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Simple Summary: Breast cancer patients often receive anti-hormonal treatment if their tumor is
positive for the Estrogen Receptor (ER), but tumors may become resistant to this therapy and still
metastasize. We studied 101 of such metastatic lesions and investigated these lesions for mutated
genes and mutation patterns, in combination with the level of expression of relevant genes. Our
aim was to better understand the mechanisms that are involved in the resistance to anti-hormonal
treatment. The analyses showed two distinct groups of patients, each with specific mutations. One
group clearly showed an ongoing, active ER and its associated signal route; these patients probably
still would benefit from ER-targeting agents. We advocate for combining mutation and expression
analyses on metastatic lesions, to maximize the group of patients that still may benefit from existing
or new anti-hormonal treatments targeting ER or its signaling network.

Abstract: Mutations in the estrogen receptor gene (ESR1), its transcriptional regulators, and the
mitogen-activated protein kinase (MAPK) pathway are enriched in patients with endocrine-resistant
metastatic breast cancer (MBC). Here, we integrated whole genome sequencing with RNA sequencing
data from the same samples of 101 ER-positive/HER2-negative MBC patients who underwent a
tumor biopsy prior to the start of a new line of treatment for MBC (CPCT-02 study, NCT01855477) to
analyze the downstream effects of DNA alterations previously linked to endocrine resistance, thereby
gaining a better understanding of the associated mechanisms. Hierarchical clustering was performed
using expression of ESR1 target genes. Genomic alterations at the DNA level, gene expression levels,
and last administered therapy were compared between the identified clusters. Hierarchical clustering
revealed two distinct clusters, one of which was characterized by increased expression of ESR1
and its target genes. Samples in this cluster were significantly enriched for mutations in ESR1 and
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amplifications in FGFR1 and TSPYL. Patients in the other cluster showed relatively lower expression
levels of ESR1 and its target genes, comparable to ER-negative samples, and more often received
endocrine therapy as their last treatment before biopsy. Genes in the MAPK-pathway, including
NF1, and ESR1 transcriptional regulators were evenly distributed. In conclusion, RNA sequencing
identified a subgroup of patients with clear expression of ESR1 and its downstream targets, probably
still benefiting from ER-targeting agents. The lower ER expression in the other subgroup might be
partially explained by ER activity still being blocked by recently administered endocrine treatment,
indicating that biopsy timing relative to endocrine treatment needs to be considered when interpreting
transcriptomic data.

Keywords: breast cancer; whole genome sequencing; RNA sequencing; endocrine resistance

1. Introduction

Breast cancer is the most common cancer among women worldwide [1]. Although
the majority of breast cancer patients are cured, 20–30% of patients will develop incurable
metastatic disease [2]. As 60–70% of patients with metastatic breast cancer (MBC) have tu-
mors expressing estrogen receptor alpha (ER), endocrine therapy has become the mainstay
treatment for these patients [3]. Despite the success of endocrine treatment, unfortunately,
20–30% [4–7] of patients have no clinical benefit from first-line endocrine therapy due to
intrinsic resistance, whereas the remainder of initially responding patients will eventually
develop resistance during therapy. Once resistant, tumors become more aggressive and
more difficult to treat.

Recently performed sequencing efforts on metastatic tumor biopsies have revealed
several mechanisms conferring resistance against endocrine treatment [8–10]. Activat-
ing mutations in the ligand-binding domain of the gene encoding the ER, ESR1, lead to
constitutive activity of ER and have been related to shorter progression-free survival on
single-agent aromatase inhibitors (AIs) [11,12]. After exposure to nonsteroidal AIs for
metastatic disease, 29–39% [11–13] of patients harbor ESR1 mutations, whereas ESR1 muta-
tions are quite rare in primary tumors (only ~3% of patients [14,15]) and newly diagnosed
metastatic disease after adjuvant treatment with AIs (5.3–6.4% of patients [16–18]). The
most common ESR1 mutations have been functionally annotated whereby D538G and
Y537 are known for their constitutive activity, whereas the E380Q variant “only” leads to
estrogen hypersensitivity [15].

Additionally, mutations in the mitogen-activated protein kinase (MAPK) pathway are
enriched in MBC as well, including alterations in ERBB2, NF1, EGFR, ERBB3, KRAS, BRAF,
MAP2K1, and HRAS [8]. Of these genes, inactivating mutations in NF1 are most frequently
observed and are mutually exclusive with activating mutations in ESR1 [8,19]. Recently,
Zheng et al. have shown that NF1 acts as a co-repressor of ER-α transcription, so when NF1
gets inactivated, this leads to an increased expression of ER target genes such as GREB1
and TFF1 [20]. In addition to mutations in ESR1 and MAPK pathway genes, alterations
in ER transcriptional regulators have been associated with endocrine resistance as well,
including MYC, FOXA1, CTCF, and TBX3 [8].

Although whole genome and whole exome sequencing (WGS and WES, respectively)
efforts have revealed enriched gene alterations in metastatic tumors compared to primary
breast cancer, integration with gene expression is necessary to enable subsequent analysis of
the downstream effects of these alterations. Here, we integrated WGS data with matched RNA
sequencing data obtained from biopsies of 101 patients with ER-positive/HER2-negative
metastatic breast cancer to assess the relation between ESR1 mutations, alterations in
ESR1-transcriptional regulators, and MAPK pathway mutations and the activity of the ER
pathway. Samples and associated genomic features were ordered by hierarchical clustering
using RNA expression of ER pathway genes to get a better understanding on how these
mutations associate with ESR1 expression and its target genes. Moreover, clinical data
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such as type of treatment prior to tissue biopsy—especially focusing on the major types
of endocrine therapy such as selective estrogen receptor modulators such as tamoxifen,
aromatase inhibitors, and estrogen receptor degraders such as fulvestrant—were associated
with the expression of ER target genes. Finally, we performed an exploratory analysis to
correlate the tumors’ transcriptome with subsequent best response to endocrine therapies.

2. Methods
2.1. Study Design and Patients

For the current analyses, we selected patients with metastatic breast cancer who were
included under the protocol of the Center for Personalized Cancer Treatment (CPCT)
consortium (CPCT-02 Biopsy Protocol, ClinicalTrial.gov no. NCT01855477), which was
approved by the medical ethics committee of the University Medical Center Utrecht, the
Netherlands. The consortium and the whole patient cohort have been described in detail
recently [10,21]. Briefly, patients of ≥18 years old, with incurable locally advanced or
metastatic solid tumors, from whom a histological biopsy could be safely obtained and sys-
temic treatment with anticancer agents was indicated were eligible for inclusion. Biopsies of
metastatic lesions from patients with ER-positive/HER2-negative breast cancer (obtained
via pathology reports of the primary tumor), from which both WGS and RNA sequencing
data were available, were included (n = 101). A cohort of 63 patients with ER-negative
metastatic breast cancer was included as readout for low/absent ER expression.

2.2. Prior Endocrine Therapy

As we investigated the expression of estrogen-regulated genes, it is important to estab-
lish in which patients expression of these genes was potentially influenced by endocrine
therapy. We expected that endocrine therapies that were given as the last systemic therapy
before the tissue biopsy was taken could still impact the expression of estrogen regulated
genes. Therefore, we registered the last treatment that was administered before biopsy and
grouped these treatments as follows: (1) tamoxifen; (2) aromatase inhibitors; (3) fulvestrant;
(4) chemotherapy or other non-endocrine therapy; (5) combination endocrine therapy (en-
docrine backbone combined with either CDK-4/6 inhibitors or everolimus); (6) no therapy
within one year before the biopsy.

2.3. Treatment Outcome and Response to Endocrine Therapies

Tumor responses were evaluated according to RECIST v1.1 every 8–12 weeks of
treatment, and the best overall response was defined as complete response (CR), partial
response (PR), stable disease (SD), or progressive disease (PD) [22]. For the subset of
patients who started with endocrine therapy after their tumor biopsy, RNA profiles were
associated with the best overall response. Patients without response information or patients
who did not start with endocrine therapy after the investigated biopsy were excluded from
this analysis.

2.4. WGS and Data Analyses

Genomic features, such as somatic single nucleotide variants and copy number alter-
ations, were extracted from WGS data as previously described [10]. Mutational signatures
v3 [23] were called using R package MutationalPatterns v1.10.0 [24], focusing on single and
double base signatures. Alterations in genes within the same pathway were grouped based
on the findings of Razavi et al. [8]. In short, we used the following definitions: ESR1 hotspot
mutations: mutations in codons 536–538 and 380; MAPK pathway alterations: mutations in
BRAF, ERBB3, HRAS, KRAS, MAP2K1, mutations and deep gains in EGFR and ERBB2, and
mutations and deep deletions in NF1; ER transcriptional regulators: mutations in CTCF
and TBX3, mutations and deep gains in FOXA1 and deep gains of MYC.
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2.5. RNA Sequencing: RNA Isolation, Library Preparation, and Sequencing

RNA was isolated from fresh frozen tissue biopsies using the QiaSympony RNA kit
(Qiagen, Venlo, the Netherlands) as per manufacturer’s instructions and quantified using
the Qubit RNA IQ Assay (Invitrogen, Life Technologies, Carlsbad, CA, USA) according
to the manufacturer’s instructions using the Qubit fluorometer (Invitrogen). The RNA
yield from the tissue biopsies ranged between 50 and 5000 ng. Library preparation was
performed using the KAPA RNA HyperPrep kit (Roche, Tokyo, Japan) with RiboErase (Hu-
man/Mouse/Rat) on an automated liquid handing platform (Beckman Coulter, Pasadena,
CA, USA) using a total of 50–100 ng RNA. RNA was fragmented at 85 ◦C for 6 min in
the presence of magnesium to a target fragment length of 300 bp. Barcoded libraries were
sequenced as pools on NextSeq 500 (V2.5 reagents) generating 2 × 75 read pairs or, at
a later stage, on a NovaSeq 6000 generating 2 × 150 read pairs using standard settings
(Illumina, Tokyo, Japan). Binary base call (BCL) output from the sequencing platform was
converted to FASTQ using Illumina bcl2fastq tool (versions 2.17 to 2.20 have been used)
using default parameters

2.6. Processing of RNA Sequencing Data

Next, sequence reads in the FASTQ files were trimmed for adapter sequences us-
ing fastp v0.20.0 [25]. The resulting FASTQ files were mapped to GRCh38 using STAR
v2.6.1d9 [26], and Sambamba v0.7.0 [27] was used to mark duplicates and index the
resulting BAM files. Gene annotation was derived from GENCODE Release 30 (https:
//www.gencodegenes.org/). To obtain gene expression levels (raw read counts), feature-
Counts v1.6.3 [28] was used. Finally, the count matrix was normalized using the GeTMM
method [29], using R v3.6.0 [30].

2.7. Hierarchical Clustering on RNA Expression Levels of ER-Regulated Genes

Gene expression values were available as log2 values for 19,986 protein coding transcripts.
Since unsupervised clustering of the top 5000 variable genes was driven largely by the site
of metastatic biopsy—i.e., all liver biopsies clustered together (Supplementary Figure S1), we
corrected for this by performing a ComBat correction [31]. After correction, we performed
hierarchical clustering of the samples using our defined set of ESR1 target genes: AP1B1;
CA12; CDH26; CELSR2; COL18A1; COX7A2L; CTSD; DSCAM; EBAG9; ERBB2; ESR1;
GREB1; HSPB1; IGFBP4; KRT19; MYC; NRIP1; PGR; PISD; PTMA; RARA; SGK3; SOD1;
TFF1; TRIM25; CCN5; XBP1 [32]. Expression levels were first median-centered before clus-
tering and then hierarchically clustered using average linkage and uncentered correlation
distance metric [33] and visualized using Treeview [34].

2.8. Statistical Methods

Pearson’s chi-squared test or Fisher’s exact test (in case of too few expected events)
was used to evaluate categorical data. To compare continuous variables, a Mann–Whitney
U test or a Kruskal-Wallis H test was performed. All statistical tests were considered
statistically significant at a two-sided p < 0.05. Stata 13.0 (StataCorp, College Station, TX,
USA) and R v.3.6.0. were used for statistical analyses. We used the Benjamini–Hochberg
procedure to correct p values for multiple hypothesis testing when appropriate.

3. Results
3.1. Patient Cohort

We integrated prospectively collected WGS and RNA sequencing data from tissue
biopsies of 101 patients with ER–positive/HER2–negative metastatic breast cancer (Table 1).
Seventy-six (75%) patients received one or more prior treatments. Focusing on the treatment
last administered before biopsy, 8 patients received tamoxifen, 20 an AI, 2 fulvestrant,
6 combination therapy with endocrine backbone, 22 chemotherapy or other non-endocrine-
containing therapy, and 43 received no prior treatment within one year before the biopsy.

https://www.gencodegenes.org/
https://www.gencodegenes.org/
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Table 1. Patient characteristics.

Patients
(n = 101) Specification of Prior Treatments

Age N % N %

Median (interquartile range) 59 (52–64) Aromatase
inhibitor 53 52.5

Gender Tamoxifen 57 56.4
Female 101 100 Fulvestrant 16 15.8
Male 0 0 Everolimus 15 14.9

Prior systemic therapy CDK4/6 6 5.9
Yes 5-FU 35 34.7

Endocrine therapy only 14 13.7 Taxanes 44 43.6
Chemotherapy only 11 10.9 Platinum/Parp 8 7.9
Endocrine and chemotherapy 51 50.5 Anthracyclines 52 51.5
Nr of lines (median, IQR) 3 (2-5) Cyclophosphamide 50 49.5
Nr of drugs (median, IQR) 5 (4-8) Eribulin 3 3.0

No prior treatment 25 27.8 Vinorelbine 3 3.0

Last treatment before biopsy Anti-HER2 3 3.0

Tamoxifen 8 7.9
Aromatase inhibitor 20 19.8
Fulvestrant 2 2.0
Combination endocrine therapy 6 5.9
Chemotherapy or non-containing

endocrine therapy 22 21.8

No treatment within one year before biopsy 43 42.6

Prior radiotherapy
Yes 62 61.4
No 39 38.6

Biopsy site
Liver 36 35.6
Bone 8 7.9
Lymph node 20 19.8
Breast 14 13.9
Other 7 6.9
Unknown 3 3.0

Regarding the alterations in pathways associated with endocrine resistance, 16 patients
(16%) had a mutation in ESR1, of which 15 were located in the ligand-binding domain
(p.D538G (n = 8); p.Y537S (n = 4); p.Y537N (n = 1); p.L536P (n = 1); p.E380Q (n = 1)), and
one was a nonsense mutation located in the activation function 1 domain (p.Q17 *). Next to
ESR1 mutations, 27 patients (27%) had alterations at the DNA level in the MAPK pathway
and 45 (45%) patients in the ER transcriptional regulators (Figure 1).

3.2. Hierarchical Clustering Reveals Distinct RNA Expression of ER Target Genes between ESR1
Mutant and ESR1 Wild-Type Samples

The transcriptomic data were first corrected to adjust for a bias in the biopsy site
(Supplementary Figure S1). After ComBat correction [31], we verified via unsupervised
clustering that the biopsy site was distributed over the clusters. Next, we used our de-
fined set of ER target genes (see methods for gene list) and verified that ESR1 expres-
sion and the average expression of the ER target genes were not associated with biopsy
site (Kruskal-Wallis p = 0.390 and p = 0.734, respectively). Subsequently, we performed
hierarchical clustering (Figure 2) using the gene expression levels of ER target genes (see
methods for gene list) of 101 metastatic lesions, which revealed two clusters of samples.
Compared to cluster B, samples in cluster A (n = 47) had a higher average gene expression
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of all ER target genes (Mann–Whitney p = 4.95 × 10−17) (Figure 3, right panel). ESR1 itself
(Mann–Whitney p = 8.11 × 10−7, Figure 3, left panel) and known ER target genes such as
GREB1 (Mann–Whitney p = 1.32 × 10−16) and PGR (Mann–Whitney p = 6.44 × 10−12) also
had a higher expression in cluster A than in cluster B. We validated this by evaluating the ESR1
module [35], a gene signature associated with an active ER pathway. Supplementary Figure S2
shows a significant higher (p = 1.8 × 10−5, Mann–Whitney) module score in samples from
cluster A.
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Figure 1. Overview of genomic alterations previously associated with endocrine resistance in our
cohort. The treatment depicted in figure is the latest administered therapy prior to biopsy of the
metastatic lesion. In our cohort, the following genes associated with endocrine resistance were
affected: ESR1 (n = 16), NF1 (n = 14), ERBB3 (n = 7), EGFR (n = 6), ERBB2 (n = 5), MAP2K1 (n = 4),
KRAS (n = 3), BRAF (n = 2), HRAS (n = 1), MYC (n = 29), FOXA1 (n = 17); TBX3 (n = 8); CTCF
(n = 3); PIK3CA (n = 53). Patients received the following treatments prior to biopsy: AI (n = 20),
tamoxifen (n = 8), endocrine/other (n = 6), fulvestrant (n = 2), chemo (n = 22), no treatment at all
(n = 43). Biopsies were obtained from the following biopsy sites: liver (n = 36), lymph node (n = 19),
bone (n = 8), other (n = 38). Mutations in ESR1 p.Tyr537 indicate either the mutation p.Tyr537Asn
or p.Tyr537Ser.

As all samples were derived from patients with ER-positive primary breast cancer, we
investigated whether the average gene expression of the ER target genes in cluster B were
at the same level as ER-negative samples. Comparing samples from cluster B (n = 54) with
63 ER-negative metastatic breast cancer samples, we found that the ESR1 expression itself
was higher in samples from cluster B (Figure 3, left panel). However, the average expression
level of the ER target genes was similar in the samples in cluster B and in ER-negative
samples (Figure 3, right panel).

As cluster A represented samples with higher expression of ESR1 and its target genes,
we investigated whether specific underlying genomic alterations were enriched in cluster
A versus cluster B. First, we focused on genes and gene pathways previously associated
with endocrine resistance: ESR1 mutations, ESR1-transcriptional regulators, and MAPK
pathway alterations. Cluster A was characterized by an enrichment of samples with hotspot
mutations in ESR1 (Fisher’s exact, p < 0.001) (p.D538G n = 8; p.Y537S n = 4; p.Y537N (n = 1);
and p.E380Q (n = 1)). Cluster B contained only two samples with an ESR1 mutation; one
harbored a truncating mutation p.Q17*, and the other one contained mutation p.L536P.
However, the first mutation is not located in the ligand-binding domain and, importantly,
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is an inactivating mutation. For the latter variant, constitutive activity has been shown, but
in this one patient the “ER-low” profile was found [15]. Overall, these results support the
observation that activating ESR1 mutations are linked to a distinct profile with increased
expression of ESR1 and ER target genes, as was the case in cluster A. Alterations in ESR1
transcriptional regulator genes and MAPK pathway genes were equally distributed over the
two clusters. Considering NF1 and the RAS pathway genes (BRAF/HRAS/KRAS) separately,
these seemed more frequently affected in cluster B, but this difference was not statistically
significant (Supplementary Figure S3). Since tumors with PIK3CA mutations recently have
been shown to yield sensitivity to alpelisib, a PI3K inhibitor [36], we compared its frequency
between both clusters and observed that cluster B (n = 54) was characterized by a modest
but significant enrichment of PIK3CA mutations (Pearson chi-square, p = 0.029).
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expression than median colored as red and green, respectively. Based on the expression of ER target
genes, two clusters were identified: cluster A (n = 47), characterized by a higher ESR1 expression,
more ESR1 mutations, FGFR1 and TSPYL5 amplifications, and cluster B (n = 54), characterized by a
lower ESR1 expression and more PIK3CA mutations. Mutations in ESR1 p.Tyr537 indicate either the
mutation p.Tyr537Asn or p.Tyr537Ser.

Furthermore, we compared the relative contributions of mutational signatures between
clusters A and B and observed that the contribution of COSMIC mutational signature 3
(associated with homologous recombination deficiency) was higher in cluster A than in B
(Mann–Whitney p = 0.011). Conversely, COSMIC mutational signature 2, associated with
APOBEC mutagenesis, was enriched in cluster B (Mann–Whitney p = 0.011). Since we
expected that endocrine therapies that were discontinued just before the tissue biopsy was
taken could still impact the expression of estrogen-regulated genes, we compared the last
administered treatment versus the clusters. The type of last administered treatment was
different between both clusters (Fisher’s exact, p = 0.016), and we observed that patients in
cluster B had more frequently received an AI or tamoxifen directly prior to their biopsy,
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whereas samples from patients in cluster A more frequently received chemotherapy or
no treatment at all within one year prior to biopsy. For patients who received an AI prior
to their tissue biopsy (n = 20), 8 were still on treatment while the biopsy was taken, and
the other 12 patients stopped treatment 3–186 days prior to the biopsy. Of all 20 patients
who received an AI prior to their biopsy, 4 patients clustered in cluster A. These 4 patients
stopped with the AI 3–18 days prior to biopsy. For patients who received tamoxifen prior to
their tissue biopsy (n = 8), 2 patients were still on treatment when the biopsy was taken, and
the other 6 patients stopped 3–93 days prior to their biopsy. Of all 8 patients who received
tamoxifen prior to their biopsy, 1 patient clustered in cluster A; this patient stopped with
tamoxifen on the day of the biopsy.
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Figure 3. Log expression values of ESR1 (left panel) and the average expression of the ER target
genes (right panel) in samples in clusters A and B and a control group of ER-negative samples.

3.3. FGFR1 and TSPYL Amplifications Are Enriched beyond ESR1 Mutations

To investigate whether other DNA alterations, next to ESR1 mutations, were enriched
in cluster A that could be linked to the high expression of ESR1 and its target genes,
we compared samples that were ESR1 wild-type from cluster A with all samples from
cluster B. First, focusing on mutations, we observed that three genes were less frequently
mutated in cluster A: MUC16, MAST4, and CACNA1E. Second, focusing on copy number
alterations, we observed that amplifications of fibroblast growth factor 1 (FGFR1) occurred
more frequently in cluster A (Pearson chi-square, p = 0.008) in a virtually exclusive manner
with ESR1 mutations (only 2 of 14 ESR1 mutants also had an FGFR1 amplification). In
addition, amplifications of TSPYL5 were enriched in cluster A (Fisher’s exact, p = 0.006),
which occurred in only one of the ESR1 mutated samples. Third, focusing on differential
gene expression between both clusters, 17 genes were found significantly differentially
expressed and with at least a two-fold change in median expression level (Mann–Whitney,
FDR corrected) (Table 2).

Table 2. Genes differentially expressed (beyond the ER target genes from Figure 2) between cluster A
(ESR1 wild-type) and cluster B.

Gene p-Value FDR Hochberg Fold Change *

TPBG 1.88 × 10−8 2.6
IGF1R 4.30 × 10−5 3.2
CYP2T1P 5.02 × 10−5 4.4
SIAH2 0.00011 2.3
FMN1 0.00039 2.1
THSD4 0.00043 3.1
AC0647992 0.00141 3.1
CUEDC1 0.00213 2.0
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Table 2. Cont.

Gene p-Value FDR Hochberg Fold Change *

SUSD3 0.00402 5.3
PARD6B 0.00715 3.5
ZNF516 0.00746 2.2
PREX1 0.01012 2.6
IL6ST 0.01655 2.3
STC2 0.01764 4.6
MYBL1 0.02001 2.5
EGLN2 0.02175 2.0
COX6C 0.03034 3.5

* Median fold change cluster A over cluster B.

3.4. Best Response on Endocrine Therapies versus Expression Clusters

Lastly, we investigated whether the obtained clusters were associated with outcome
on subsequent endocrine therapy. In total, 21 patients started with endocrine therapy after
their biopsy; 17 patients started with an AI, and 4 patients with fulvestrant. Exploratory
analyses on best response versus the above-described clusters showed that the responses
(PR, SD, and PD) were equally distributed over the two clusters (Fisher’s exact p = 1.00).

4. Discussion

To investigate the effects of DNA alterations associated with resistance against en-
docrine treatment on the expression of ER target genes, we here present the integration
of RNA sequencing with WGS data obtained from metastatic lesions of a relatively large
cohort of patients with ER-positive/HER2-negative breast cancer. Of note, we verified
and addressed a bias that was discernible in the transcriptomic data, originating from the
difference in the sampled biopsy sites.

We demonstrate that ESR1 mutations, and FGFR1 and TSPYL amplifications are asso-
ciated with an increased expression of ESR1 and its target genes, while mutations in genes
involved in the MAPK pathway or in genes encoding ER transcriptional regulators, previ-
ously associated with endocrine resistance [8], did not correlate with increased expression
of ER target genes.

Our findings on the association between ESR1 mutations and high ESR1 expression
and its target genes adds to the compelling evidence that mutations in ESR1 lead to consti-
tutive activity of ER [14,37,38]. Interestingly, FGFR1 amplifications were also enriched in
samples with high ER pathway activity and occurred almost mutually exclusively with
samples having an ESR1 mutation. Our observation is in line with previous work showing
that FGFR1 amplification leads to ligand-independent ER target gene transcription [39] and
mediates endocrine therapy resistance [39–41]. In more detail, upregulation of the growth
factor FGFR1 leads to subsequent activation of MAPK and PI3K pathways [42]. Activation
of MAPK can subsequently result in estrogen-independent phosphorylation and activation
of ER-α, leading to resistance to endocrine therapies such as aromatase inhibitors [43].
Hence, there is a rationale for treatment strategies combining endocrine therapy in combi-
nation with FGFR1 inhibitors in patients with an FGFR1 amplification. Currently, a limited
number of phase I and II studies on FGFR inhibitors have been conducted [44–46] and have
shown antitumor activity in patients with FGFR1 amplified tumors [47]. Results of phase 3
trials including only patients with FGFR1 amplified tumors are eagerly awaited.

High expression of TSPYL has previously been linked to poor outcome in breast
cancer patients by suppressing p53 [48]. Moreover, in a genome-wide association study,
SNPs on chromosome 8 that mapped directly 3′ to the TSPYL5 gene were associated with
increased plasma estradiol concentrations in postmenopausal women eligible for adjuvant
treatment with an AI following resection of an early-stage ER-positive breast cancer [49].
Further experiments showed that one of the SNPs (rs2583506) created a functional estrogen
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response element. However, besides suppressing p53 functionally, the exact role of TPSYL5
amplification in ESR1 pathway activation remains as of yet unclear.

Taking cases with ESR1 mutations and FGFR1/TSPYL amplifications together, 28 out
of 47 (59.6%) samples had DNA alterations associated with increased ER target gene
expression, still leaving 19 samples without a recurrent genomic event that might explain
the higher expression of ER target genes. The analysis of differentially expressed genes
between clusters A and B did not provide additional clues why these samples had a higher
ER target gene expression since most of the differentially expressed genes between clusters
A and B (Table 2) are direct target genes of ER, such as STC2 and EGLN2.

The observation that there is a subgroup of patients having an increased ER expression
profile underlines the remaining need of blocking the ER pathway in these patients since it
is very likely that these tumors still heavily rely on the ER pathway. Currently, there are
interventional trials underway investigating the effectiveness of next-generation selective
ER modulators and selective ER downregulators targeting both wild-type and mutant
ER [50]. The question remains how to optimally select patients who will have the largest
benefit from these new and existing endocrine treatment strategies. The integrative analysis
of RNA sequencing and WGS in relation with response to these treatments might reveal a
benefit for most of the patients in cluster A.

In contrast with ESR1 mutations and FGFR1 amplifications, NF1 mutations and al-
terations in other MAPK pathway genes were not significantly enriched in the “active ER
cluster”. This finding is in contrast with recent work [20] showing that NF1 is a transcrip-
tional co-repressor of ER-α that, once inactivated, leads to increased ER expression in cell
line models. In our clinical samples we did not observe enrichment of NF1 mutations in the
cluster with increased ER expression. The number of nonsense mutations and structural
variations in NF1 in our cohort was low (n = 7). So, assessment of the relation between NF1
mutation status and ESR1 regulated gene expression should be assessed in a larger clinical
cohort with a higher number NF1 mutations.

Importantly, we observed that tumor biopsies of patients who were receiving en-
docrine therapies such as tamoxifen and AIs as last treatment before their biopsy were
significantly more frequently observed in “ER-low” cluster B. We speculate that, since
the average ER target gene expression in the “ER-low” cluster is at the same level as
ER-negative tumors, these tumors classified as ER-positive might have turned into phe-
notypically ER-negative tumors. This intrinsic subtype switching has also recently been
described in matched primary-metastatic samples of the AURORA program, occurring in
36% of cases [51]. One could argue that cases with low ER gene expression are not being
dependent on the ER pathway anymore but that these cells could revert to ER dependent
growth once endocrine treatment pressure is lifted. However, given the fact that the last
given treatment is associated with lower expression of ESR1 and its target genes, one
should be aware that the ER pathway in these samples were probably still suppressed by
the recently received endocrine therapy and that samples could have been wrongly classi-
fied as “ER-low”. Of 54 patients in cluster B, 16 patients received an AI and 7 tamoxifen
as last treatment prior to their biopsy. Of the patients who received an AI, 8 of 16 patients
were still on treatment at the time of biopsy, and, with regard to tamoxifen, one patient was
still on treatment at the time of biopsy. Future studies focusing on transcriptomic analysis
in breast cancer should take the timing of the tissue biopsy in relation to the half-life of the
different endocrine therapies into account in order to prevent this possible bias.

Moreover, samples in the “ER-low” cluster (cluster B) do show some degree of het-
erogeneity in the expression of the ER target genes. A detailed look at the sub-clusters
within the “ER-low” cluster shows that some samples with high PGR expression have an
overall low expression of ER target genes. Although progesterone receptor (PR) activity has
long been considered an indicator of functional estrogen response pathway [52], a small
subset of primary breast cancer is classified as ER-negative/PR-positive with large studies
showing an incidence of 3.4–3.8% [53,54]. A second sub-cluster within the “ER-low” cluster
shows high MYC expression. Although known as an ESR1 target gene, MYC is also often
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found activated via amplification. Taken together, samples in these two sub-clusters may
be indeed independent of the ER pathway and switched to PGR or MYC enabled growth.

The power of our study resides in the large number of patients who underwent WGS
and RNA sequencing on their tumor biopsy. However, our dataset also has limitations; we
selected a cohort of metastatic breast cancer patients with an ER-positive/HER2-negative
primary tumor. As standard pathology assessment such as ER and HER2 expression
status has not been performed on these metastatic samples, and receptor conversion does
occur in up to 35% of patients with an ER-positive primary tumor [55], we do not have
factual evidence that all samples were still ER-positive/HER2-negative upon biopsy, which
may have had an influence on the clusters found. Moreover, our cohort is heterogeneous
regarding the number and type of prior lines of treatment received, which could have
influenced the presence of specific genetic alterations at the DNA level as well as affected
gene expression. Also, in the CPCT-02 study, tumor biopsies were taken prior to a next line
of therapy for metastatic disease. Although most patients will have had their tumor biopsy
upon disease progression of the prior line of therapy or at diagnosis of metastatic disease,
there might be a small subgroup of patients who underwent a biopsy after experiencing
toxicity. Importantly, our cohort could comprise a mix of patients who are either still
sensitive or already resistant to endocrine therapies. Expanding the number of patients
with similar clinical prognostic factors, such as number and type of previous therapies and
number of metastatic sites, allows for more reliable association analysis between genomic
and transcriptomic alterations and outcome.

5. Conclusions

In conclusion, we here show the potential of the integrative analysis of RNA sequenc-
ing and WGS and demonstrate that within the subgroup of ER-positive/HER2-negative
breast cancers there are substantial differences in ESR1 expression and its target genes.
We further show associations between ER transcriptomic profiles and possible underlying
DNA alterations. Given the fact that there is a subgroup of tumors with an increased
expression of ESR1 and its target genes, these tumors might still be responsive to drugs that
target the ER pathway. To identify the largest possible group of patients who could benefit
from existing endocrine treatments or new drugs targeting both wild-type and mutant
ER, one should employ upfront DNA and RNA sequencing on metastatic tumor tissue to
optimally relate treatment response to genomic and transcriptomic profiles.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15174416/s1. Figure S1. (A) When applying unsupervised
clustering on the top 5000 variable genes, the RNA sequencing data revealed two large clusters of
tumors that segregated primarily by the biopsy site. The first cluster of samples mainly consisted
of biopsies obtained from liver metastases (brown), and the second cluster included samples from
various organ sites consisting of bone (yellow), lymph node (gray), and other biopsy sites (purple).
Gene expression in the first cluster was driven mainly by gene expression of normal liver tissue. We
therefore corrected for this bias by performing a ComBat correction. (B) After correction for this
bias, we then re-clustered the samples, showing a much more diverse pattern in the biopsy sites and
that the sample groups identified by clustering ESR1 target genes (i.e., the clusters from Figure 2;
green represents samples in cluster A; orange represents samples in cluster B) are distributed over
the unsupervised clusters. Figure S2. Validation of the ER target genes used, by evaluating the
ESR1 module (35), a gene signature associated with an active ER pathway. This module provides
weights and which ESR module-specific genes to use, with the module score calculated as the average
(expression × weight) of the ESR module specific genes. Here we show that the samples from cluster
A have a significantly higher (p = 1.8 × 10−5, Mann–Whitney) module score than the samples in
cluster B, while the module score of cluster B was in between those from cluster A and ER-negatives.
Figure S3. Hierarchical clustering based on ER target genes (see methods for the list of genes on
which this clustering was based) also including genes that were not significantly different between
both clusters. Mutations in ESR1 p.Tyr537 indicate either the mutation p.Tyr537Asn or p.Tyr537Ser.

https://www.mdpi.com/article/10.3390/cancers15174416/s1
https://www.mdpi.com/article/10.3390/cancers15174416/s1
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