyngeal carcinoma demonstrated that miR-9, miR-124, miR-892b, and miR-
3676 were upregulated in plasma after drug treatment and downregulated at recurrence
or metastasis, nominating them as potential markers for disease progression [24]. miR-
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31 has been suggested as a candidate for the early diagnosis of HNSCC since its low
expression is correlated with tumor and lymph node metastasis [25]. Again, a study
showed that the inhibition of miR-124 and miR-766 enhances the sensitivity of HNSCC cell
lines to 5-fluorouracil and cisplatin (FP) chemotherapy and radiotherapy. In contrast, their
overexpression confers resistance and increased cell invasion and migration [26].

In order to compose a molecular puzzle of HNSCC to be as complete as possible,
several authors dedicated their efforts to characterizing differentially expressed genes
(DEGs). A recent retrospective study based on bioinformatics analysis showed that the
identified DEGs were mainly involved in drug metabolism cytochrome P450 and serotoner-
gic synapses. Meanwhile, three key genes—CEACAM5, CEACAM6 and CLCA4—were
significant for survival analysis [27]. In this landscape, the epidermal growth factor recep-
tor (EGFR) emerged from several studies. Its overexpression was found in about 90% of
HNSCC cases, and it has been correlated to poor prognosis along with radiation therapy
resistance [28–30]. Several other genes, including PIK3CA, CDKN2A, NOTCH1, MET,
CCND1, PIK3CA and TP53, have been strongly correlated with HNSCC. The latter, TP53,
is a tumor suppressor gene, whose alterations have been observed in about 70–80% HN-
SCC patients [31]. They represent potential key targets for the design of therapies based
on the miRNAs that regulate their expression [32], a strategy recently followed by some
researchers for inhibiting EGFR by artificial miRNAs [33].

Based on these premises, we here propose a retrospective study based on RNAseq
analysis of genes and miRNAs from HNSCC and control samples. The characterized
profiles were re-evaluated by systems biology approaches based on graph theory [34].
These strategies were adopted in a few studies dedicated to HNSCC. Some authors relied
on them to identify network signature useful for monitoring disease progression [35–37],
while a few others aimed to identify potential therapeutic targets [38,39]. In our work,
we investigated a cohort of 523 tissues from subjects affected by HNSCC at different
stages. Differentially expressed genes (DEGs) and miRNAs were transformed in protein–
protein interaction (PPI) and miRNA-target network models, which were subsequently
evaluated at the functional and topological levels [40,41]. Our goal is to shed light on the
molecular variations underpinning the different phenotypes and disease stages, as well
as the identification of gene and miRNA hubs. These molecules could play the role of
key molecules regulating processes, pathways and functions involved in tumor evolution
mechanisms, thus potentially impacting patient survival.

2. Materials and Methods
2.1. RNAseq Data, from miRNAs to Differentially Expressed Genes (DEGs)

We accessed the TCGA Data Portal, where we retrieved the TCGA-HNSC project (ID
phs000178, https://portal.gdc.cancer.gov/projects/TCGA-HNSC, accessed on 1 December
2022) data. The project reports bulk RNA sequencing for both gene and miRNA expression
of 523 HNSCC tissue samples at different stages, and 44 paired control samples. In total,
21 patients were at stage I of tumor development, 97 at stage II, 106 at stage III and 278 at
stage IV. Stage IV was split into stage IVa with 268 patients, and IVb counting 10 patients.
Due to the low number of patients, stage IVb was not considered in our study.

RNAseq data used for this study include 561 RNAseq and 568 miRNASeq data
files. To ensure the reliability of downstream analyses, the data were processed for quality
control by filtering out low-quality or misaligned reads, using standardized data processing
pipelines. The RNAseq sequencing reads were aligned to a reference genome (GRCh38)
using the STAR (Spliced Transcripts Alignment to a Reference) alignment workflow, while
miRNA sequencing was generated through the British Columbia Genome Sciences Center
(BCGSC) workflow. Specifically, sequence read quality scores, adapter trimming, removal
of low-quality reads and filtering out of any technical artifacts were performed. The aligned
reads were quantified to determine the expression level of each mRNA and miRNA as
normalized reads per million (RPM). Owing to a large sample size, we used the DESeq2
Bioconductor R package to analyze the RNAseq results and extract both differentially
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expressed mRNAs and miRNAs. DESeq2 accounts for compositional effects and library
size differences employing the median-of-ratios normalization method. Further, it fits
a generalized linear model (GLM) to count data and compare groups, and it employs a
shrinkage estimation of dispersion [42].

The statistical significance of the differential gene expression between tumors and
controls was assessed by the Wald test (adjP≤ 0.01) [43]. To account for multiple hypothesis
testing, DESeq2 applies a multiple testing correction procedure, the Benjamini–Hochberg
one, which controls the false discovery rate (FDR). Statistical thresholds, such as adjusted
p-value cutoff and fold change, were applied to determine significantly differentially
expressed genes, which were visualized using volcano plots. Finally, a further list of
differentially expressed genes and miRNAs was extracted by comparing patients stratified
per clinical stage; in this case, the ANOVA test was applied (p ≤ 0.01).

2.2. Extraction of miRNA Targets and Bipartite Network Reconstruction

Starting from differentially expressed miRNAs, we extracted the corresponding experi-
mentally validated targets from miRecords [44], miRTarBase [45] and TarBase [46] database
using an in houseR script. By using Cytoscape [47], they were used to build two bipartite
miRNA target networks (for up- and downregulated miRNAs). These networks were
processed by CentiScape Cytoscape’s App [48] to calculate the node degree centrality, rank
miRNAs by the number of genes they target, and rank genes by the number of miRNAs
targeting them. To select the miRNAs with the most target genes, as well as the gene target
of multiple miRNAs, we used the average values calculated on the whole network as a
threshold as previously reported [40].

2.3. Functional and Topological Analysis of PPI Networks Reconstructed from miRNA Targets
and DEGs

Experimentally validated miRNA targets were used to reconstruct two different
protein–protein interaction (PPI) networks using STRING Cytoscape’App [49]; only PPIs
“experimental” or “database” annotated with a score higher than 0.1 and 0.3, respec-
tively, were considered. To select the best candidate targets, we retained those with
Degree ≥ 2∗AverageDegree (AverageDegree = 4 for up-regulated miRNA targets; Av-
erageDegree = 5 for the downregulated miRNA targets). Genes targeted by both down-
and upregulated miRNAs were filtered for significant difference in degree (upregulated
miRNA target degree ≥ 8 AND downregulated miRNA target degree < 5, or upregulated
miRNA target degree < 4 AND downregulated miRNA target degree ≥ 10). As a result,
two networks of 415 (5856 edges) and 422 nodes (9423 edges) were reconstructed for up-
and downregulated miRNAs, respectively.

A further PPI network model was reconstructed starting by DEGs found by comparing
tumor and control samples (adjP ≤ 0.01; FC ≥ |2|). As reported above, the network
was reconstructed by the STRING Cytoscape’App and only PPIs that are “experimental”
or “database” annotated with a score higher than 0.1 and 0.3, respectively, were taken
into consideration.

Using STRING Cytoscape’App, the reconstructed PPI networks were also functionally
analyzed by retrieving the most enriched term from the GO Biological Processes, KEGG,
Reactome and WikiPathways. The same networks were topologically analyzed through
the centralities available in the CentiScape Cytoscape’s App [48]. The diameter, average
distance, degree, betweenness, centroid, stress, eigenvector, bridging, eccentricity, closeness,
radiality and edge centralities were calculated. Nodes with betweenness, centroid and
bridging values above the average calculated from the whole reference network were
considered hubs as previously reported [50]. The statistical significance of the topological
results was tested by randomized network models [51]; n = 1000 random models per
group were reconstructed and analyzed by in house R scripts based on VertexSort (to build
random models), igraph (to compute centralities) and ggplot2 (to plot results) libraries.
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2.4. Differentially Expressed miRNAs and Survival Analysis

The up- and downregulated miRNAs were tested for survival analysis. Special atten-
tion was paid to miRNAs targeting tumor suppressor genes (TP53, CDKN2A and PTPN4)
and oncogenes (MET, VEGFA, KRAS, and MYCN), particularly if we found them relevant
following RNAseq differential analysis and/or through the topological evaluation of the
reconstructed network models. The relationship between miRNAs expression levels and
patient survival outcomes was assessed using the log-rank test [52].

3. Results
3.1. Differentially Expressed Genes (DEGs) in Head and Neck Cancer

The comparison between HNSCC and control samples allowed the identification of
810 genes differentially expressed (DEGs) with adjP ≤ 0.01) and FC ≥ |1.5| (Table S1).
A set of highly confident DEGs (FC ≥ |2|) was used for reconstructing a protein–protein
interaction (PPI) network model and uncover the functional modules most affected by
the disease state. DEGs were grouped in more than twenty functional modules, and the
macro categories most represented were related to actin cytoskeleton, immune system,
extracellular matrix (ECM), energy metabolism, proteolysis and cell cycle/proliferation
(Figure 1).
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Figure 1. Protein–protein interaction functional modules differentially expressed by comparing
HNSCC and control samples. In red (FC ≥ 2, adjP ≤ 0.01), genes upregulated in HNSCC (and
downregulated in control), while in blue (FC ≤ −2, adjP ≤ 0.01), genes upregulated in control (and
downregulated in HNSCC).

The upregulation of specific gene families, such as metallopeptidases, collagens and
homeobox proteins characterized the tumor samples. Actin cytoskeleton and ECM showed
a clear opposite trend: ECM-related genes, including angiogenesis-related ones, were up-
regulated, while the expression of actin cytoskeleton-related genes, including cell adhesion
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and keratin ones, was lower than controls. As for cell cycle/proliferation, we noted the
downregulation of genes involved in their inhibition, such as PSCA, NDRG2, SLURP1
and EMP1. Finally, at the immune system level, the upregulation of interferon signaling
pathways emerged in HNSCC, while both glucose and lipid metabolism, with the exception
of some apolipoproteins and fatty acid desaturases, were downregulated.

The topological analysis of the PPI network model (635 nodes and 4522 edges) recon-
structed from all DEGs allowed the identification of 77 hubs (Table 1). In total, 54 out of
77 hubs were upregulated in the HNSCC group, while 24 were downregulated (Table S2).
Among the top 20 ranked genes based on the betweenness centrality, we found AGRN,
GNA12, FN1, PPL, TUBB3, CDKN2A, PDIA5, RECQL4, EPHB2, KIF4A, ALDH1A1, BGN,
STAT1, CAV1, CLIC4, GSTA1, VCAN, CTSL, TJP3 and CRYAB (Figure 2a,b). Their trend
of expression showed most of them to be upregulated in the tumor samples, regardless of
the disease stage (Figure 2c), while only PPL, ALDH1A1, GSTA1, TJP3 and CRYAB were
downregulated in HNSCC.

Figure 2. Protein–protein interaction network topology. (a) Violin plot of betweenness values from
random networks (n = 1000) calculated from nodes (DEGs) in Reference Network. Compared to the
reference network (Av. betweenness: 1384), random ones show significantly different average values
and support the selection of hubs. (b) Hubs selected by betweenness, centroid and bridging centralities;
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all hubs had to show values higher than the average of the entire network. Red nodes indicate hubs
upregulated in HNSCC (and downregulated in controls), while blue nodes indicate hubs upregulated
in control (and downregulated in HNSCC). (c) Trend of expression, per disease stage, of the 20 best
ranked hubs based on betweenness. Full red bars (FC ≥ 1.5, adjP ≤ 0.01) show the fold change of
genes upregulated in HNSCC, while full blue bars (FC ≤ −1.5, adjP ≤ 0.01) show the fold change
of genes upregulated in controls. For each gene, it is shown also the corresponding fold change at
different stages (empty bars, adjP ≤ 0.01). Most hubs were upregulated in HNSCC and in all stages
(red bars).

Table 1. Node and network centralities average values calculated by a PPI network models recon-
structed starting from DEGs (FC ≥ |1.5|, adjP ≤ 0.01) by comparing HNSCC and control samples.

Centrality Average Value

Betweenness 1384.6
Centroid −437
Bridging 68.4
Degree 14.2

Radiality 4.8
Closeness 0.000506

Stress 18,601
Eccentricity 0.185
Eigenvector 0.0161
Diameter 1 7

Average Distance 1 3.18
1 Network centralities.

3.2. Differentially Expressed miRNAs in Head and Neck Cancer

Starting from the same cohort of profiles retrieved by GDC portal, we selected a set of
differentially expressed miRNAs between HNSCC and control groups (Figure 3a). In detail,
38 and 34 miRNAs were up- and downregulated in HNSCC, respectively (Tables S3 and S4).
Of note, upregulated miRNAs showed a differential expression and statistical relevance,
increasing as the phase progresses. Meanwhile, it was less evident for downregulated ones
(Figure 3b,c). As an example, miRNA-105-1, miRNA105-2 and miRNA-767 showed the
higher fold change, and they were mainly upregulated at stage 3 and 4 (Figure 3b). Others,
including miRNA-615 as best, were upregulated in all stages. On the other hand, miRNA-
30a, miRNA-99a and miRNA-1258 were among those most confidently downregulated in
all stages (Figure 3c).

Bipartite networks miRNA-target were reconstructed using up- and downregulated
miRNAs as seed nodes. Their analysis had the purpose of identifying genes, pathways and
biological processes potentially affected by the miRNA expression. Following node degree
calculation, we ranked differentially expressed miRNAs based on the number of genes
they target (Figure 4a). Of note, miR-301a, miR-301b and miR-615, upregulated in HNSCC,
and miR-1, miR-101 and miR-29c, downregulated in HNSCC, were those with the highest
number of known gene targets. In this scenario, the genes most targeted by downregulated
miRNAs included VEGFA, G3BP2, PTBP1, IGF1R and DAZAP2. While, DEFB105B, PTPN4,
ZNF711 and LDLR were those most targeted by upregulated ones (Figure 4b).

A further set of target genes were also differentially expressed. MET, FSCN1, COL1A1
and SLC16A1 were both upregulated in HNSCC, and targets of miRNAs were downregu-
lated in HNSCC. On the contrary, RRAGD was both downregulated in HNSCC and the
target of miRNAs were upregulated in HNSCC. In both cases, there is a correlation that
suggests a direct relationship between the DEGs and miRNAs that target them. Further-
more, miRNAs downregulated in HNSCC had the greatest number of targets among genes
upregulated in HNSCC (Kolmogorov–Smirnov test p≤ 0.003), an observation that suggests
the stronger regulation of this class of molecules in tumor development, than up-regulated
miRNAs (Figure 4c).
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Figure 3. Differentially expressed miRNAs. (a) Volcano plot showing differentially expressed
miRNAs by comparing HNSCC and control profiles (FC ≥ |2| AND p values ≤ 0.00001). (b) Stage-
level expression of miRNAs upregulated in HNSCC samples (p values ≤ 0.01). (c) Stage-level
expression of miRNAs downregulated in HNSCC samples (p values ≤ 0.01). Full bars indicate the
most significant differences (FC ≥ |2| AND p values ≤ 0.00001).

3.3. PPI Network Models of Genes Most Targeted by Up- and Downregulated miRNAs: From
Modulated Pathways to Hubs

Genes specifically targeted by up- and downregulated miRNAs were used to re-
construct two distinct PPI network models analyzed at functional and topological levels.
Regarding the target genes of miRNAs downregulated in HNSCC, nine pathways were
enriched. They include the VEGFA-VEGFR2 signaling pathway, MicroRNAs in cancer, and
the hemostasis and relaxin signaling pathway. In contrast, genes targeted by miRNAs up-
regulated in HNSCC led to the enrichment of three pathways, including the transcriptional
regulation by TP53, antigen processing: ubiquitination and proteasome degradation and
iron uptake and transport (Figure 5a, Table S5).
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Figure 4. Differentially expressed miRNAs and corresponding target genes. (a) Up- and down-
regulated miRNAs ranked based on the number of genes they target. (b) Full bars indicate genes
specifically targeted by up- and downregulated miRNAs and selected based on a Degree > 2∗Average
Degree. Empty bars indicate differentially expressed genes (DEGs) most targeted by up- or downreg-
ulated miRNAs. (c) Differentially expressed genes (DEGs) in HNSCC, and number of miRNAs up-
and down-regulated targeting them; Kolmogorov–Smirnov test (p ≤ 0.05).

The topological analysis of the PPI network models reconstructed from targets of
up- and downregulated miRNAs revealed relevant differences in terms of the central-
ity average values (Table 2). In particular, the target genes of downregulated miRNAs
provided a PPI model with higher values of degree. In combination with lower values
for diameter and average distance, these results describe a more compact and connected
network. This is an observation that could fit the complex network of molecular interac-
tions underpinning complex processes, like the cell cycle and its dysregulation. Indeed,
as reported in (Figure 4c), downregulated miRNAs in tumors correlated with upregulated
genes, suggesting a relationship which leads to their activation.

Following node centralities evaluation, we identified 36 and 38 hub genes in PPI net-
work models from target genes of up- and downregulated miRNAs, respectively (Table S6).
Their selection was validated by the generation and processing of random networks, which
showed a distribution of the average betweenness significantly different from the one
obtained by processing the reference networks (Figure 5b,c). The best five ranked hubs
targeted by up-regulated miRNAs included APP, ABL1, HSPA1B, LMBR1L and AAK1.
On the other hand, KRAS, HNRNPH1, FLNA, XPO6 and TRA2B were the best five hubs
linked to down-regulated miRNAs. Of note, FLNA and ENAH were both hubs and upreg-
ulated in HNSCC (Table S6), increasing the likelihood that they could play a key role in
tumor development.
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Figure 5. Pathways and PPI hubs from gene targets of up- and downregulated miRNAs. (a) Pathways
enriched from gene targets of up- (red) and downregulated (blue) miRNAs in HNSCC. (b) On the
left, violin plot of betweenness values from PPI random networks reconstructed from gene targets of
miRNAs upregulated in HNSCC. Compared to the reference network (Av. betweenness: 515), random
ones show significantly different average values and support the selection of hubs (on the right).
(c) On the left, violin plot of average betweenness values from PPI random networks reconstructed
from gene targets of miRNAs downregulated in HNSCC. Compared to the reference network (Av.
betweenness: 457), random ones show significantly different average values and support the selection
of hubs (on the right). All hubs were selected by betweenness, bridging and centroid centralities,
which had to show values higher than the average of the entire network.
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Table 2. Node and network centrality average values calculated by PPI network models reconstructed
starting from genes targeted by up- or downregulated miRNAs.

Centrality Average Value in PPI Network of Genes Targeted
by Upregulated miRNAs

Average Value in PPI Network of Genes Targeted
by Downregulated miRNAs

Betweenness 515.4 457.5
Centroid −260.8 −234.5
Bridging 12.8 7.5
Degree 28.7 44.6

Radiality 3.75 2.91
Closeness 0.00109 0.00115

Stress 7883 9399
Eccentricity 0.274 0.309
Eigenvector 0.0353 0.0369
Diameter 1 5 4

Average Distance 1 2.24 2.08
1 Network centralities.

3.4. Survival Analysis Using miRNAs Targeting Key Tumor Suppressors and Oncogenes

Starting from miRNAs differentially expressed by comparing tumor and control
samples, we performed a survival analysis of HNSCC patients with the aim of identifying
potentially exploitable candidates for drug development. Among all tested molecules, we
selected a small set of up- (n = 3) and downregulated (n = 3) miRNAs.

As for miRNAs up-regulated, the best performance results were obtained for miR-
301a, miR-3144 and miR-6728 (Figure 6a,b). Similarly, miR-29c, miR-378a and miR-99a
were selected among downregulated miRNAs (Figure 6c,d). The best correlation between
miRNAs expression and survival days was observed for miR-6728 (p = 0.012) and miR-
99a (p = 0.0018). The other miRNAs showed probability values that are less meaningful.
However, the expression of miRNAs upregulated (miR-301a, p = 0.053; miR-3144, p = 0.065)
correlated with survival analysis better than downregulated ones (miR-29c, p = 0.114;
miR-378a, p = 0.102). Noteworthy, miR-301a and miR-3144 include the tumor suppressor
PTPN4 among their targets, while miR-29c and miR-378a include VEGFA. Furthermore,
CDK6 and CCND2, important for cell cycle G1 phase progression and G1/S transition, are
targets of miR-99a. On the contrary, TSC1, implicated as a tumor suppressor, is the target
of miR-6728.
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4. Discussion

The results shown in our study come from a comprehensive analysis of differentially
expressed genes (DEGs) and miRNAs modulated in head and neck squamous cell carci-
noma (HNSCC). The integration of these data with the protein–protein interaction (PPI)
network models, as well as the reconstruction of bipartite miRNA-target networks, have
proved useful in providing valuable insights into the molecular alterations associated with
the disease state. Globally, the identification of more than eight hundred high-confidence
differentially expressed genes emphasizes the substantial genomic modulation that occurs
in HNSCC as highlighted in other studies [53,54]. Corresponding functional modules
highlight the cytoskeletal regulation, immune system, extracellular matrix (ECM), energy
metabolism and proteolysis as major players involved in the pathogenesis of HNSCC.
The upregulation of ECM-related genes, including collagens and angiogenesis-related ones,
suggest the tumor vascularization and aggressiveness [55]. Conversely, the downregula-
tion of genes associated with the actin cytoskeleton and cell adhesion could be related to
tumor cell motility and invasion, contributing to the metastatic potential of HNSCC [56],
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4. Discussion

The results shown in our study come from a comprehensive analysis of differentially
expressed genes (DEGs) and miRNAs modulated in head and neck squamous cell carci-
noma (HNSCC). The integration of these data with the protein–protein interaction (PPI)
network models, as well as the reconstruction of bipartite miRNA-target networks, have
proved useful in providing valuable insights into the molecular alterations associated with
the disease state. Globally, the identification of more than eight hundred high-confidence
differentially expressed genes emphasizes the substantial genomic modulation that occurs
in HNSCC as highlighted in other studies [53,54]. Corresponding functional modules
highlight the cytoskeletal regulation, immune system, extracellular matrix (ECM), energy
metabolism and proteolysis as major players involved in the pathogenesis of HNSCC.
The upregulation of ECM-related genes, including collagens and angiogenesis-related ones,
suggest the tumor vascularization and aggressiveness [55]. Conversely, the downregula-
tion of genes associated with the actin cytoskeleton and cell adhesion could be related to
tumor cell motility and invasion, contributing to the metastatic potential of HNSCC [56],
an hypothesis further strengthened by the specific upregulation of proteolytic proteins
belonging to metalloproteases family [57,58].

Cell adhesion and motility significantly correlate with the decreased expression of
EMP1 as previously reported [59]. Along with other cell-cycle inhibitors, such as PSCA,
NDRG2 and SLURP1, they were downregulated in HNSCC, aligning with the hyper
proliferative nature of cancer cells. The decreased expression of PSCA was reported
by other authors [60], while more recently it was also described as a network hub [37].
Few investigations have put in evidence the role of NDGR2 in the context of HNSCC,
but several studies proposed it as a tumor suppressor and metabolism-related gene in
various cancers [61], and similarly, SLURP1, whose anti-proliferative activity is associated
with nicotinic acetylcholine receptors, upon which it acts as an antagonist [62]. In contrast,
in tumors emerged the upregulation of HOX genes encoding for proteins with a homeobox
DNA-binding domain. Considered oncogenic biomarkers, this family was found to be
overexpressed across a range of cancers, including HNSCC, where proliferation, migration
and invasion are promoted [63,64].

The reduced expression of the tumor suppressor, combined with the upregulation of
oncogenes, lets us imagine the concerted action of molecules, including miRNAs, in acti-
vating genes that promote the cell cycle and inactivating those that suppress it [65]. This
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panorama was complemented by the upregulation of cytokine and interferon signaling
pathways. Although they could indicate an activated immune response, as a protective
mechanism against tumor growth, recent studies reported that cancer-specific type-I in-
terferon activation is associated with poor immunogenicity and worse clinical outcomes
in HNSCC [66]. Moreover, cytokines induce alterations in the cellular and non-cellular
tumor microenvironment, promoting ECM degradation, angiogenesis, immune evasion
and metastasis [67].

In the perspective of gaining new insights concerning mechanisms regulating HN-
SCC hallmarks, the topological evaluation of network models contributed to selecting key
molecules, such as gene and miRNA hubs. They are potential new markers in mediating
communication and interactions within the HNSCC microenvironment. Among them,
AGRN and PPL are hubs defined in other studies [68], remarking their relevance and, at
the same time, the reliability of the approach here adopted. This was also confirmed by the
topological relevance of genes that the literature has already associated with tumor develop-
ment. As examples, we have FN1, whose over-expression correlates with the tumorigenesis,
prognosis and radioresistance of HNSCC [69], EPHB2, that induces angiogenesis via the
activation of ephrin reverse signaling [70], or CAV1, typically upregulated and related to
the lipid metabolism [71]. In this context, the upregulation we observed for apolipoproteins
(APOs) and fatty acid desaturase (FADS) gene families remarked the role of lipid profiles
in HNSCC [72,73]. However, we did not appreciate this for the carbohydrate or glutamine
metabolism, as reported in other studies [74].

Concerning new findings not yet clearly linked to HNSCC, some authors found
that AGRN downregulation reduces cell proliferation, migration, invasion, and enhances
apoptosis in colorectal cancer cells. Of note, they observed also that matrine, an alkaloid
found in plants, has anti-tumor effects on colorectal cancer cells by inactivating the Wnt/β-
catenin pathway via regulating AGRN expression [75]. Hence, AGRN could represent a
potential target for therapies also in HNSCC. As for PPL, instead, we noticed that its hub
role emerged in several studies [37,54,68]. Since it serves as a link between the cornified
envelope, desmosomes and intermediate filaments, its downregulation could favor and
enhance the invasive potential of HNSCC cells [76]. Similarly, the downregulation of
ALDH1A1 and GSTA, protecting cells from reactive oxygen species, could describe a
condition with reduced detoxification capacity and increased susceptibility to oxidative
stress, which in turn promote tumor growth and survival [77,78].

The landscape painted through gene expression has improved with the exploration
of molecules, such as miRNAs, involved in epigenetic regulation [7–9]. In addition to
confirming miR-615 [79,80] miR-29c [80,81] and miR-101 [80] as signatures, the profiling
of these elements contributes to dissecting the tangle of interactions underlying HNSCC
tumorigenesis. In this view, bipartite networks evidence the upregulation of some genes,
including MET [82], FSCN1 [83], COL1A1 [84], and SLC16A1 [85]. Being targets of down-
regulated miRNAs, these interactions gain a layer of relevance in promoting HNSCC
pathogenesis.The same relevance was noticed for VEGFA and VEGFA-VEGFR2 signaling,
i.e., the gene and pathway most targeted by miRNAs downregulated in HNSCC. These
observations fit with a coordinated miRNAs action oriented to angiogenesis activation [86].
Thus, genes and miRNAs involved in these interactions represent an important target for
anti-angiogenic therapies [87]. More generally, the observation that miRNAs downreg-
ulated in HNSCC have a higher number of targets among upregulated genes prospects a
regulatory mechanism where these miRNAs might counteract the over-expression of onco-
genic ones. Thus, they could represent a set of miRNA candidates to be investigated for
therapeutic purposes.

In contrast to VEGFA-VEGFR2 signaling, the enrichment of transcriptional regulation
by TP53, a tumor suppressor pathway, outlines the function of up-regulated miRNAs in
shutting down processes controlling the cell cycle and proliferation [88]. This could fit also
with the aim of inhibiting or escaping the immune system [89]; a plan supported by the
high targeting of DEFB105B by upregulated miRNAs. In fact, it belongs to the defensin
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family that was for a long time considered to be merely antimicrobial peptides, but they
can inflict DNA damage and the apoptosis of tumor cells, also attracting T cells, immature
dendritic cells, monocytes and mast cells [90].

The epigenetic control of key genes involved in cell-cycle activation and inhibition
was depicted also by the identification of miRNA-targeted hubs. ABL1, the best hubs
targeted by upregulated miRNAs, is a protooncogene involved in many processes linked
to cell growth and survival, including cytoskeleton remodeling, cell motility, DNA damage
response and apoptosis. Of note, it has been also described to play a tumor-suppressor role
in hematological malignancies [91]. In the same way, the KRAS gene stood out as the best
hub targeted by down-regulated miRNAs. This relationship could lead to its upregulation
in the tumor. As a matter of fact, KRAS is a well-known oncogene, whose mutations or
overexpression are common in various cancers [92].

Although the epigenetic regulation of gene expression relies on different complex and
interconnected mechanisms, the evidence of miRNAs targeting known tumor suppressors
and oncogenes reveals potential interactions that may impact patient survival. Hence, they
support the clinical relevance of miRNAs as potential therapeutic targets. Several authors
addressed this topic by evaluating miRNAs in body fluids [93] and biopsies [94], or taking
into account different molecules, like genes [95] and lncRNAs [96]. In our study, miR-99a
provided the best result for survival analysis along with miR-6728. In addition to confirm
the downregulation of miR-99a [97], our findings remarked its prognostic nature, already
evidenced in other studies [98,99]. On the contrary, in the literature, there are not many
reports that correlate the role of miR-6728 in the context of HNSCC [100], thus representing
a potential novelty. Good results were obtained also for miR-301a [101], miR-3144, miR-
29c [80,81], and miR-378a [102], targeting tumor suppressors or oncogenes emerged by our
in silico analysis.

5. Conclusions

With this study, we wanted to contribute to a deeper understanding of HNSCC patho-
biology, focusing on genes and miRNAs modulated in the disease stages. The integrated
analysis through PPI network models has provided a comprehensive view of the molecular
interactions correlated with HNSCC. In addition to presenting some potential novelties,
our findings are in agreement with previous studies confirming the relevance of some
mechanisms in HNSCC tumorigenesis and progression. In particular, the topological
analysis highlights hub genes and miRNAs with a supposed key role in controlling HNSCC
mechanisms. Thus, molecule candidates are potential drug targets. If, on one hand, this
overlap is encouraging and supports further investigations, on the other hand, we cannot
fail to take into account other molecules and mechanisms that would help complete the
panorama of epigenetic regulation, including DNA and histone modifications, or lncRNAs,
for which our knowledge is still in its infancy. In fact, the results presented support
pathway regulation governed by a concerted action of multiple actors, both genes and
miRNAs. And certainly the other epigenetic control mechanisms play a role that needs
to be integrated in this framework. Despite some missing pieces, the characterization of
specific miRNA–gene interactions, and their impact on patients survival, is another small
brick supporting the development of prognostic and therapeutic strategies that ultimately
aim to improve the clinical outcome of HNSCC treatments. Of course, we are well aware of
the marked heterogeneity showed by the HNSCC subtypes, as well as of the numerous
players and mechanisms affecting gene expression, limitations that are added to those
of an in silico study focused on miRNA–target interactions, which in cancer could have
context-dependent effects.
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