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Simple Summary: Tumor-associated macrophages (TAMs) are the most prevalent immunosuppres-
sive myeloid cells in the tumor microenvironment, playing significant functions in the regulation of tu-
mor progression, invasion, and metastatic processes. The M1 and M2-polarized phenotypes of TAMs
(immunostimulatory and immunosuppressive myeloid cells, respectively) have been potentially
implicated in various cancers and autoimmune diseases. Understanding the precise function of TAMs
could improve the assessment of the cancer response to T cell-based treatments and reverse tumor
resistance to conventional therapies. Here, the involvement of TAMs in the development of various
cancers, mainly hematologic tumors, and their pleiotropic activities are comprehensively discussed.

Abstract: Macrophages are types of immune cells, with ambivalent functions in tumor growth,
which depend on the specific environment in which they reside. Tumor-associated macrophages
(TAMs) are a diverse population of immunosuppressive myeloid cells that play significant roles in
several malignancies. TAM infiltration in malignancies has been linked to a poor prognosis and
limited response to treatments, including those using checkpoint inhibitors. Understanding the
precise mechanisms through which macrophages contribute to tumor growth is an active area of
research as targeting these cells may offer potential therapeutic approaches for cancer treatment.
Numerous investigations have focused on anti-TAM-based methods that try to eliminate, rewire,
or target the functional mediators released by these cells. Considering the importance of these
strategies in the reversion of tumor resistance to conventional therapies and immune modulatory
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vaccination could be an appealing approach for the immunosuppressive targeting of myeloid cells in
the tumor microenvironment (TME). The combination of reprogramming and TAM depletion is a
special feature of this approach compared to other clinical strategies. Thus, the present review aims
to comprehensively overview the pleiotropic activities of TAMs and their involvement in various
stages of cancer development as a potent drug target, with a focus on hematologic tumors.

Keywords: macrophages; hematologic malignancies; tumor microenvironment

1. Introduction

Macrophages are among the major cellular components which are involved in nu-
merous tumors. They have remarkable functions in the promotion of tumorigenesis in
the tumor microenvironment (TME) through the facilitation of angiogenesis, invasion,
metastasis, and immunosuppression [1]. Tumor-associated macrophages (TAMs) are the
most prevalent immune-related cells in the TME. They play a substantial role in tumor
progression and metastatic processes through various mechanisms [2,3]. Poor survival and
a high rate of infiltration are the remarkable properties of macrophages that indicate them
as promising targets of anticancer therapies. The efficacy of TAM targeting has already been
confirmed in numerous clinical trials [4,5]. Furthermore, the combination of macrophage-
directed therapies with other therapies (such as chemotherapies and immunotherapies)
has shown complementary effects. Thus, devising novel combined therapeutic strategies
requires a good grasp of TAM biology and its intricate interplay with the TME [6].

In this review, we aimed to discuss the diverse roles of macrophages in different cancer
development pathways, including cancer initiation, promotion, invasion, metastasis, and
angiogenesis. The role of TAMs as diagnostic and prognostic biomarkers is also outlined.
The promising application of TAM-based approaches in the treatment of malignancies
is also discussed. Moreover, the role of macrophages in hematologic cancers, like acute
lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and chronic lymphocytic
leukemia (CLL), is comprehensively discussed. These cancers are characterized by the
presence of leukemia-associated macrophages (LAMs).

2. Diversity, Polarization, and Function of TAMs

Macrophages are key immune cells that are derived from monocytic progenitors in
the bone marrow and are known as tumor-associated macrophages (TAMs) [5]. Aside
from their role in the initiation of inflammatory responses against a stimulus, homeosta-
sis, and the elimination of unnecessary cells, macrophages play various roles in cancer
development. The highly plastic macrophages can undergo remarkable changes in their
function in response to cues in the TME [7]. In established malignancies, poor prognosis
or tumor progression is often strongly associated with a high macrophage infiltration in
different tumors, including glioma [8], melanoma [9], breast [10], bladder [11], and prostate
cancer [12]. Conversely, high macrophage infiltration is related to better prognosis in
colorectal and gastric cancers [13]. This certain discrepancy could be rooted in the func-
tional and phenotypical heterogeneity of macrophages in different types of tumors. TAMs
can be broadly classified into two subsets based on their functions. M1-like TAMs (pro-
inflammatory and anti-tumor) and M2-like TAMs (anti-inflammatory and pro-tumor) are
the major subsets [14]. Lipopolysaccharides, interleukin-1, tumor necrosis factor, and/or
granulocyte-macrophage colony-stimulating factor (M-CSF) can actuate the M1-like TAMs.
These TAMs can detect and eliminate cancer cells through phagocytosis and cytotoxicity,
and initiation of anti-tumor immunity via pro-inflammatory cytokines [15]. On the other
hand, M2-like TAMs, which are alternatively activated and induced by various factors
within the local microenvironment, can promote tumor growth and TME remodeling
through the production of immunosuppressive factors, growth factors, proteases, and
pro-angiogenic molecules [16]. The expression of inducible nitric oxide synthase (iNOS)
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and arginase 1 (ARG1) is suggested to be involved in the intrinsic regulation of macrophage
polarization, which could lead to the activation of M1 and M2 macrophages. Tricarboxylic
acid (TCA), glutamine (due to its ability to refill TCA cycle metabolites), and serine (that
feeds into the one-carbon metabolism) are also involved in macrophage polarization. The
amino acids corresponding metabolic pathways, and probable mechanisms of TAMs polar-
ization, are comprehensively discussed by Kieler et al. [17]. Overall, phenotypic switches
in TAMs depend on combinational microenvironmental factors, including the action of
hypoxia and the availability of cytokines. In addition, the lack of an approved strategy for
intratumoral hypoxia measurement remains the main obstacle to a better characterization
of hypoxic TAMs. For example, the M1 phenotype is generally generated in LPS-mediated
hypoxic responses, while hypoxic TAMs are more strongly associated with an M2-like
response [18]. These properties emphasize the necessity of considering hypoxic stress in
the context of tumor immunotherapy.

3. Pleiotropic Activities of TAMs in Tumors

Macrophages are specialized to function in specific microenvironments, which con-
tributes to their location in tumor tissues [19]. The tumor stroma, the tumor center, and the
boundary between the tumor cells and the stroma, which is called the invasive front, are the
three main locations where macrophages can be found [20,21]. It has been indicated that
the distribution pattern and distinct functions of macrophages may be related to different
cancer progression mechanisms and the location-related signals they receive [22]. For
example, in colorectal cancers, M2 phenotype macrophages may be preferentially involved
in promoting the movement of cancerous cells in the invasion zone, facilitating metastasis
in stromal and perivascular areas, and stimulating angiogenesis in avascular and peri-
necrotic hypoxic areas via the induction of S100A8 and S100A9 (calcium-binding proteins
correlated with differentiation and metastasis) [23]. Otherwise stated, the distribution
pattern of macrophages may be linked to different mechanisms of cancer development.
Notably, some gastric cancer cases have been characterized by a stroma-dominant pattern,
leading to greater malignancy. This property could be engrained into the aggregation of
macrophages in the tumor stroma. It may also contribute to the remodeling of the extracel-
lular matrix (ECM) and stroma activation in conjunction with other elements of the stromal
compartment such as matrix metalloproteinase 9, lysyl oxidase, and type IV collagen [24].
Moreover, the ratio of CD163+ to CD68+ macrophages on the invasive front of colorectal
cancer has been suggested as a potential prognostic marker. Future studies could focus
on exploring the relationship between the varied morphologies of macrophages, tumor
positions, and their role in different distribution patterns [25].

4. Macrophages and Cancer Development

The frequent presence of TAMs is often associated with insignificant clinical outcomes
in most tumors [5,26], influencing the relapse of tumors after conventional cancer treat-
ments. TAM targeting has garnered a lot of interest as a potential therapeutic strategy and
several therapeutic agents that specifically target these cells have been tested in clinical
trials. In a recently published review that investigated 300 studies, an obvious relation was
identified between the infiltration of macrophages (M1 or M2 subtypes) and the prognosis
of various solid cancer types. Specifically, the attending of M2-subtype macrophages was
related to a poor outcome, while the presence of M1-subtype macrophages was associated
with a favorable prognosis [27]. Hitherto, immune suppression, angiogenesis, chronic
inflammation, and invasion/metastasis are the well-characterized tumor-promoting mech-
anisms of TAMs [5].
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4.1. Tumor-Progressing Inflammation and Macrophages

In a healthy state, inflammation is a response to external factors that helps to restore
homeostasis [28]. However, chronic inflammation can increase the risk of carcinogenesis.
Before the formation of tumors, tumor-promoting inflammation can occur and support tu-
mor growth through suppression of the immune system, promotion of neoangiogenesis (the
generation of new vascular networks to supply cancer cells), and oncogenic mutations [29].
Cell death within the tumors could lead to the liberation of damage-associated molecular
patterns (DAMPs), like high mobility group box 1 (HMGB1), heat shock proteins (HSPs),
or ATP [5,30]. The released DAMPS can activate macrophages and dendritic cells, causing
anti-tumor immunity stimulation. Chronic stimulation can result in immunosuppression
via the elevated production of interleukin-10 (IL-10), which suppresses the expression
of pro-inflammatory cytokines and promotes the formation of regulatory T cells (Tregs)
(Figure 1) [31]. In addition, macrophages can contribute to tumor-promoting inflammation
through the secretion of immunostimulatory cytokines, such as interleukin-6 (IL-6) [32],
and tumor necrosis factor-alpha (TNFα) [33]. These cytokines can stimulate the immune
response, backing the tumor growth and survival of cancerous cells [34]. TNFα activates
the nuclear factor kappa-B (NF-κB) pathway upon binding to TNFR1/2 receptors. TNFRs
(tumor necrosis factor receptors) are membrane proteins that activate cell death. Activation
of this pathway could lead to the control of target gene expression (e.g., vascular endothelial
growth factor (VEGF) and IL-6) and the stimulation of neo-angiogenesis. IL-6 could then
promote cell proliferation and differentiation [35] via the JAK/STAT3 pathway [36].
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Figure 1. The released DAMPS due to cell death within the tumors can activate macrophages and
result in immunosuppression via the elevated production of IL-10, which suppresses the expression
of pro-inflammatory cytokines and promotes the formation of Tregs. Moreover, macrophages can
contribute to the secretion of IL-6 and TNFα, leading to cancerous cell survival. In addition, TNFα
activates the NF-κB pathway upon binding to the TNFR1/2 receptor, controls the expression of
VEGF, IL-6, and the stimulation of neo-angiogenesis. IL-6 could then promote cell proliferation
and differentiation via the JAK/STAT3 pathway. Phagocytosis, the propagation of TNFα, and
interleukin-1 beta (IL1β) can induce macrophage recruitment.
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Another tumoricidal function of TAMs is the blockade of macrophage recruitment by
the macrophage migration inhibitor factor (MIF), which is induced via phagocytosis [37]
and the propagation of TNFα and interleukin-1 beta (IL1β) [38]. Moreover, the TAM-
secreted interleukin-18 and 22 can increase the production of IFNγ and IL-2, which could
lead to the increased cytotoxic activity of natural killer cells [39]. The significance of TAMs
in tumor development has been highlighted in numerous studies [40]. For instance, the
genetic ablation of the Csf1 gene (which encodes M-CSF and is required in macrophage
maturation) could lead to the delayed metastasis of mammary carcinoma, whereas the
transgenic expression of the M-CSF could speed up pulmonary metastasis [41]. Analogous
results have been recognized in thyroid and osteosarcoma cancer cells [42]. These outcomes
indicate the existence of an intricate balance between the tumor-promoting or killing
functions of TAMs.

4.2. Angiogenesis

Macrophages are essential in the development of cancer due to their ability to promote
angiogenesis. Their presence is often correlated with increased blood vessel density in
the tumor microenvironment [43]. To support the swift proliferation of malignant cells,
the tumor requires a high supply of nutrients and oxygen which are delivered through
a capillary network formed during angiogenesis [44]. The released growth factors in the
tumor microenvironment are responsible for the regulation of this process. However, the
obligation and structure of the newly made vascular tissues are often abnormal due to poor
regulation. This property leads to the elevated permeability of vessels and connections to
disease development. Considering the elevated rate of cell death in tumor tissues, TAMs
are attracted to hypoxic areas to stimulate the formation of new blood vessels [45]. The tran-
scription factor HIF1α (hypoxia-inducible factor α) is an oxygen-dependent transcriptional
activator consistently observed in macrophages. It plays critical roles in the angiogenesis of
tumors, regulates the response to hypoxic stress (by switching from aerobic to anaerobic
metabolism), and induces CCL2, CXCR4, and endothelin expression as HIF1(hypoxia
inducible factor-1) target genes [46], which could lead to macrophage recruitment into
tumors [47]. In addition, the process of neo-angiogenesis is adjusted by various elements
which are produced by TAMs, including platelet-derived growth factor (PDGF), vascular
endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), and angiopoietin-
1 [48]. These factors play a role in the proliferation and maturation of endothelial cells, the
chemotaxis of macrophages and ECs [48], and the breakdown of the extracellular matrix
(to allow for the formation of novel vascular sprouts) [49]. PDGF released by TAMs and
platelets could promote the infiltration of pericytes, which are important for vessel matura-
tion and remodeling [44]. They can also release Angiopoietin-1, which helps to stabilize
newly formed vessels by binding to the Tie-2 receptor on endothelial cells. Tie 2 is a tyrosine
kinase receptor with a critical function in vascular stability. Tie-2 receptor-expressing mono-
cytes (TEMs) are responsible for enhancing the blood vessel formation of macrophages in
tumors and may act as precursors of proangiogenic TAMs [50]. Therapeutic targeting of
these pathways may be a potential approach for cancer treatment (Figure 2) [5].

4.3. Role of Macrophages in Tumor Cell Invasion and Metastasis

Tumor cell invasion and metastasis are responsible for failure in cancer treatment
and the great number of cancer-related deaths [51,52]. Based on previous pieces of ev-
idence, M2 TAMs can increase the growth, invasion, and metastasis of tumor cells and
stimulate angiogenesis; on the other hand, M1 TAMs can provoke anti-tumor effects by
producing and secreting pro-inflammatory cytokines and exerting macrophage-mediated
cytotoxicity [2,3,53–56]. Overall, TAM inhibition is considered a promising cancer treat-
ment strategy [54,57]. Yang et al. [54] found an increased infiltration of TAMs, especially
M2 macrophages, in both the peritumoral and intertumoral sites of the solid pseudopap-
illary pancreatic tumor with metastatic features compared to the patients with capsular
features [54]. In contrast, Konstantinov et al. [58] found no direct associations between
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M2 macrophages with metastatic behavior in colorectal cancer. Their results suggest
that M2 macrophages could restrict the metastatic processes [58]. TAMs play a substan-
tial role in the metastatic process by contributing to invasion, angiogenesis, intravasa-
tion, extravasation, colonization, survival of tumor cells, induction of hypoxia, and pre-
metastatic niche formation [2,56,59]. TAMs could suppress CD8+ T cell responses by the
secretion of interleukin-10 (IL-10) and promote the differentiation of naive CD4+ T cells
into Treg [57,60]. Activated TAMs produce and secrete various soluble factors, such as
tumor-transforming growth factor-β (TGF-β), necrosis factor-α (TNF-α), IL-1β, and IL-8.
These factors could ultimately damage the basement membrane of tumor endothelial cells
and facilitate epithelial-mesenchymal transition (EMT) processes, which could promote
invasion [3,55,61,62]. Furthermore, TAMs, especially M2 macrophages, are capable of
extracellular matrix degradation and help tumor cell migration by secreting proteolytic
enzymes, including matrix metalloproteinases (MMPs, such as MMP9, MMP7, and MMP2),
cathepsins, and serine proteases [3,61,63]. Furthermore, TAMs can enhance invasion,
migration, and the circulating tumor cell-mediated metastasis of colorectal cancer by reg-
ulating the JAK2/STAT3/miR-506-3p/FoxQ1 axis, which leads to CCL2 production [64].
M2 macrophages also secrete chitinase-3-like protein 1 (CHI3L1), which could promote
gastric and breast cancer metastasis by the initiation of the mitogen-activated protein ki-
nase (MAPK) signaling pathway [65]. In addition, TAMs promote tumor angiogenesis
through secreting pro-angiogenic factors such as fibroblast growth factor (FGF) and vas-
cular endothelial growth factor (VEGF), which facilitate metastasis [2,60]. Intravasation
and extravasation of tumor cells are critical steps in metastasis, which are both promoted
by TAMs [3]. Triggering the PI3K/Akt survival pathway through engaging vascular cell
adhesion molecule-1 (VCAM1) and the secretion of cytokines and chemokines can increase
the survival of cancer cells [3,66–70]. In addition, cat eye syndrome chromosome region
candidate 2 (CECR2) is an epigenetic regulator which is necessary for breast cancer metas-
tasis [71]. Zhang et al. [71] found an association between CECR2 expression and increased
M2 TAMs in the TME, which promotes breast tumor metastasis. They found that CECR2
promotes breast cancer metastasis by regulating M2 TAMs [71].
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tissues, their ability to become activated in response to certain stimuli, and their production of various
secretory agents. Alternatively activated macrophages could release proteases, various growth
factors, and monokines, including TGF-alpha, bFGF, GM-CSF, VEGF/VPF, IGF-I, PDGF, TGF-beta,
IL-1, IL-6, substance P, IL-8, TNF-alpha, interferons, prostaglandins, and thrombospondin 1. These
factors can influence each phase of angiogenesis, such as the induction of endothelial cell migration
or proliferation, changes to the local extracellular matrix, and inhibition of vascular growth via the
formation of differentiated capillaries.

The pre-metastatic niche (a well-prepared environment in a secondary organ for
the colonization of tumor cells) is a specialized environment, including infiltrating im-
mune cells, tumor cells, activated stromal cells, and extracellular matrix regulating tumor
progression, while the pre-metastatic niche is an essential requirement for the coloniza-
tion of circulating pro-tumor cells in a particular organ and metastasis of primary tu-
mors. Macrophages are one of the most remarkable immune cells within pre-metastatic
niches [72]. Zhao et al. [73] found that polarized M2 TAMs could induce the formation of
pre-metastatic niches. Macrophage depletion could significantly decrease the number of
metastatic nodules, which portrays the substantial role of macrophages in tumor metas-
tasis [72,74,75]. Recent studies have evaluated TAM-based cancer treatment; chimeric
antigen receptor-macrophage (CAR-M) therapy is a promising cancer treatment with sig-
nificant outcomes [76,77]. CAR-M is a cancer therapy option in which M2 macrophages
are manipulated into the M1 phenotype; as previously pointed out, M1 macrophages have
anti-tumor and pro-inflammatory effects [76,78]. According to recent studies, CAR-M
therapy could increase overall survival and suppress tumor growth by converting M2 into
M1 macrophages, which express pro-inflammatory cytokines and chemokines, resist the
effect of immunosuppressive chemokines, present antigens to T cells, upregulate antigen
presentation machinery, and prevent metastasis [76,79,80].

The stimulation of cancer cell motility by Wnt5a [81], expression of MMPs via SPARC/
Osteonectin, and adjustment of collagen fibers are the other agents causing macrophage-
mediated tumor invasion [82,83]. It has been mentioned that activation of the CCL2/CCR2
axis could facilitate the leakage of cancer cells to other areas [83], enhance the secretion of
MAM (metastasis-associated macrophage)-derived CCL3, and promote the bone metastasis
of prostate cancer [84]. Bone destruction through the activation of osteoclasts could trigger
the release of tumor growth factors [85], while the blockade of CCL2 with specific shRNA
or neutralizing antibodies could significantly impair bone resorption and prostate cancer-
induced formation of osteoclasts [86]. Moreover, the interaction between α4-integrin
(expressed by MAMs) and vascular cell adhesion protein 1 in cancer cells could increase
lung tumor development [67]. Given these circumstances, the multidimensional function of
macrophages could be determined in the metastatic process via clear and explicit evidence.

4.4. TAMs as Diagnostic and Prognostic Target

TAMs have been demonstrated to act as potential biomarkers of cancer stage and
progression. Research has demonstrated that the concentration of TAMs in the tumor
stroma can predict the size, stage, and metastasis of various tumors. This property could
lead to a more accurate prognosis and personalized treatment planning for cancer patients.
Patients with higher levels of TAMs have a lower overall survival rate compared to those
with lower levels of TAMs. As such, TAMs may be useful for risk assessment, early
diagnosis, and prognosis in cancer patients [87]. The quantification of infiltrated TAMs
as an essential diagnostic target in various tumors can be accomplished through different
morphological methods, cell-surface marker profiling, and gene expression analysis [88].
Although TAMs are mainly recognized as CD68 positive, the AAM (alternatively activated
macrophages or alternatively activated M2 macrophages) endotype is distinguished with
CD163, CD206, and CD204, while the CAM endotype is distinguished with CD40 [89] and
HLA-DR expression [90]. An indication of advanced cancer stages [88], high macrophage
density is known as a prognostic marker to estimate chemotherapy results and survival [91].
For instance, failure in Hodgkin lymphoma treatments is correlated with overexpressed
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macrophages in lymph nodes [92]. Moreover, the prevention of tumor progression through
TAM re-education has been considered a clear determinant of the efficiency of postsurgical
chemotherapy in pancreatic cancer [88]. Therefore, TAM quantification could be considered
a useful approach in patients who are more responsive to chemotherapy.

5. TAMs as a Therapeutic Target

Considering the dual function of TAMs in tumor microenvironments, they have ap-
peared as promising therapeutic targets. Various therapeutic strategies have focused on
TAM targeting, aiming to reprogram, deplete, or adjust any TAM-secreted mediators. Early
clinical trials have suggested that targeting the checkpoints of myeloid cell function as neg-
ative regulators could bear antitumor potential. Macrophages are proper candidates for cell
therapy due to the continuous recruitment of myelomonocytic cells into tumor tissues [93].
Overall, ongoing available implements in the oncology armamentarium could be comple-
mented and synergized with macrophage-centered therapeutic strategies (Table 1). The
widely applied TAM-based strategies include conventional anticancer therapies (recruit-
ment, repolarization, and depletion), immune checkpoint blockade (ICB), vaccination, cell
therapy, and the administration of apoptotic peptides and nanoparticles targeting TAMs.
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Table 1. Different strategies in targeting macrophages for treatment.

Strategy Pathway Target Agent/Drug(s) Type of Tumor Result(s) Ref. or Trial No.

Conventional

TAM depletion

CSF-1R BLZ945 Solid tumors
Enhancing the level of CD8+ cytotoxic

T cells leading to the prevention of
tumor growth

[94]

CSF-1R PLX3397 (Pexidartinib) Sarcoma, breast cancer, prostate
cancer, and solid tumors Infiltration of T cells in the TME [95,96]

IL10/VEGF/TGFβ Zoledronic acid Breast cancer Infiltration of CD8+ T cells and
improving immune responses [97]

Pan-macrophages Trabectedin Soft tissue sarcomas and
recurrent ovarian cancer

Causing selective cytotoxicity to TAM
populations by triggering the extrinsic

TRAIL apoptotic pathway
[98–101]

Pan-macrophages Lurbinectedin Ovarian cancer and
solid tumors

Eliminating tumor cells directly
through the TRAIL-dependent

apoptosis pathway and a reduction
in angiogenesis

[102–105]

CSF1-R ARRY-382 Solid tumors Not determined [106]

CSF1-R AMG820 CRC and solid tumors Not determined [106,107]

CSF1-R Emactuzumab Solid tumors Inhibiting the activation of CSF1R [108]

MMP-2 Doxorubicin Melanoma, Breast cancer Reduction in Treg infiltration to
the TME [109]

MMP-2 Clodronate Bone
metastatic cancers

Suppressing tumor growth
and angiogenesis [110]

Target Drug(s) Type of tumor Result(s) Ref. or Trial no.

Blocking recruitment

CCL2 Carlumab Prostate cancer Blocking CCL2 signaling leading to
tumor growth prevention [111]

CCL2 CNTO 888 Solid tumors CCL2 inhibition [112]

CCR2 Propagermanium Breast cancer CCL2 inhibition [113]

CCR2 PF-04136309 Pancreatic cancer
Reducing the circulatory CCR2+

monocytes and an increase in bone
marrow CCR2+ monocytes

[114]

CCR2 BMS-813160 CRC and pancreatic cancer Inhibition of inflammatory monocytes
and macrophages migration [115]

CCR5 Leronlimab Breast cancer Inhibition of tumor development,
adhesion, and invasion [116,117]

CCL5 Maraviroc Metastatic colorectal cancer Inducing M1 like TAMs polarization,
which mediated antitumor responses [118]

CCR5 Vicriviroc Metastatic colorectal cancer CCR5 inhibition [119]

CCR5 TAK-779 Colorectal cancer CCR5 inhibition [120]
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Table 1. Cont.

Strategy Pathway Target Agent/Drug(s) Type of Tumor Result(s) Ref. or Trial No.

Conventional

Blocking recruitment

CCR5 Anibamine Ovarian cancer cells CCR5 inhibition [121]

CCR5 GSK706769 Colorectal cancer CCR5 inhibition [122]

CX3CL1 DC101/anti-Ly6G antibody Colon cancer Inhibition of macrophage recruitment
in the TME [123]

CSFR-1R Pexiddartinib (PLX-3397) Tenosynovial giant cell tumors
and other solid tumors CSF-1R inhibition [124]

CSFR-1R Chiauranib (CS2164) Solid tumors
Inhibition of CSF-1R and

angiogenesis-related kinases (VEGFR,
PDGFRa, and c-Kit)

[125]

CSFR-1R RG7155 Solid tumors Reducing CSF-1R, CD163, TAMs, and
peripheral blood CCR2Monocyte [126]

CSFR-1R Cabiralizumab Solid tumors CSF-1R inhibition [127]

CSFR-1R AZD7507 Pancreatic cancer CSF-1R inhibition [128]

CX3CL1 JMS-17-2 Breast cancer cells Metastatic seeding and colonization
of breast cancer cells [129]

TAM repolarization

Target Drug(s) Type of tumor Result(s) Ref. or Trial no.

CD40 CP-870 and 893 Melanoma, pancreatic cancer,
and solid tumors

Stimulation of adaptive immune
responses and M1 macrophage

activation and cancer cell apoptosis

[130–133]
NCT02225002

CD40 APX005M (Sotigalimab) Melanoma and
pancreatic cancer

Inducing T cell-dependent tumor
regression and improving survival

[134]
NCT02706353

CD40 CDX-1140 Melanoma and breast cancer
Activating DCs and B cells and
leading to NFkB stimulation in

CD40-expressing cells

[135]
NCT04616248

CD40 SEA-CD40 Solid and hematological tumors
Binding with increased affinity to
FcγRIIIa resulting in an enhanced

effector function and CD40 agonism

[136]
NCT02376699

CD47/SIRPα TTI-621 Hematological malignancies
Increasing cancer cells phagocytosis

by macrophages and antigen
presentation which activate T cells

[137,138]

CD47/SIRPα Magrolimab Solid and hematological tumors CD47 inhibition [139]

CD47/SIRPα Hu5F9-G4 Solid tumors CD47 inhibition [140]

CD47/SIRPα IBI188 Solid tumors CD47 inhibition [141]

CD47/SIRPα ZL1201 Solid tumors CD47 inhibition [141]

CD47/SIRPα BI 765063 Solid tumors SIRPα inhibitors [141]

CD47/SIRPα CC-9525 Solid tumors SIRPα inhibitors [141]

CD47/SIRPα ChiLob7/4 Various tumors CD40 agonists [142]
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Table 1. Cont.

Strategy Pathway Target Agent/Drug(s) Type of Tumor Result(s) Ref. or Trial No.

Conventional

TAM repolarization

CSFR-1R BLZ945 Solid tumors
Reducing M2 associated gene

expression (Adm, Arg, Mrc1, and
F13a1) in TAMs

[143]

CSFR-1R PLX3397 Glioma TAM repolarization and consequent
tumor suppression [144]

- Membrane-coated
Fe3O4 nanoparticle Melanoma

Re-educating M2-macrophages to M1,
decreasing cancer’s metabolic

function, and induction of
immunologic cell death

[145]

TLR7/8 agonist Resiquimod Melanoma

M2 repolarization into M1 and
elevating the level of
antibody-dependent
cellular phagocytosis

[146,147]

TLR7/8 agonist TransCon Solid tumors Enhancing tumor growth inhibition [148]

TLR3 agonist BO-112 CRC, gastric cancer,
and melanoma

Re-education of M2 macrophages
towards M1 and inhibition of

tumor growth

[149,150]
NCT04508140

TLR9 agonist CMP-001 (vidutolimod) Melanoma Upregulating IFN-responsive genes [151]

TLR7 agonist SHR2150 Solid tumors Immunostimulating and
antineoplastic activities NCT04588324

PI3K IPI-549 Solid tumors
Enhancing NFκB activation

preventing tumor growth and
elevated cytotoxic T cell activity

[152,153]

MARCO MARCO mAb Melanoma, colon,
and breast cancer

Upregulating the level of regulatory T
cells and anti-inflammatory cytokine

IL-37, decreasing tumor growth
[154,155]

Ferumoxytol nanoparticles
Carboxy-dextran coated super

paramagnetic ironoxide
nanoparticles (SPIONs)

-

Inducing TAMs phenotypic shift
towards tumor-suppressive

phenotype and activation of the
MAPK pathway

[156]

Polystyrene nanoparticles
functionalized with carboxyl or

amino groups

poly(styrene-co-maleic
anhydride) (PSMA)

nanoparticles conjugated with
polymer poly [2-methoxy-5-(2-

ethylhexyloxy)-
1,4-phenylenevinylene, PPV]

-
Impairing CD163 and CD200R

expression and IL-10 production in
M2 macrophages

[157]

Cationic polymers Cationic dextran and
polyethyleneimine (PEI) Sarcoma Changing TAM phenotype via

TLR4 signaling [158]
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Table 1. Cont.

Strategy Pathway Target Agent/Drug(s) Type of Tumor Result(s) Ref. or Trial No.

TAM repolarization

TLR7/8 agonist R848 (TLR7/8 agonist)-loaded
β-cyclodextrin nanoparticles Colorectal cancer

Re-education of M2-macrophages
to M1,

enhancing response rates to
immunotherapy when combined with

the immune checkpoint
inhibitor anti-PD-1

[159]

Macrophage cell
therapy (CAR-M)

Target Drug(s) Type of tumor Result(s) Ref. or Trial No.

HER2 CT-0508 HER2+ solid tumors Trafficking into the tumor,
phagocytosing and killing cancer cells NCT04660929

- TEMFERON Glioblastoma Temferon is well tolerated by patients [160]

Immune checkpoint
blockade (ICB)

immunotherapy

PDL-1 - NSCLC and other tumors Enhancing the cytotoxic function of
T cells [161]

VISTA - Myeloid cells

Interacting with P-selectin
glycoprotein ligand 1 (PSGL1),

functioning as a T cell checkpoint
inhibitory ligand

[162]

TIM4 - Renal cell carcinoma (RCC)

Suppressing CD8+ T cell responses,
blocking TIM4 with antibodies, and

enhancing the efficacy of ICB at
these sites

[163]

Vaccine

-
Exosomes derived from M1-

but not
M2-polarized macrophages

-

Boosting the antitumor vaccine by
eliciting a release of Th1 cytokines and
a stronger antigen-specific cytotoxic T

cell response

[164]

Indoleamine 2,3-
dioxygenase (IDO) - Non-small cell lung cancer Eliciting CD8+ and CD4+ T

cell-mediation [165]

Sipuleucel-T - Prostate cancer

Inducing antigen-specific T cells with
a fusion protein combining a targeting

tumor antigen prostate acid
phosphatase with GM-CSF,

prolonging the survival of patients in a
few clinical trials

[166]

STING agonist - Multiple established tumors - [167]
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Table 1. Cont.

Strategy Pathway Target Agent/Drug(s) Type of Tumor Result(s) Ref. or Trial No.

Apoptotic peptides

CD206 M2pep Colon cancer Murine TAMs (CD45+F4/80+CD301+) [168]

CD206 UNO Solid tumors CD206 TAMs
binding to CD206+ (M2) macrophages [169]

CD206 Melittin Solid tumors CD206 TAMs [170]

CD206 RP-182 Solid tumors CD206 TAMs [171]

IL-4R IL4RPep-1 Breast cancer IL-4R-expressing macrophages [172]

Tyrosine-protein kinase
receptor (Tie2)

T4
Peptide Breast cancer Tyrosine-protein kinase receptor (Tie2)

expressing macrophages (TEMs) [173]

CD-47 Pep-20 Wilde range CD-47 [174]

Retinoid X receptor beta CRV Breast tumors
TAMs retinoid X receptor beta, a
receptor found to be expressed

predominantly by TAMs
[175]
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5.1. TAMs in Conventional Cancer Therapies

Some chemotherapy drugs can stimulate the dissemination of cancer-related molecules
through a process called immunogenic cell death. Macrophages are engaged through this
process in a beneficial immune response against cancer [176]. Other cancer treatment
strategies target macrophages by a reduction in their numbers, like the treatment of ovar-
ian cancer and certain types of sarcomas with an approved marine-derived compound
named Trabectedin. The depletion of TAMs is required for the full anti-tumor effect of
trabectedin [102]. Some anti-cancer drugs can also change the polarization of TAMs. This
change could lead to an increased responsiveness to treatment, such as 5-fluorouracil in
colorectal cancer, gemcitabine in pancreatic cancer [88], and high-grade ovarian cancer
treated with platinum-based neoadjuvant [177]. Platinum-based neoadjuvant can lead to
DNA damage through the production of reactive oxygen species (ROS). In addition, the gut
microbiota can stimulate the production of ROS with intratumoral phagocytes, therefore,
the effectiveness of these compounds can be enhanced [178].

Since total macrophage depletion is not clinically bearable for a long time [16], strate-
gies have been developed to suppress macrophages via antibodies [126] or small molecule
compounds [179]. These strategies involve macrophage targeting with antibodies (such as
anti-CSF1R) or small compounds (such as bisphosphonates). These targeting antibodies
and molecules inhibit the recruitment of macrophages, deplete their number, and re-educate
them [180]. Tumor-infiltrating leukocytes, including TAMs, are fundamental players in
the antitumor activity of certain monoclonal antibodies (mAbs). These mAbs trigger the
FcγR expressing immune cells to kill tumor cells and perform phagocytosis. The currently
prescribed antibodies include rituximab [181], cetuximab [182,183], trastuzumab [184], and
daratumumab. Frequently, there is a relation between the density of TAMs and vessels in
tumor tissues, which is due to the active responsiveness of TAMs to angiogenic growth
factors. VEGF is primarily among these growth factors [185]. Therefore, TAMs modulate
the efficiency of antiangiogenic treatments, and VEGF antagonists could remodel the TAM
phenotype and induce vascular normalization. TAMs also increase the expression of cys-
teine cathepsins [186] which aid in the recruitment of monocytes to the TME and support
cancer cells from various chemotherapeutic drugs [187]. Chemokine conjugates have been
designed which could be activated by enzymes that target TAMs in mouse cancer models.
These agents were produced by the conjugation of mCCL2-thiol to cathepsin-activatable
fluorophores or caged prodrugs [188]. These probes interact with intracellular cysteine
cathepsins in macrophages through CCR2-mediated endocytosis. They also release the
cytotoxic chemical doxorubicin for the ablation of macrophages or fluorescently marked
active cathepsins in macrophages [189]. Angiogenesis is essential for the development and
spread of tumors. Anti-angiogenic methods, particularly anti-VEGF therapy, have been
FDA approved for the treatment of various malignancies [190]. A high M2-like/M1-like
macrophage ratio has been linked to resistance to anti-VEGF antibody (AVA) therapy, and
macrophage M2 polarization may be involved in AVA resistance. Therefore, targeting
macrophages may be a potentially innovative approach to overcome AVA treatment resis-
tance in ovarian cancer [191]. The interaction between microseminoprotein (MSMP) and
CCR2 could promote adaptive resistance to AVA in ovarian cancer models. BET inhibitor
(BETi) is a compound that reduces macrophage recruitment, CCR2 [192], and MSMP expres-
sion. This compound could also enhance the efficacy of AVA therapy in ovarian cancer by
inducing apoptosis in M2-like macrophages and reprogramming them to have an M1-like
phenotype. BETi has been shown to overcome resistance to AVA treatment and increase
survival in an adaptive resistance model of ovarian cancer (Figure 3) [193].
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5.2. TAMs and the Immune Checkpoint Blockade (ICB)

Immune checkpoint blockade (ICB) immunotherapy, which activates T cell-mediated
type 1 immune response, has become a key treatment approach for cancer [194]. However,
myelomonocytic cells, which include macrophages, can contribute to primary (before) and
adaptive (after) resistance to ICB through the expression of immunosuppressive molecules,
such as checkpoint ligands (CD80, CD86, PDL1, PDL2, etc.) and the poliovirus recep-
tor [195,196]. In vivo studies have demonstrated the association of the expressed PDL1
on immune cells (in the TME), with a response to antibodies against PD1 or PDL1 [197].
Interestingly, the expressed PD1 on TAMs has a contrariwise correlation with their ability
to phagocytose tumor cells [198,199]. Additionally, other counter-receptors have been ex-
pressed on myelomonocytic cells capable of interacting with regulators expressed by natural
killer cells and T cells (negative regulators like VISTA) [200]. This molecule could interact
with P-selectin glycoprotein ligand 1 (PSGL1) [201] and function as a T cell checkpoint
antagonist. The composition of the microbiome can also influence the response to im-
munotherapy. For anti-PD1 and anti-CTLA4 [202] treatments, the diversity and frequency
of gut flora can shape the infiltration of myeloid cells into tumors [203]. The depletion of
macrophages has been shown to enhance the effectiveness of different types of immunother-
apeutic methods, comprising vaccination [204] and checkpoint inhibitors [205,206]. Multi-
ple clinical trials are currently underway that combine varied TAM-targeted therapeutic
approaches (Table 1).

5.3. Targeting of TAMs by Vaccination

Immunomodulatory vaccination is an innovative approach targeting the myeloid cells
in TAMs [207]. Anti-regulatory T cells (anti-Tregs) specifically recognize and respond to
TAMs by restricting the various immunosuppressive signals they mediate. They could dis-
tinguish the HLA-restricted epitopes of arginase, PD-L1, and indoleamine 2,3-dioxygenase
(IDO) [208]. Activated anti-Tregs can transform the TME into an immune permissive site.
The first IDO vaccinations were conducted in patients with NSCLC (non-small cell lung
cancer). A median of 26 months of survival was observed in vaccinated patients, which was
significantly longer than the median overall survival of 8 months for the untreated control
patients [209]. Currently, there is an industry-sponsored phase II clinical trial underway
to test the combination of IDO vaccinations and pembrolizumab as a first-line treatment
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for non-small cell lung cancer [165]. There is another ongoing phase I trial of PD-L1-based
vaccinations in multiple myeloma [210], in which a combination of IDO and PD-L1-specific
T cell vaccinations with nivolumab is employed for metastatic melanoma [211]. No obser-
vation of toxicity (grade III or IV) indicates good tolerability in vaccinated patients.

Activation of CD8 and CD4 anti-Tregs is essential in the development of therapeutic
immune modulatory vaccines. Current cancer vaccine strategies are based on the induction
of cancer-specific CD8 cytotoxic T cells, while the immunosuppressive mode is converted
to a pro-inflammatory one via activated anti-Tregs. The pro-inflammatory stimulus can
convert not terminally differentiated TAMs into M1 macrophages. CD4 cells are particularly
effective cytokine-producing cells. Therefore, the activation of CD4 anti-Tregs may be as
essential as the activation of CD8 anti-Tregs in a therapeutic process. This is due to the fact
that, unlike other strategies of TAM targeting, the activation of anti-Tregs combines both
TAM depletion (through direct killing of T cells) and TAM reprogramming (through the
provision of pro-inflammatory cytokines in the immune suppressive microenvironment).
These processes are crucial in the rebalancing of the microenvironment and enhancing
the effectiveness of checkpoint inhibitors such as T cell-enhancing drugs. In many cancer
patients, the infiltration of TAMs into the TME majorly contributes to the limited effect
of checkpoint inhibitors. Anti-Tregs activated by therapeutic vaccines can result in T cell
gathering, Th1 inflammation induction, and elevation of protein expression like IDO and
PD-L1 in cancer and immune cells. This creates more targets that could respond to anti-
PD1/PD-L1 immunotherapy. Therefore, immune modulatory vaccines that rebalance the
microenvironment could increase the effectiveness of T cell-enhancing drugs like checkpoint
inhibitors. Combining these vaccines with checkpoint-blocking antibodies could potentially
enhance the number of recovered patients [212].

5.4. Macrophage Cell Therapy

The pool of TAMs is continually replenished through the recruitment of circulating
monocytes. Macrophage-based cell therapies may have the potential to prevail over
this limitation due to the steady influx of mononuclear phagocytes into tumors. These
therapies are established based on the modification of mononuclear phagocytes with
engineered receptors or the ability of monocytes to deliver nanoparticles or cytokines to
the TME. According to an in vivo study, the replenished monocytes with drug-loaded
nanoparticles were capable of reaching the tumor cells with higher efficiency compared to
free nanoparticles [213]. De Palma et al. explored the possibility of delivering interferon
alpha (IFNα) to the tumor cells using macrophages and stimulating an immune-related
response [214]. They transduced the Ifna1 gene into hematopoietic progenitors under the
control of the Tie2 promoter. These Tie2-expressing monocytes, which had a high affinity
for tumors, triumphantly entered tumors, delivered IFNα into the TME, activated immune
cells, and inhibited angiogenesis and tumor development [214]. In a similar manner,
soft particles called “backpacks” comprising IFNα on their internal side were attached to
macrophage surfaces [215]. The study showed that macrophages, which were carrying
these backpacks, acquired an M1 phenotype. Moreover, upon intratumoral injection, the
phenotype was preserved without being influenced by the immunosuppressive TME. A
significant reduction in metastatic tumors was observed in a mouse model treated with
macrophages carrying IFNγ backpacks [215]. In a mouse model of sarcoma, pro-metastatic
niches were determined by the signature of an immune suppression gene centered on
myeloid cells. Genetically engineered myeloid cells expressing interleukin-12 (IL-12) were
also seen to trigger a type 1 immune response and reduce primary tumor growth upon
adoptive transfer [216].

Tanoto et al. reported an engineered macrophage, named “MacTrigger”, capable of
inflammation induction in only tumor tissues. According to evidence, the MacTrigger
accelerated the release of TNF-α, natural killer cells, and CD8+T cells, causing efficient
effective anti-tumor effects [217]. The major challenge in creating phagocyte-based cellular
therapy is the difficulty of transducing human macrophages. This issue was addressed
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through the development of various technological scaffolds [218,219]. Human CAR-M cells
armed with receptors recognizing CD19, CD22, the carcinoembryonic antigen-related cell
adhesion molecule 5 (CEACAM5), CD514, and HER2 [220,221], have been developed to
target primary and metastatic tumors, mediate phagocytosis, and stably express M1 func-
tions [79]. Clinical trials are ongoing to examine the potency of CAR-M-based therapies in
various tumors [93]. In addition to utilizing polarization for cancer therapy, Aalipour et al.
reported a new class of cell-based in vivo sensors as highly sensitive cancer diagnostics
which was claimed to be more sensitive than both protein and nucleic acid cancer biomark-
ers. The engineered immune cells as diagnostic sensors can detect tumors as small as
4 mm [217,222].

5.5. Peptides Targeting TAMs

Nanomedicine offers significant advancements in cancer therapy, particularly in terms
of improving treatment effectiveness and minimizing side effects. These advantages
are achieved through the specific targeting of TAMs. Multiple TAM-specific peptides
are currently being examined, including M2pep [168], UNO [169], Melittin [170], RP-
182 [171], IL4RPep-1 [223], T4 peptide [173], Pep-20 [174], and CRV [175]. A study by
Cieslewicz et al. [224] employed in vitro and in vivo phage peptide display libraries to
identify M2pep as a peptide that binds to TAMs. M2pep has demonstrated the ability
to reduce TAM levels and enhance the survival of CT26 murine colorectal cancer cells in
modeling experiments.

Presently, M2pep is considered a pro-apoptotic peptide and is the primary focus of
research on nanocarrier development to deliver CSF-1/CSF-1R inhibitors [168]. Several
studies have aimed to improve the stability and targeting capabilities of M2pep [225].
These efforts include modifying M2pep through amino acid substitutions, incorporating
decafluorobiphenyl cyclization, and developing a pH-sensitive variant by replacing tyrosine
with 3,5-diiodotyrosine [226].

5.6. Nanoparticles Targeting Macrophages

Recent studies have highlighted that nanoparticles (NPs) targeting macrophages offer
two main strategies in the battle against cancer. The first strategy focuses on depleting
TAMs, aiming to reduce their tumor-promoting effects. The second strategy emphasizes
the reprogramming or re-education of TAMs to unleash their inherent anti-tumor poten-
tial [227]. Macrophage depletion can be achieved through various approaches, such as
targeting the signaling pathway of colony-stimulating factor 1 (CSF1) and its receptor
(CSF1R), which prompts apoptosis in a significant proportion of TAMs [143,228].

In addition, blocking the recruitment of circulating inflammatory monocytes to the
tumor site is crucial. This recruitment process relies heavily on the signaling pathway of
CC-chemokine ligand 2 (CCL2) and its receptor, CC-chemokine receptor 2 (CCR2). By
inhibiting the CCL2-CCR2 signaling pathway, the retention of mononuclear cells in the
bone marrow occurs, leading to reduced recruitment to both primary and metastatic tumor
sites [229]. Reprogramming TAMs is a promising strategy in cancer treatment, reversing
their pro-tumor phenotype to an antitumor one. This approach activates M1 macrophages,
promoting the activity of cytotoxic T cells and other effector cells. Small molecules and
NP formulations, such as TLR agonists, cytokines, antibodies, and RNAs, are also being
explored to achieve macrophage repolarization and inhibit cancer growth.

For instance, Xiao et al. discovered that a micellar nano-drug, through the M2-targeting
co-delivery of IKKβ siRNA and STAT6 inhibitor AS1517499, effectively repolarized M2-like
TAMs into M1-like TAMs. Furthermore, the nano design was tailored to function in the
acidic pH of the TME and minimize off-target effects in normal tissues [230]. Furthermore,
it was demonstrated that combining nanoparticle-targeted macrophage strategies with
other immunotherapies, such as immune checkpoint blockade, yields significant benefits
in cancer treatment. For example, in a study by Rodell et al., it was shown that the in vivo
delivery of TLR7/8 agonists to TAMs was effectively achieved through the use of R848-
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loaded β-cyclodextrin nanoparticles, which led to M1 polarization. When combined with
the immune checkpoint inhibitor anti-PD-1, the utilization of these nanoparticles resulted
in enhanced response rates to immunotherapy, even in a tumor model that exhibited
resistance to anti-PD-1 therapy as a standalone treatment [159]. The challenges in NP-based
macrophage-targeting therapies involve optimizing timing for NP delivery, addressing the
complexity of macrophage subtypes, and understanding NP-cell interactions. While early
clinical trials indicate promise, further work is required to ensure NP safety and efficacy,
personalize treatments, and bridge the gap between research and clinical applications [231].

In conclusion, the targeting of tumor-associated macrophages (TAMs) represents a
promising avenue for improving cancer therapy. Immune checkpoint blockade (ICB) has
revolutionized cancer treatment by activating T cell-mediated immune responses, but
TAMs can contribute to resistance through immunosuppressive mechanisms. However,
strategies targeting TAMs, such as vaccination and macrophage cell therapy, show potential
in overcoming this resistance and enhancing treatment outcomes.

6. Macrophage and Hematologic Malignancies

Macrophages residing in the TME of myeloma, lymphoma, or leukemia can provide
insights regarding disease progression and the effectiveness of chemotherapy. TAM in-
teractions with other cells in the TME could lead to a pro-tumorigenic environment that
includes the promotion of chemo-resistance in cancer cells, stimulation of tumor cell devel-
opment through the production of growth and matrix remodeling factors, and induction of
immunosuppression through influencing the behavior of immune cells [232]. Although the
role of TAMs in solid tumors has been under the spotlight in past years, the significance
of TAMs in hematologic malignancies has only recently been appreciated, owing to the
distinctive and varied microenvironments of these conditions. This review will center
on the current preclinical and clinical findings regarding macrophages in hematologic
malignancies (Table 2 and Figure 4).
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family (including chemokine (C-X-C motif) ligand 10 (CXCL 10), CXCL11, and CXCL 13 and 16),
the CC chemokine family (including chemokine ligand 1 (CCL1), CCL5, 17, 18, 22, and CCL24)
are produced during this process. In addition, transforming growth factor beta (TGF-β), vascular
endothelial growth factor (VEGF), tumor necrosis factor alpha (TNFα), interleukin-1α (IL-1α), 1 β,
10, 12, and IL-23 can also contribute to different functions, as shown.
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Table 2. Macrophage and hematologic malignancies.

Hematological Malignancies Disease Drug/Agent Study Status/Stage Mechanism/Observation(s) References

Leukemia

CLL

Trabectedin Preclinical evaluation Antiangiogenic and macrophage killing due to
CCL2-CCR2 signaling axis inhibition [233]

CSF-1R signaling inhibitor Preclinical evaluation CSF-1R signaling inhibition [234]

GW-2580, ARRY-382 Preclinical evaluation CSF-1R signaling inhibition [235]

Lenalidomide Preclinical evaluation
Modifying the TME via promotion of T and NK cell

functions and downregulating anti-inflammatory and
proangiogenic cytokines

[236]

TG-1801 (NI-1701) Clinical/phase I CD47/SIRPα-targeted bispecific antibodies [237]

SRF231 Clinical/phase IA/IB CD47 inhibition [238]

ALL

BLZ-945 Preclinical evaluation CSF-1R signaling inhibition [239]

PLX3397 Preclinical evaluation CSF-1R signaling inhibition [240]

CXCR4 inhibitor plerixafor Preclinical evaluation CXCR4/CXCL12 axis inhibition [241]

Preemptive IFN-α Preclinical evaluation TAM reprogramming [242]

Anti-CD47 mAb Preclinical evaluation Enabling phagocytosis of tumor cells by TAM [243]

CD204-positive TAM Preclinical evaluation
CD204-positive TAM was associated with malignant
cells proliferation, measured according to the Ki-67

labeling index
[244]

BMP4 Preclinical evaluation
Inducing immunosuppressive dendritic cells and

favoring the generation of M2-like macrophages with
pro-tumoral features

[245]

Exposure to myeloid differentiation
promoting cytokines Preclinical evaluation B-ALL blasts reprogramming into Macrophage [246]

AML

Artesunate Preclinical evaluation TAM reprogramming JAK2/STAT3 Downregulation [247]

Pacritinib Preclinical evaluation
CSF1R inhibition with a JAK2/FLT3 inhibitor, depletion

of TAMs, and, consequently, inhibited leukemic
cell survival

[248]

Hu5F9-G4 Clinical/phase I Anti-CD47 led to hemoglobin decline and increased
transfusion requirements [249]

AML

Hu5F9-G4 + Atezolizumab Clinical/phase I CD47 inhibition [250]

ALX148 Clinical/phase I/II SIRPα fusion protein that blocks CD47 [251]

AK117 Clinical/phase I/II CD47 inhibition [252]

IBI188 Clinical/phase IB CD47 inhibition [253]
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Table 2. Cont.

Hematological Malignancies Disease Drug/Agent Study Status/Stage Mechanism/Observation(s) References

Leukemia
AML/MDS

Hu5F9-G4 Clinical/phase II CD47 inhibition [254]

TJC4 Clinical/phase IB CD47 inhibition [255]

IMM-01 Clinical/phase I/II SIRPα fusion protein that blocks CD47 [256]

CC-90002 Clinical/phase I CD47 inhibition [257]

DSP107 Clinical/phase II CD47/SIRPα-targeted bispecific antibodies [258]

TP53 Mutant AML Hu5F9-G4 Clinical/phage III CD47 inhibition [259]

Lymphoma

Hodgkin lymphoma (HL)

PLX3397 Clinical/phase II Highly selective inhibitor of CSF1R and Kit receptor
tyrosine kinases [260]

Brentuximab Vedotin Clinical/phase IV An anti-CD30 antibody–drug conjugate [261]

Mocetinostat Clinical/phase II An oral isotype-selective histone deacetylase inhibitor [262]

Non-Hodgkin lymphoma (NHL)

Hu5F9-G4 + Rituximab Clinical/phase II CD47 inhibition [263]

Hu5F9-G4 + Rituximab +
Acalabrutinib Clinical/phase I CD47 inhibition [264]

IMM0306 Clinical/phase I CD47/SIRPα-targeted bispecific antibodies [265]

ALX148 Clinical/phase I/II Inhibiting CD47-SIRPα checkpoint [266]

Gentulizumab Clinical/phase I CD47 inhibition [267]

Anti-CD47 mAb Hu5F9-G4 Clinical/phase II Enabling phagocytosis of tumor cells by TAM [263]

Dacetuzumab Clinical phase II Anti-CD40 mAb [268]

Myeloma MM

Trabectedin Trabectedin Antiangiogenic and macrophage killing due to
CCL2-CCR2 signaling axis

TTI-621 Phase Ib SIRPα-IgG1 Fc fusion protein inhibiting
CD47-SIRPα Checkpoint [137]

TTI-622 Phase Ia/Ib SIRPα-IgG1 Fc fusion protein inhibiting
CD47-SIRPα Checkpoint [269]

AO-176 Phase I/II Humanized IgG2 anti-CD47 mAb inhibiting
CD47-SIRPα Checkpoint [270]

SRF231 Phase Ia/Ib Fully human anti-CD47 mAb inhibiting
CD47-SIRPα Checkpoint [271]

BI-505 Phase I Fully human anti-ICAM-1 mAb
overcoming immunosuppression [272]

Dacetuzumab Clinical phase II Anti-CD40 mAb [268]

IBI-322 Clinical/phase I CD47/SIRPα-targeted bispecific antibodies [273]
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6.1. Macrophage Role in Leukemia

Leukemic stem cells (LSCs) share the survival and functional properties of the hematopoi-
etic stem cell (HSC). These cells and the hematopoietic microenvironment can give rise
to persistent leukemia, which cannot be completely eradicated. The presented TAMs in
the microenvironment of leukemia are called LAMs [274]. Acute lymphoblastic leukemia
(ALL), AML, and CLL are three subtypes of leukemia. Recent studies have focused on the
significance of TAMs in cancer development.

6.1.1. ALL

The activation of the CXCR4/CXCL12 axis has been shown to block the polarization of
TAMs to the M1 phenotype [241]. Plerixafor is an inhibitor of CXCR4, which is reported to
improve clinical scores in T-ALL. In a study by Song et al., 97 bone marrow (BM) samples
from patients with acute leukemia (26/97 with ALL) were compared to 30 healthy control
samples from individuals with iron-deficiency anemia [275]. The count of CD68-, CD163-
, and CD206-positive macrophages was notably higher in the leukemic BM samples in
comparison with the control group. These cells significantly decreased after therapy in
patients who achieved complete remission. Nevertheless, they remained higher than the
control group. Considering the CD68 as a pan-macrophage marker, the CD163+/CD68+ or
CD206+/CD68+ ratio was enhanced in the leukemic BM samples, which further supports
M2 polarization. Further, the amount of CD163+ cells was an autonomous prognostic issue
in these patients. The T-ALL cells co-cultured with M2 macrophages led to significant
induction of leukemic cell proliferation through IL-6, growth-related oncogene (GRO)-
α, C5a, and TNFα [276]. Hohtari et al. analyzed the immune cell composition in the
bone marrow of adult precursor B cell ALL patients. They found an increased amount of
M2-like macrophages and myeloid-derived suppressor cells in the BM of ALL patients
compared to healthy ones [277]. Various patterns of expressed TAM genes and phenotypes
in the BM versus spleen were detected through analysis of multiple lymphoid organs
in the Notch1 mouse model with overexpressed T-ALL. It was also demonstrated that
splenic TAMs stimulate the growth of T-ALL cells better than bone marrow TAMs [278].
Several studies proposed the efficacy of leukemic cells and TAMs in the TME in the
development of ALL. For example, Valencia et al. found that ALL cells release bone
morphogenetic protein 4 (BMP4), which can generate M2-like macrophages and induce
immunosuppressive dendritic cells. These cells could produce TNFα in low levels and
great levels of IL-10, CCL2, and IL-6. [245]. Additionally, a recent report on malignant ALL
cells demonstrated that the deletion of stromal interaction molecule 1 (STIM1) and STIM2
restores the pro-inflammatory status of TAMs through IFNγ and reduces the number of
infiltrated macrophages [279]. These findings suggest that the interplay between TAMs
and leukemic cells and TAMs may be involved in the promotion of tumorigenesis in ALL.

6.1.2. AML

AML is often associated with poor clinical outcomes [280]. One factor that contributes
to the high rate of relapse, failure of targeted and traditional treatments, and mortality in
AML patients is its resistance to therapy. The mechanisms of resistance in AML treatment
are not fully understood. Therefore, finding novel strategies to overcome therapy resistance
is essential for successful AML treatment [281]. Previous research has primarily focused
on the mechanisms of therapy resistance that are inherent to leukemic cells, such as TP53
mutations. These studies have not extensively examined the mechanisms of acquired resis-
tance that occur through exterior processes [282]. However, recent evidence suggested that
the interplay between leukemic cells and other cells in the bone marrow microenvironment
(BMME) can lead to acquired therapy resistance in AML.

Recently, Moore et al. found that bone marrow macrophages could decrease the
growth of AML in animals through a process called LC3-associated phagocytosis. This
process involves the phagocytosis of dying and dead leukemic cells, which includes the mi-
tochondria within the leukemic blasts. These functions could activate the stimulator of IFN
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genes (STING) and lead to the production of inflammatory signals that enhance phagocyto-
sis and inhibit the expansion of leukemic cells [283,284]. High levels of CD16/CD32 and
CD64 are expressed in the spleen and bone marrow macrophages as Fc-activating receptors,
which lead to the inhibition of AML through phagocytosis [285]. CD200 is a protein that
is overexpressed in AML stem cells (LSCs). This protein can attenuate the response of
macrophages to AML [285]. Moreover, treatment with an anti-CD200 antibody can specifi-
cally facilitate the phagocytosis of CD200+ AML cells by macrophages through a process
called antibody-dependent cell phagocytosis (ADCP) [286]. AML cells that had mutated
DNA (cytosine-5)-methyltransferase 3A (DNMT3A) were found to inhibit the polarization
of M1 macrophages and resist their killing effect in the laboratory and animal models.
In animals with xenografts (transplants of human tumors into mice), the experimental
group had significantly larger tumor volumes and a higher proportion of M2 macrophages
compared to the control group [287]. Interleukin 4 (IL4) has a powerful anti-leukemic effect
in mice by promoting the phagocytosis of AML cells by macrophages. IL4 stimulation leads
to the upregulation of CD47 in a STAT6-dependent manner. Moreover, the combination of
IL4 stimulation with CD47 blockade further enhances the phagocytosis of AML cells by
macrophages [288]. Chenodeoxycholic acid (CDCA) [289] is a type of bile acid, which can
inhibit the polarization of M2 macrophages. These cells may have a synergistic effect on
reducing the progression of AML. A potential target for chimeric antigen receptor T cell
(CAR-T) therapy of AML is the C-type lectin domain family 12 member A (CLEC12A). Its
expression level is closely linked to treatment response and patient survival outcomes. The
expression of CLEC12A is positively correlated with the infiltration of type 2 macrophages
and monocytes [290]. Peritoneal resident macrophages in AML-AF9-induced mice had an
M2-like phenotype, which can contribute to cancer progression [291].

Studies determining the function of macrophages (Mϕs) in AML have been limited by
challenges in accurately distinguishing non-malignant from malignant or AML-associated
Mϕs. Conventional methods such as immunohistochemistry and flow cytometry have
been routinely used for AML patients to determine M2-like Mϕs/monocytes in the bone
marrow or spleen based on myeloid markers such as CD163 and CD206. Nevertheless,
these myeloid markers are also expressed on Mϕs, non-malignant monocytes, and AML-
associated Mϕs. Recently, the detection of mutations and transcript expression discrepancy
has been facilitated using single-cell RNA sequencing and genetic profiling. These methods
allow for the specific characterization of malignant and non-malignant Mϕs within the
BMME of AML [292]. Despite improvements in the identification of TAMs/M2-like Mϕs,
our knowledge of the biology of Mϕ in AML has just started to develop. Significant
questions remain about the different Mϕ groups within the BMME and their role in disease
development. Given new technologies like CO-Detection by indEXing (CODEX) [293], the
interplay between AML blasts and the surrounding BMME could be visualized. Single-cell
sequencing technologies like MacSpectrum employ single-cell RNA sequencing data and
can distinguish distinct macrophages derived from bone marrow and adipose tissue. These
methods are also contributing to our knowledge of the complex function of macrophages in
different diseases, like AML. It is important to comprehensively characterize tissue-resident
Mϕs and LAMs in the BMME to explore molecular differences for the precise targeting
of LAMs. This will be crucial in generating novel Mϕ targeting strategies with improved
efficacy and declined toxicity. Possible combinations for the treatment of Mϕ-mediated
therapy resistance, such as selumetinib and/or AZD5991 or CYC065, could be considered as
new therapeutic approaches to prevail Mϕ- and MCL-1-driven therapy resistance in AML.
In light of these facts, the future holds great promise for the development of unprecedented
therapies targeting Mϕ-mediated immunomodulation in AML [294].

6.1.3. CLL

CLL is a common and frequent type of leukemia in the elderly population. CLL and
its related condition, known as small lymphocytic lymphoma (SLL), are recognized as
belonging to the category of mature B cell neoplasms by the World Health Organization
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classification [295]. CLL can range from mild to aggressive in terms of its symptoms, and
its treatment can range from a watchful waiting approach to immediate treatment [221].
TAMs, also known as NLCs (Nurse-like cells) in CLL [296], are a part of the TME and
resemble M2-polarized macrophages. The level of TAM infiltration has been correlated
with a poor prognosis, but this has not yet been proven for CLL [297]. Studies have shown
that isolated CLL cells die in vitro, but when co-cultured with NLCs, they can proliferate.
This observation suggests that the key to a cure for CLL may lie in the features of the TME
and tumor cells. A better mechanistic grasp of the TME could lead to the development
of efficient cancer therapies that target its modulation. These therapies could ring about
personalized cancer treatments with better tolerance and fewer side effects [298].

The TNFR (tumor necrosis factor receptor) ligand, known as APRIL, has a remarkable
role in the proliferation of CLL cells. However, the exact mechanism has not been revealed.
Van Attekum et al. examined the role of APRIL in various aspects of CLL biology using a
co-culture system with APRIL overexpression, recombinant APRIL, and APRIL reporter
cells [299]. They found that APRIL had no effects on the survival of CLL cells in these
systems and did not enhance the activation of NF-κB or affect CLL proliferation in single
or combined stimuli. Additionally, the survival effect of macrophages on CLL cells was
not affected by the APRIL decoy receptor transmembrane activator and CAML interactor-
Fc [300]. These results suggest that the direct role of APRIL in CLL cell survival may
have been overestimated due to the use of high levels of recombinant APRIL. Nurse-like
cells (NLCs), also known as CLL-specific TAMs expressing CD68 and CD163 [301], have
been shown to protect the CLL B cells from apoptosis through stromal cell-derived factor-
1 [296]. NLC differentiation includes significant DNA methylation changes, which are MEK
pathway dependent. MEK inhibitors reduce NLC numbers in vitro and may decrease the
number of splenic monocytes/macrophages, which are mainly the M2-like population.
The M2-like phenotype was observed in NLCs from high-viability CLL cultures. These
cells can attract and facilitate contact with cancer cells, which has been linked to their
protective function. In contrast, NLCs from low-viability CLL cell cultures show an M1-like
phenotype and do not attract CLL cells. The addition of IL-10 to the culture can induce an
M2-like phenotype in NLCs and increase CLL cell viability. On the other hand, TNF can
depolarize protective M2-like NLCs into non-protective M1-like NLCs. IL-10 can repolarize
TNF-depolarized NLCs and restore their protective effect on CLL cells [302].

6.2. Macrophage Role in Lymphoma

The progression of lymphoma could be supported by macrophages both in classic
Hodgkin’s lymphoma (CHL) and non-Hodgkin’s lymphoma (NHL) (Figure 4).

6.2.1. Hodgkin Lymphoma

Studies have shown that the presence of CD163+ macrophages in tumor tissue is
related to poor survival in patients with classical Hodgkin lymphoma (CHL) [303]. Addi-
tionally, a lower number of TAMs in CHL samples was correlated with a higher progression-
free survival rate [304]. The lower level of M2 macrophages has been linked to a complete
response and better survival [305]. The expressions of both TAM markers, CD68, and
CD163 [306] are essential predictors of complete remission in CHL patients [307]. A high
ratio of LAMs to Hodgkin–Reed–Sternberg cells at diagnosis is associated with a higher
risk of CHL progression or death [308].

6.2.2. Non-Hodgkin Lymphoma

The number of CD68+ and CD163+ macrophages significantly increases in all three
grades of follicular lymphoma [309]. A high PD-1 expression on TAMs in the T cells of
non-Hodgkin lymphoma may predict a poor prognosis. It enhances the pro-tumor effects of
the TME and inhibits the polarization of M1 macrophages and phagocytosis [310]. A high
M2 TAM content at diagnosis, particularly in combination with an international prognostic
index, may be a factor in the identification of diffused large B cell lymphoma patients [311].
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GM-CSF amplifies the inhibitory effect of CHOP chemotherapy on DLBCL progression
by promoting the polarization of M1 macrophages [312]. Enhanced M2 macrophage
activation and lipid metabolism have been observed in the immunosuppressive tumor
microenvironment of non-MYC/BCL2 double express or DLBCL [313]. The LXRα-related
signaling pathways and functions are connected to M1 polarization and may increase the
immune reactivity of macrophages in DLBCL [314].

6.3. Macrophage Role in Multiple Myeloma

Macrophages are a type of immune cells that are prevalent in the bone marrow of
individuals with multiple myeloma (MM) and can support the proliferation, induce drug
resistance, and contribute to the formation of an immunosuppressive environment. Beider
et al. demonstrated that the interactions between macrophages and MM tumor cells result in
the polarization of macrophages toward an M2 phenotype [315]. This process increases the
production of CXCL13 and activates osteoclasts, which have the ability to resorb bone and
promote MM progression. IL-32γ can promote drug resistance in MM through macrophages
and modify macrophages towards an M2 phenotype [316]. Increased TAMs in MM patients
can stop the functions of cytotoxic T lymphocytes (through the PD-1/PD-L1 pathway)
and contribute to the evasion of the immune system by myeloma cells [317]. Exosomes,
derived from MM containing IL-32γ, can increase the expression of PD-L1 by macrophages
and lead to immune evasion. The PFKFB3-JAK1(6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3-Janus kinase 1) axis may also play a role in the expression of PD-L1 by
macrophages [318]. Gao et al. found that daratumumab (DAR) has a significant anti-tumor
effect on MM in mice through its interaction with macrophages via Fc-FcγR. DAR induces
the activation of macrophages in mice and results in the phagocytosis of cancer cells through
the Fc-FcγR interaction [319]. RGS12 (regulator of G-protein signaling 12) can inhibit the
progression and metastasis of MM by the induction of M1 macrophage polarization and
activation in the bone marrow microenvironment (BMME) (Figure 4) [320].

7. Challenges in TAM-Based Therapeutics (in Solid or Hematologic Tumors)

The reduction in negative side effects with TAM-based strategies is an ongoing chal-
lenge. Due to the complicated functions of macrophages in maintaining homeostasis,
TAM depletion could increase the risk of infections or disorganize tissue-resident cells and
prevent them from performing their usual functions. Therefore, discovering TAM-specific
molecules or markers that are mainly created through metastasis-associated macrophages
(MAMs) and/or activated M2 (AAMs) will enable therapeutic approaches to specifically
target tumor cells without affecting the normal function of other immune cells which are
tissue-resident [321]. The potency of wound healing and phagocytosis in non-tumor tissues
should be preserved as a goal of the techniques which target macrophage reprogramming.

8. Conclusions

Macrophages are endowed with the ability to adapt and change their function based
on external stimuli. They are prevalent in the TME and have an indispensable role in cancer
progression. Various efforts have been made to alter the behavior of TAMs and inhibit their
functions in the promotion of tumor growth. However, the ability of macrophages to travel
to both primary tumors and metastatic sites presents an opportunity for their application
as a means for the delivery of cellular therapies to cancer cells. As antigen-presenting cells,
macrophages link innate immune responses with adaptive immunity. The development
of gene engineering techniques, such as the use of Vpx-LV and Ad5f35 as vectors for
modification of primary human macrophages, has opened the possibility of redirecting
the function of these cells against tumors through synthetic biology. In addition, immune
modulatory vaccines, which target TAMs in the TME, have emerged as an alternative to
traditional antibodies or small molecule inhibitors and have shown promise in preclinical
and clinical trials.
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