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Simple Summary: Malnutrition and changes in body composition, such as weight loss and sarcope-
nia, are frequent in pancreatic cancer patients and are associated with worse survival outcomes
according to several studies; however, research has not univocally determined whether or not
they are specifically associated with a higher likelihood of toxicity from chemotherapy. This study
retrospectively evaluated chemotherapy-related toxicity in a cohort of patients with metastatic
pancreatic cancer and explored its relationship with body composition parameters including radio-
logical measurements performed with a specialized software on CT scan images. Statistical analysis
failed to show a clear and clinically significant association between the evaluated parameters and
chemotoxicity, suggesting that relevant confounding factors likely play a more significant role in
determining prognosis.

Abstract: Background: Malnutrition, loss of weight and of skeletal muscle mass are frequent in
pancreatic cancer patients, a majority of which will undergo chemotherapy over the course of their
disease. Available data suggest a negative prognostic role of these changes in body composition on
disease outcomes; however, it is unclear whether tolerance to chemotherapeutic treatment is similarly
and/or negatively affected. We aimed to explore this association by retrospectively assessing changes
in body composition and chemotherapy-related toxicity in a cohort of advanced pancreatic cancer
patients. Methods: Body composition was evaluated through clinical parameters and through
radiological assessment of muscle mass, skeletal muscle area, skeletal muscle index and skeletal
muscle density; and an assessment of fat distribution by subcutaneous adipose tissue and visceral
adipose tissue. We performed descriptive statistics, pre/post chemotherapy comparisons and uni-
and multivariate analyses to assess the relation between changes in body composition and toxicity.
Results: Toxicity risk increased with an increase of skeletal muscle index (OR: 1.03) and body
mass index (OR: 1.07), whereas it decreased with an increase in skeletal muscle density (OR: 0.96).
Multivariate analyses confirmed a reduction in the risk of toxicity only with an increase in skeletal
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muscle density (OR: 0.96). Conclusions: This study suggests that the retrospective analysis of changes
in body composition is unlikely to be useful to predict toxicity to gemcitabine—nab-paclitaxel.

Keywords: body composition; pancreatic cancer; toxicity

1. Introduction

Pancreatic cancer (PC) remains the most lethal among malignancies originating from
the gastroenteric tract, with 495,773 new cases and 466,003 deaths worldwide in 2020. It is
the 12th malignancy by incidence and the 7th by lethality overall [1]. Among PC patients,
the majority are diagnosed with locally advanced or metastatic disease, in which a systemic
therapy is indicated for palliative purposes, whereas only 20% of them have localized
disease eligible for surgery with curative intent [2].

In addition to the traditional PC prognostic indicators (i.e., tumor size, lymph node
metastases, surgical margin status, biochemical tumor markers, and adjuvant chemother-
apy), malnutrition and subsequent changes in body composition are emerging as factors
associated with worse survival outcomes [3,4].

Changes in body composition have been shown to correlate with prognosis in several
cancer subtypes, including ovarian, lung, bladder, and pancreatic malignancies [5–8].
Notably, malnutrition in PC is very common, affecting 30% to 65% of patients [9], and
weight loss represents one of the early symptoms that can precede the diagnosis by months
in almost 40% of them [10,11].

In these patients, alterations in nutritional status have a multifactorial etiology that
includes a paraneoplastic syndrome that affects up to 80% of them, and a malabsorption due
to pancreatic exocrine insufficiency (PEI), observed in 44.5–68.0% of cases (whether primary
or secondary to previous surgical resection) [12,13]. Indeed, fecal elastase deficiency, as
an indicator of PEI, has been identified as an independent predictor of survival [3,14,15].
These factors contribute to the modification of body composition, resulting in a sarcopenia-
cachexia syndrome which is characterized by substantial weight loss with a specific loss of
skeletal muscle mass [10], which is known to correlate with worse prognosis regardless of
the stage of disease [16–18].

In some cancer types, sarcopenia is known to increase the toxicity of chemother-
apy [19,20], likely because anticancer drug dosing is often based on the global body surface
area (BSA) but does not consider the relative distribution between fat and lean mass. Con-
sequently, sarcopenic patients tend to receive a higher dose of chemotherapy compared to a
relatively small lean muscle mass and are more prone to suffer drug-related toxicity [21,22].

Several studies have reported poorer responses to chemotherapy and worse overall sur-
vival outcomes among sarcopenic PC patients, but a clear correlation with chemotherapy-
related toxicity has not yet been demonstrated [23–26]. However, on the one hand, the
impact of changes in body composition on PC patient outcomes has been investigated
and available data confirm a negative correlation with overall survival [27]; on the other
hand, the literature evidence is not univocal in the definition of the role of sarcopenia in
chemotherapy tolerance [28].

Indeed, our group recently performed a systematic review of the available literature
on this subject, essentially showing that the association between body composition and
chemotherapy-related toxicity in PC is still uncertain [29]. A part of the problem may
lie in the lack of a single, univocal definition of a measurable parameter to characterize
this syndrome and thus to evaluate its impact—which brings difficulty in establishing a
benchmark across studies. Moreover, while the weight or body surface measurement is
straightforward, quantitative body composition imaging is not as readily available, and it
may require specialized software [15,30,31].
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Imaging examinations, including ultrasound, computed tomography (CT) and mag-
netic resonance, are currently part of the standard of care in pancreatic cancer patients’
assessment for staging and follow-up [32–36].

Therefore, we attempted a multicenter retrospective evaluation of chemotherapy-
related toxicities observed in a cohort of metastatic PC patients. The main objective of
our study was to demonstrate a correlation between chemotherapy toxicity and body
composition measurements, including a CT-based assessment of muscle mass and fat
distribution. Specifically, muscle mass was evaluated according to skeletal muscle area
(SMA), skeletal muscle index (SMI) and skeletal muscle density (SMD); fat distribution was
evaluated by subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). The
secondary objective was to assess the association between sarcopenia and survival.

2. Materials and Methods
2.1. Patient Selection

This study’s population was retrospectively selected from a database of patients
affected by pancreatic cancer; referred to four different Institutions in Switzerland. The
Ethics Committee approved this retrospective study with a waiver for informed consent
(2020-01085). Inclusion criteria consisted of age ≥ 18 years; histologically confirmed
locally advanced or metastatic pancreatic adenocarcinoma; first-line chemotherapy with
gemcitabine and nab-paclitaxel within the last 5 years; and availability in the picture
archiving and communication system (PACS) of a CT scan or positron emitting tomography
(PET)-CT scan with iodinated-contrast medium performed within 30 days before the start of
chemotherapy. Exclusion criteria were concomitant to the diagnosis of other malignancies;
loss of a follow-up in the first 6 months after starting the treatment; inadequacy of the
CT images due to technical issues, such as the presence of metallic prostheses [37]; and
documented refusal to the use of clinical data for research.

2.2. Clinical Data Recording

The following clinical data were collected: age at diagnosis; sex; tumor stage; Eastern
Cooperative Oncology Group (ECOG) performance status before starting the chemotherapy;
body composition values (as defined in the dedicated paragraph); dose reduction of any
chemotherapy agent compared to the 1st cycle; cycle delays > 2 weeks due to toxicity;
early discontinuation of chemotherapy due to toxicity, defined as treatment termination
within two months due to toxicity; occurrence of G3-4 toxicity according to NCI-CTCAE
V.4; need for a second-line treatment; blood parameters within 30 days from the date
of CT, including hemoglobin; lactate dehydrogenase (LDH); albumin; white blood cells
(WBC); and lymphocytes. Weight and height were recorded for the calculation of the body
mass index (BMI). Date of the last follow-up, date of disease progression, and death were
also recorded. Patients with some missing values were not excluded in order to avoid
selection bias.

2.3. CT Data Extraction

CT examinations were performed on different CT scanners at different institutions,
but they were all available in digital format on our PACS. Feature extraction was performed
from the portal venous phase of contrast-enhanced series. An axial image at the level of the
third lumbar vertebra (L3) was selected and segmented through the Slice-O-Matic software
version 5.0 (Tomovision, Montreal, QC, Canada). The software offers the opportunity to
perform either semi-automatic or automatic segmentations, both based on different CT
attenuation thresholds for skeletal muscle, SAT and VAT (the automatic segmentation tool
is available as adjunctive tool commercially from Voronoi Health Analytics Inc., Coquit-
lam, BC, Canada; https://voronoihealthanalytics.com (accessed on 3 August 2023)) [38].
Accurate segmentations, checked visually after the software’s use, led to the recording
of the following numerical data: skeletal muscle area (including the following muscles:
psoas, erector spinae, quadratus lumborum, transversus abdominis, external obliques,

https://voronoihealthanalytics.com
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internal obliques, and rectus abdominis muscles), measured in centimeters squared; skele-
tal muscle density (measured by Hounsfield units (HU)); subcutaneous adipose tissue
(SAT, expressed in centimeters squared); and visceral adipose tissue (VAT, expressed in
centimeters squared). An example of segmentations is shown in Figure 1. The lumbar
skeletal muscle index (SMI) was calculated by dividing SMA by square height (m2) and
reported as cm2/m2. The sex-specific cut-off to define sarcopenia was SMI < 41 cm2/m2

for women of any BMI; it was < 43 for underweight and normal weight men; it was < 53
for overweight and obese men [39].
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Figure 1. Example of segmentation of subcutaneous adipose tissue (light blue), visceral adipose
tissue (yellow) and skeletal muscle area (red).

2.4. Statistical Analysis

Statistical analyses were performed using STATA16 (StataCorp®, College Station, TX,
USA). Descriptive statistics were reported as mean and standard deviation, along with
the range or relative frequencies and percentages. Pre–post comparisons were performed
using the Wilcoxon matched-pairs signed-rank test. Univariate and multivariate logistic
regressions were used to assess for toxicity associated with the changes in body composition.
Adjustments for age and sex were also performed. The significance level was set at 5%
(p < 0.05).

3. Results

As shown in Table 1, 131 patients (mean age 69.7 ± 9.0 years, 45% women and 55%
men), most of whom (81.5%) had metastatic disease at diagnosis, were enrolled in this
study. The mean age of this cohort was 69.7 years (42–87). More than 50% of patients had
an ECOG score of 1, followed by 34.6% of patients with an ECOG score of 0. At the time of
diagnosis, sarcopenia was present in 59 patients (45%), and the mean BMI was 24.2 kg/m2.
During chemotherapy, 49.2% and 23.4% of patients required a dose reduction and cycle
delays, respectively, whereas only 14.8% of patients required an early discontinuation.
Grade 3–4 toxicity was noted in approximately 37% of patients based on the criteria defined
above. Half of the patients received second-line treatment. The median follow-up time was
10.8 ± 7.8 months (range: 1–44 months).

The median progression-free survival and overall survival were 6 months, 95% CI:
5–7, and 9 months, 95% CI: 8–10, respectively.
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Table 1. Patients’ characteristics.

No. of Patients 131

Age (years)

Mean (SD) 69.7 (9.0)

Range 42–87

Gender, n (%)

Female 59 (45.0%)

Male 72 (55.0%)

Tumor stage, n (%)

Locally advanced 24 (18.5%)

Metastatic 106 (81.5%)

ECOG pre, n (%)

0 45 (34.6%)

1 68 (52.3%)

2 16 (12.3%)

3 1 (0.8%)

Body composition variables, mean (SD)

SAT (cm2)

Mean (SD) 164.1 (81.9)

Range 24.3–390.1

VAT (cm2)

Mean (SD) 137.4 (96.2)

Range 96.2–499.4

SMA (cm2)

Mean (SD) 130.6 (33.8)

Range 36.4–285.2

SMD (HU)

Mean (SD) 32.6 (14.2)

Range −8.3–60.7

SMI (cm2/m2)

Mean (SD) 45.9 (9.8)

Range 13.5–85.9

Sarcopenia 1 59 (45.0%)

BMI, kg/m2

Mean (SD) 24.2 (4.2)

Range 15.2–38.9

Chemotoxicity, n (%)

Dose reduction 63 (49.2%)

Cycle delays 30 (23.4%)

Early discontinuation 19 (14.8%)

G3-4 toxicity 43 (37.1%)

Second-line treatment 65 (50.0%)
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Table 1. Cont.

No. of Patients 131

Follow-up (months), mean (SD) (range)

Mean (SD) 10.8 (7.8)

Range 1–44

Progression-free survival, n (%) 10 (7.6%)

Death, n (%) 15 (11.5%)
1 Martin cut-off criteria [38]. ECOG = Eastern Cooperative Oncology Group; SD = standard deviation; SAT = sub-
cutaneous adipose tissue; VAT = visceral adipose tissue; SMA = skeletal muscle area; SMD = skeletal muscle
density; SMI = skeletal muscle index; BMI = body mass index.

The comparison of laboratory tests before and after chemotherapy showed a signif-
icant decrease in hemoglobin (pre: 12.5 ± 1.9 g/dL, post: 11.3 ± 2.0 g/dL, p < 0.001),
albumin (pre: 37.3 ± 5.9 g/L, post: 34.9 ± 5.5 g/L, p = 0.001), WBC (pre: 8.0 ± 3.8 K/µL,
post: 6.9 ± 4.0 K/µL, p = 0.002), and lymphocytes (pre: 1.6 ± 1.1 × 103 cells/µL, post:
1.3 ± 0.7 × 103 cells/µL, p = 0.002) (Table 2).

Table 2. Laboratory test.

Pre Post p-Value

Hb (g/dL)

Mean (SD) 12.5 (1.9) 11.3 (2.0) <0.001

Range 8.4–20.0 7.6–26.0

LDH (U/L)

Mean (SD) 373.7 (285.6) 371.5 (161.5) 0.099

Range 101–2636 124–1109

Albumin (g/L)

Mean (SD) 37.3 (5.9) 34.9 (5.5) 0.001

Range 23–52 17–44

White blood count (K/µL)

Mean (SD) 8.0 (3.8) 6.9 (4.0) 0.002

Range 2.34–23.4 1.11–35.8

Lymphocytes (×103 cells/µL)

Mean (SD) 1.6 (1.1) 1.3 (0.7) 0.002

Range 0.15–7.2 0.1–4.7

The toxicity risk increased with an increase in SMI (OR: 1.03, 95% CI: 1.02; 1.04) and
BMI (OR: 1.07, 95% CI: 1.00; 1.04), whereas it decreased with an increase in SMD (OR: 0.96,
95% CI: 0.95; 0.97). This trend was also confirmed by the univariate logistic regression
adjusted for age and sex, with slight variations in OR values (Table 3). Unadjusted and
adjusted multivariate analyses confirmed a reduction in toxicity risk only with an increase
in SMD (OR: 0.96, 95% CI: 0.95; 0.97).
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Table 3. Uni- and multi-variate logistic regressions—outcome: toxicity.

Univariate
OR (95% CI)

Multivariate
OR (95% CI)

Univariate Adjusted
OR (95% CI)

Multivariate Adjusted
OR (95% CI)

SAT (cm2) 1.00 (1.00; 1.01) 1.00 (0.99; 1.00) 1.00 (1.00; 1.01) 1.00 (1.00; 1.01)

VAT (cm2) 1.00 (1.00; 1.01) 1.00 (1.00; 1.01) 1.00 (1.00; 1.01) 1.00 (1.00; 1.01)

SMA (cm2) 1.00 (1.00; 1.01) 1.00 (0.96; 1.02) 1.01 (1.00; 1.02) 1.00 (0.94; 1.04)

SMD (HU) 0.96 *** (0.95; 0.97) 0.96 *** (0.94; 0.98) 0.96 *** (0.95; 0.97) 0.96 *** (0.95; 0.98)

SMI (cm2/m2) 1.03 *** (1.02; 1.04) 1.04 (0.93; 1.10) 1.04 *** (1.03; 1.05) 1.05 (0.96; 1.16)

BMI (kg2/m2) 1.07 ** (1.00; 1.14) 0.41 (0.07; 2.32) 1.07 ** (1.01; 1.14) 1.03 (0.93; 1.15)

Significance level: ** = p < 0.05, *** p < 0.01—logistic regressions adjusted for gender and age—standard errors
were determined considering ECOG score as cluster. SAT = subcutaneous adipose tissue; VAT = visceral adipose
tissue; SMA = skeletal muscle area; SMD = skeletal muscle density; SMI = skeletal muscle index; BMI = body
mass index.

4. Discussion

The combination chemotherapy regimens have been shown to improve overall sur-
vival in advanced pancreatic cancer patients [39]. According to the European Society for
Medical Oncology (ESMO) guidelines, if the ECOG performance status of the patient is 0 or
1 and the bilirubin level is lower than 1.5× the upper limit of normality (ULN), the possible
combination therapies that may be proposed are a triplet combination of 5-fluorouracyl,
irinotecan and oxaliplatin (FOLFIRINOX), or a doublet combination of gemcitabine and
nab-paclitaxel [40].

At present, there is a lack of data in the literature concerning a direct comparison
of FOLFIRINOX and gemcitabine—nab-paclitaxel in pancreatic cancer patients. An indi-
rect comparison performed between the two regimens suggests a slightly greater activ-
ity but also a higher toxicity of FOLFIRINOX. Therefore, most patients are treated with
nab-paclitaxel in combination with gemcitabine, which represents the preferred first-line
regimen due to its better safety profile in comparison to FOLFIRINOX [41–43].

While chemotherapy-related adverse events are common, few predictors of toxicity
have been identified for clinical use. This plays a strategic role when considering a palliative
treatment setting in a lethal disease, such as advanced pancreatic cancer. Chemotherapy-
related toxicity negatively impacts quality of life and can also be associated with serious
complications, such as febrile neutropenia, that may affect prognosis and require additional
medical care or even hospitalization. Being able to identify patients at risk for severe toxicity
would allow for appropriate pre-emptive measures, such as modifications in chemotherapy
dosage or schedule, and it might also help correct modifiable risk factors. Sarcopenia in
pancreatic cancer patients is a well-described entity, and its role as a prognostic factor
seems to be quite-well established in pancreatic cancer, but not in other gastrointestinal
malignancies [21,28,44,45]. Nonetheless, very little evidence is available regarding its role
in predicting chemotherapy toxicity due to the contrasting results of the available data,
mostly from retrospective series [30].

In this study, we examined the effects of body composition measurements on treatment-
related toxicity. We retrospectively selected a cohort of patients treated homogeneously
with nab-paclitaxel in combination with gemcitabine, excluding those who were treated
with FOLFIRINOX, in order to minimize confounding factors. These might arise either out
of the different toxicity profile of the two combinations, or in terms of treatment allocation,
due to the physician’s preference for the triplet in healthier patients.

In our study, the finding of an apparently increased risk of toxicity with the increase in
BMI can appear surprising; however, it might be explained by the fact that chemotherapy
dosing is commonly calculated on a BSA. Both BSA and BMI are calculated using only
height and weight, and do not account for body composition; for instance, a bodybuilder
with a high percentage of muscle tissue could have the same BMI as an obese patient [46].
Therefore, the higher toxicity may be due to the BSA-based chemotherapy dose calculation,
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since high BSA corresponds to a high drug dose which might be disproportionate for
an organism with depleted lean mass [47]. Similarly, BSA and BMI do not take into
consideration the variations in body compositions that are related to gender and age.
Indeed, the aging process is characterized by a decrease in skeletal muscle mass along
with a parallel increase in total fat mass, as well as an increase in fat infiltration of muscle
and other organs [47]. As for gender, the lower percentage of lean body mass in women
compared to men may also represent a confounding factor that neither BSA nor BMI
account for [48].

However, it should be cautioned that this interpretation represents an oversimplifica-
tion of the possible interactions between body composition and drug pharmacokinetics and
pharmacodynamics. For instance, the data within the literature are available on the effect of
obesity on the pharmacokinetics of different drugs, showing that multiple mechanisms may
play a significant role. As discussed by Morrish et al., volume of distribution can change
significantly according to protein binding, body composition, and tissue blood flow but the
chemical properties of a specific drug will also have to be considered. Moreover, changes
in volume of distribution will be more relevant for drugs whose activity is concentration-
dependent, and less so for chronically administered time-dependent drugs, where clearance
through renal elimination or hepatic metabolism is the predominant factor to determine
exposure [49]. Indeed, drug clearance can be influenced by a complex interplay between
total body weight, organ weight, and liver and kidney function; for instance, Chagnac
et al. showed that, while the glomerular filtration ratio (GFR) is increased in obese subjects
compared to average weighed adults, the increase is not linear with body weight [50].
It should be pointed out that data derived from a population of obese patients cannot
necessarily be extrapolated to patients of average weight and depleted lean mass.

In our study, the sole positive correlation present at both univariate and multivariate
analyses was between SMD and any toxicity, with a higher SMD related to a decreased risk
of toxicity. This result is interesting because SMD represents the fatty infiltration of muscle
(with higher values corresponding to lower fat infiltration of the muscle fibers), which is
considered an indirect estimate of muscle quality. Furthermore, other studies have also
demonstrated that SMD is associated with prognosis [51–54].

The SMI, on the other hand, was significantly correlated with toxicity at a univariate
logistic regression, even when adjusted for age and sex. Furthermore, an increase in
SMI appeared to correlate with an increase in toxicity, which was unexpected given that
a higher SMI corresponds to proportionally higher muscle mass. However, this result
was not confirmed at the multivariate analysis, and this discrepancy could suggest that
confounding factors are responsible.

In our study, we found that 45% of patients showed sarcopenia at baseline, in line with
what has been reported in other cohorts [9]. This condition is, indeed, particularly frequent
in pancreatic cancer, possibly due to the activation of the inflammatory response and
catabolic pathways. Furthermore, inadequate exocrine function may lead to malnutrition
and weight loss [55].

This study has some limitations. The small sample size may be the most impactful, as
we recognize that a higher sample size might have been helpful in detecting an association
between the CT-based estimate of body composition and chemotherapy-related toxicity.
However, the software that was employed for image segmentation and analysis is not
routinely utilized in clinical practice, and we deemed it reasonable to explore whether a
signal of potential clinical usefulness would emerge in a smaller sample before dedicating
resources to a larger study. It was also considered that the involvement of additional
institutions, especially beyond national borders, would have added further confounding
factors in terms of clinical management.

Moreover, we attempted to balance the homogeneity of this study’s population—and
thus the restrictiveness of the inclusion/exclusion criteria—against the sample size. As
a consequence, we had to exclude patients who received FOLFIRINOX or gemcitabine
monotherapy because the focus of our study was on chemotherapy-related toxicities, and
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we did not perform subgroup analyses by disease stage (locally advanced versus metastatic)
or by other prognostic factors, such as CA 19.9 levels, disease location (pancreatic head
versus tail), or laboratory-based scores, since the addition of further variables would gener-
ate very small, scarcely-informative subgroups. Further studies are certainly warranted to
assess more prognostic factors.

We also recognize that the multicenter and retrospective selection of patients may
have increased the risk of selection bias. However, since the selection was decided by
each treating oncologist, selection bias was deemed unavoidable. Indeed, because of the
retrospective nature of this study, it cannot be excluded that high physician awareness
towards this issue of sarcopenia and malnutrition may have contributed to the negativity
of our findings. It is not unlikely that visibly sarcopenic patients might have received more
nutritional support on the one hand, and more cautious chemotherapy dosing on the other,
which could have impacted toxicity. Moreover, the accuracy of the logistic regressions
assessed by the ROC curve did not exceed 0.70, indicating a moderate fit of the models
in explaining the data. Non-linear relationships between body composition and toxicity
were examined without significant results. Furthermore, a 30-day period between a CT
scan and blood exams may have been too long; however, given the retrospective selection
of patients, we deemed this time window reasonable in the setting of real-world care. In
future prospective studies, this time may be made shorter by a pre-inclusion decision.
Finally, we did not have nutritional data available about the enrolled patients. These data
should also be included in future prospective cohorts.

These unexpected results should be contextualized in the perspective of discrepant
data from similar studies, where there is a wide variability of results, with only some
experiments demonstrating a significant association between body composition measures
and chemotherapy-related toxicity [5,6]. In addition, there is no universal consensus on the
ideal cut-off values to define sarcopenia, making a cross-trial comparison not completely
trustworthy.

This study suggests that an evaluation of body composition before the start of first-line
chemotherapy with nab-paclitaxel and gemcitabine is unlikely to be predictive of toxicity.
Nonetheless, a prospective analysis within controlled clinical trials could help to select a
more homogeneous population and to obtain reliable and more reproducible data.

5. Conclusions

In this retrospective multicentric study, we found a statistically significant association
between SMD and any chemotherapy-related toxicity in a retrospective cohort of pancreatic
cancer patients treated with nab-paclitaxel and gemcitabine in the first-line setting. How-
ever, there was no agreement between SMD and the other body composition parameters
that we evaluated, suggesting that multiple confounding factors likely play a more relevant
role in determining chemotherapy-related toxicity and overall prognosis. Consequently, it
appears unlikely that the evaluation of body composition would be clinically useful for
the prediction of chemotherapy-related toxicity at the present time. Larger studies, ideally
with a prospective design, may yield more reliable information about this association.
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