
Citation: Wang, Y.; Ye, S.; Wu, D.; Xu,

Z.; Wei, W.; Duan, F.; Luo, M.

Identification, and Experimental and

Bioinformatics Validation of an

Immune-Related Prognosis Gene

Signature for Low-Grade Glioma

Based on mRNAsi. Cancers 2023, 15,

3238. https://doi.org/10.3390/

cancers15123238

Academic Editors: Moncef Berhouma

and Alfredo Conti

Received: 7 April 2023

Revised: 8 May 2023

Accepted: 9 June 2023

Published: 19 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Identification, and Experimental and Bioinformatics Validation
of an Immune-Related Prognosis Gene Signature for
Low-Grade Glioma Based on mRNAsi
Yuan Wang 1,†, Shengda Ye 2,† , Du Wu 2, Ziyue Xu 2, Wei Wei 2, Faliang Duan 1 and Ming Luo 1,*

1 Department of Neurosurgery, Wuhan No. 1 Hospital, Wuhan 430061, China; wyuancn@163.com (Y.W.);
duanfaliang@126.com (F.D.)

2 Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430061, China;
yeshengda@whu.edu.cn (S.Y.); wudu2015@whu.edu.cn (D.W.); xzy0727@whu.edu.cn (Z.X.);
wei.wei@whu.edu.cn (W.W.)

* Correspondence: luoming202111@163.com
† These authors contributed equally to this work.

Simple Summary: In this study; four immune-related predictive biomarkers for LGG were identified
and proven to be IRGs. The development of more efficient immunotherapy techniques was facilitated
by the creation of a prognostic signature to evaluate and forecast the prognosis of LGG patients. The
immune-related prognostic score was then used to build a nomogram that was subsequently used to
more accurately predict the prognosis of LGG patients

Abstract: Background: Low-grade gliomas (LGGs), which are the second most common intracranial
tumor, are diagnosed in seven out of one million people, tending to develop in younger people.
Tumor stem cells and immune cells are important in the development of tumorigenesis. However,
research on prognostic factors linked to the immune microenvironment and stem cells in LGG patients
is limited. We critically need accurate related tools for assessing the risk of LGG patients. Methods: In
this study, we aimed to identify immune-related genes (IRGs) in LGG based on the mRNAsi score. We
employed differentially expressed gene (DEG) methods and weighted correlation network analysis
(WGCNA). The risk signature was then further established using a lasso Cox regression analysis and
a multivariate Cox analysis. Next, we used immunohistochemical sections (HPA) and a survival
analysis to identify the hub genes. A nomogram was built to assess the prognosis of patients based on
their clinical information and risk scores and was validated using a DCA curve, among other methods.
Results: Four hub genes were obtained: C3AR1 (HR = 0.98, p < 0.001), MSR1 (HR = 1.02, p < 0.001),
SLC11A1 (HR = 1.01, p < 0.01), and IL-10 (HR = 1.01, p < 0.001). For LGG patients, we created an
immune-related prognostic signature (IPS) based on mRNAsi for estimating risk scores; different risk
groups showed significantly different survival rates (p = 3.3 × 10−16). Then, via an evaluation of the
IRG-related signature, we created a nomogram for predicting LGG survival probability. Conclusion:
The outcome suggests that, when predicting the prognosis of LGG patients, our nomogram was
more effective than the IPS. In this study, four immune-related predictive biomarkers for LGG were
identified and proven to be IRGs. Therefore, the development of efficient immunotherapy techniques
can be facilitated by the creation of the IPS.

Keywords: immune-related prognostic signature; glioblastoma; bioinformatics; experiment; nomo-
gram; prognosis; WGCNA; mRNAsi

1. Introduction

Gliomas account for 31% of primary central nervous system (CNS) cancers. Based on
their histological characteristics, the World Health Organization (WHO) classifies gliomas
into grades I–IV. Grade IV refers to glioblastomas and grades I–III refer to low-grade

Cancers 2023, 15, 3238. https://doi.org/10.3390/cancers15123238 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15123238
https://doi.org/10.3390/cancers15123238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-7564-1273
https://doi.org/10.3390/cancers15123238
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15123238?type=check_update&version=1


Cancers 2023, 15, 3238 2 of 20

gliomas (LGGs) in The Cancer Genome Atlas (TCGA) and other databases. About 10–20%
of all primary brain tumors are LGGs, and they generally grow slower than LGGs. People
with low-grade gliomas have a median survival time of about 4.7–9.8 years, although
some people with subtypes of LGG can live for up to 13 years. The mean incidence of
LGGs is 0.7/100,000. Patients diagnosed with LGG are generally young, on average being
diagnosed at 21.9 years old for grade I glioma and 33.6 years old for grade II glioma.
Despite patients with LGG surviving longer than glioblastoma patients, LGG patients
typically undergo aplastic conversion or dedifferentiation into high-grade gliomas (HGG) 4
to 5 years after diagnosis [1,2]. Medical or surgical management of LGG in neuro-oncology
can be controversial. Despite this, the aim of therapy is to prolong overall survival (OS) and
to maintain a good quality of life. For patients with LGG, treatment decisions are based on
certain high-risk signatures. The impact of molecular and tumor biomarkers on treatment
will constantly evolve as we improve our understanding of them [3].

Due to the poor prognosis of LGG, new prognostic markers are critically needed. The
mRNA stemness index (mRNAsi) based on mRNA expression can accurately quantify the
similarity between cancer cells and stem cells and reflect the gene expression character-
istics of stem cells. Immunotherapy is widely used in the treatment of various tumors.
However, with the heterogeneity of tumors, their intracranial location, and the variety of
immunosuppressive tumor microenvironments, immunotherapy has made little advance
in LGG during recent decades [4]. Thus, new prognostic biomarkers need to be urgently
discovered [5]. Recent advances in bioinformatics have promoted public database mining
as a tool for identifying cancer biomarkers. The increasing amount of theoretical research
conducted on immunotherapy using immune-related genes (IRGs) has yielded promising
results for a range of cancers [6]. Growing evidence shows that immune-related prog-
nostic biomarkers can aid in immunotherapy [7]. Exploring immune-related prognostic
biomarkers in prostate cancer, Fu et al. provided guidelines for individualized diagnosis
and therapy [8]. However, there is a shortage of research on prognostic indicators in LGG
adults: only a few genes have been used for research, and their mechanism of action
remains unknown. The treatment of glioma may require more gene targets and binding
molecular drugs. Our recently published study, which carefully selected an independent
immune-related prognostic marker and provided guidelines for suitable treatments for
better outcomes, re-established an innovative IRG-based prognostic model in GBM [9].
Here, we used a similar approach and combined with mRNSsi to construct a prognostic
signature of LGG to help clinicians assess patient prognosis, which is the novelty of this
study.

2. Materials and Methods
2.1. LGG and Perineural Tissue Acquisition

From December 2022 to March 2023, 6 LGG tissue samples and 6 normal peritumoral
tissue samples were collected from the neurosurgery, Zhongnan Hospital, Wuhan Univer-
sity. All LGG patients underwent pathological diagnosis and signed an informed consent
form. The study was approved by the Ethics Committee of Central South Hospital of
Wuhan University.

2.2. Collecting Immune-Related Genes and Datasets

Figure 1 shows a flow chart of the experiment, which also shows the identification
and validation of immune-associated biomarkers based on the difference in mRNAsi
scores for LGG prognosis. Standardized fragments per kilobase per million mapped
reads (FPKM) of LGG were obtained using the GDC hub of UCSC Xena browser (https:
//xenabrowser.net/datapages/, accessed on 2 March 2023). However, clinically insufficient
tumor samples were excluded as they require further investigation. The present study used
a total of 649 LGGs, their clinical variables (stage, grade, age, tumor type, and gender), and
their complete survival data. The TCGA-LGG data were normalized via the R package
DEseq.2 [10] (log transformation and library-size normalization included).

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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Additionally, using the Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/, accessed on 2 March 2023), two independent data cohorts were
gathered: GSE43378 [11] and GSE107850 [12]. We started downloading three datasets and
performed RMA normalization on them using the R package Affy [13]. Afterward, we
matched probe IDs to gene symbols using the annotation files for GPL570 and GPL14951.
Through the GlioVis database (http://gliovis.bioinfo.cnio.es/, accessed on 2 March 2023),
additional data cohorts (Gravendeel, Rembramdt, and CGGA-LGG) were gathered. MMD1,
comprising 364 LGG tissues, was created in order to identify differentially expressed genes
(DEGs). Furthermore, MMD2 (n = 649) was formed by merging GSE43378, which includes
51 LGGs with complete survival information, and CGGA, which includes 98 LGGs with
complete survival information, to identify prognostic values.

2.3. Calculation of the mRNA Stemness Index

A machine learning algorithm for one-class logistic regression (OCLR) was applied to
the pluripotent stem cell samples, and the mRNAsi of each LGG sample was calculated
in accordance with the methodology of Malta et al. This method was previously used to
predict the stemness of cancer [14–16]. Then, we divided the TCGA samples into high and
low scoring groups according to the median.

2.4. WGCNA to Filter Key Module

The IRGs came from the ImmPort database (https://www.import.org, accessed on
3 March 2023). We collected 2498 IRGs from the database and selected 1617 genes that
coincided with the MMD2 gene list for further analysis. The 1617 IRGs obtained were
constructed into an expression matrix using GoodSamplesGenes and the sample network
method. The cut-off value, at Z.Ku 2.5 (Z.ku = (ku − mean(k))/(sqrt(var(k))), also produced
exceptional results. The WGCNA R package was subsequently used to create co-expression
networks [17]. Then, we used the branch cutting method to divide the IRGs into gene
modules [18]. Branches were cut with the crucial parameters set as min-ClusterSize = 30
and deepSplit = 2. By comparing the differences in the module eigengenes, the modules
with high correlation were selected according to a criterion of correlation greater than
0.6. As a starting point, we evaluated gene significance (GS) in order to search for key
modules connected to the mRNAsi score (selected disease characteristics had high or low
mRNAsi scores). Furthermore, the average GS for all genes was used to calculate the
module significance (MS). We chose the module that was thought to be the most pertinent
and crucial by following the above-described steps.

2.5. Determination of Immune-Related Genes with Differential Expression

In order to identify DEGs from low- and high-mRNAsi-score tissues based on MMD1,
which comprises 364 LGG samples [19], with the R package “limma”, the expression matrix
in MMD1 based on limma was used to identify DEGs with |log2FC| ≥ 0.4 and adjusted
p-value < 0.01.

2.6. Hub Gene Identification

We obtained the results of the WGCNA analysis and used the genes identified as being
DEGs as the key genes for inclusion in the subsequent analysis.

2.7. Identification of Hub Genes

Using a combined WGCNA and DEG analysis, we discovered all overlapping hub
genes, and then, we attempted to eliminate potential prognostic biomarkers. Progression-
free survival (PFS), disease-specific survival (DSS), and overall survival (OS) analyses
were carried out independently via the R package survival [20]. p < 0.05 was set as the
threshold. In both survival analyses, genes with significant values were regarded as
potential prognostic genes. The R package clusterProfiler [21] functionally annotated the

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://gliovis.bioinfo.cnio.es/
https://www.import.org
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potential prognostic genes for the GO pathway and KEGG enrichment analyses. We then
defined the significant KEGG and BP pathway terms with p < 0.05 as the criterion.

2.8. Chemotherapy Sensitivity Response Predictions

Using the oncoPredict R package, an R package that performs a comprehensive
analysis of drug response and drug response markers based on machine learning of cell
line data, we calculated the half-maximum inhibitory concentrations (IC50) of some drugs
in the LGG sample to predict chemical sensitivity (v0.5).

2.9. Translation Level of Hub Gene Expression Identification

The different transcriptional expression levels of hub genes for normal and LGG
tissues were validated via the GlioVis database (http://gliovis.bioinfo.cnio.es/, accessed
on 2 March 2023) after screening for potential prognostic genes [22]. The Gene Expression
Profiling Interactive Analysis (GEPIA) webtool (http://gepia.cancer-pku.cn/, accessed on
3 March 2023) and the GlioVis database were applied to explore the relationships between
the hub genes. We also used the Human Protein Atlas (HPA) database (https://www.
proteinatlas.org/, accessed on 5 March 2023) to obtain information on the differences in
protein expression between normal and LGG samples.

2.10. Prognostic Risk System Establishment

After combining the hub genes’ expression levels and the univariate Cox regression
analysis of OS’s coefficients (Coef), we used the prognostic genes’ potential prognostic
significance to develop an IPS. The following is the definition of the LGG sample risk score
(RS):

Risk score = ∑n
i=1 Coefi × Expi

The expression level of the hub genes is represented by Exp in the equation, and Coef
is the multivariate Cox regression analysis’s regression coefficient. The RSs of LGG in
MMD1 and MMD2 can be used to evaluate the risk system’s ability to forecast lethality.
Based on the median RS in the above dataset, the group was divided into two (low risk
and high risk). Additionally, time-dependent receiver operating characteristic (ROC) (one-,
three-, and five-year) curves were created via the “survivalROC” R package [23].

2.11. Multivariate Cox Regression Analysis

The RSs based on algorithm and additional important clinical factors (such as family
history of primary brain tumors, gender, and age) were selected from the MMD2 data.
Then, a univariate Cox analysis of OS was conducted to confirm the system’s prognostic
significance. p < 0.05 was used as the standard to judge if the risk score and other clinical
factors could predict OS in LGG patients. The results were visualized using the R software
package forestplot [24].

2.12. Nomogram Construction and Verification

We attempted to create a nomogram to better understand the practical application
of this risk system. Based on the developed IPS and the R package rms, the nomogram
was created after performing a cross-validation to prevent overfitting. The nomogram
was then sent through a calibration curve for analysis. Accordingly, the 45◦ line had the
highest degree of prediction potential. In order to investigate the clinical significance of the
nomogram, we also used the R package rmda to perform a decision curve analysis [25].

2.13. Prognostic Risk Signature Functional Exploration

We employed a gene set enrichment analysis to create a biological behavior predictive
risk system. We first calculated the RSs for all samples in the MMD2 data. After that,
2 groups of 649 LGGs were created based on the differences in their hub genes’ expression.
After the data were annotated using the c2.cp.kegg.v7.4.symbols.gmt gene set, a gene size
(n) of 20% and an FDR of 25% were set as the standards considerably enriched by the

http://gliovis.bioinfo.cnio.es/
http://gepia.cancer-pku.cn/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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KEGG [26] and GSEA (http://software.broadinstitute.org/gsea/index.jsp, accessed on 6
March 2023) pathways, with |ES| > 6, p = 0.05.

2.14. Relevance between Hub Genes’ Expression and Immune Cells

Immune cells are used as potential independent biomarkers of cancer survival. There-
fore, the R program ESTIMATE [27] was used to assess the link between prognostic biomark-
ers and immunocytes. In order to evaluate the interaction between IPS and immunocytes,
we additionally assessed the Immune-related Cell Type relevance through Estimating Rela-
tive Subsets of RNA Transcripts (CIBERSORT) (https://cibersort.stanford.edu/, accessed
on 7 March 2023) [28].

2.15. qPCR

RNA from low-grade glioma tissue and peritumor tissue is first extracted and quanti-
fied by a nanophotometer (Implen GmbH, Munich, Germany) using RNAiso Plus (Takara,
Kusatsu, Shiga, Japan). The amplification process is monitored in real time using a flu-
orescent dye, which allows for quantification of RNA initiation. More than 5 biological
replicates were designed for each sample tested. HiScript® III RT SuperMix (Vazyme,
Nanjing, China) and ChamQ Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China)
were used for RT-qPCR with 500 ng total RNA according to the kit’s instructions. GAPDH
was used as an internal reference gene, and the 2−∆∆Ct method was used for calculation.
Supplementary Table S1 lists the primers used in our experiment.

2.16. Statistical Analysis

All figures and data were compiled in R software (version 4.2.1). The survival curves
were plotted using the log-rank test, and differential expression was assessed using the
Wilcoxon rank-sum test. Additionally, the continuous variables were examined using
Student’s t-test. The statistical significance cut-off was 0.05.

3. Results
3.1. Key Module Identification

In total, 42 outliers were removed from 607 LGGs for WGCNA (Figure 2A). We
assessed adjacency using a soft threshold (β) = 3 (Figure 2B). Afterward, the IRGs were
divided into six gene modules and identified as shown in Figure 2C. Gray modules,
which were excluded from the following study, were created by grouping genes with low
correlation to the relevant characteristic. Disease status was significantly correlated with
the remaining five modules (high or low mRNAsi score), and the module that most closely
related to disease status was the turquoise module (p = 8.4 × 10−68, R2 = −0.61). Significant
correlations between the blue module’s GS and MM were found (cor = 0.82, p = 1.5 × 10−70,
Figure 2E). GS and MM in the blue, yellow, and brown modules were also meaningful:
blue, cor = 0.58, p = 1.7 × 10−14; yellow, cor = 0.55, p = 1.3 × 10−7; and brown cor = 0.80,
p = 2.6 × 10−33. As shown in Figure 2I, the turquoise module was the key module because
it has the highest MS among the six modules. Figure 2J displays these IRGs’ network
heatmaps. A traditional MDS diagram (Figure 2K) demonstrates the independence of the
10 modules.

3.2. Hub Gene Screening

We compared the survival curves of the two groups; a Kaplan–Meier analysis sug-
gested that patients with lower mRNAsi scores had worse OS compared with the high-
mRNAsi-score group (log-rank p = 7.3 × 10−7, Figure 3A). In total, 166 DEGs (141 un-
derexpressed and 25 overexpressed) were screened using MMD1 in accordance with the
predetermined cut-off criteria (Figure 3B). Additionally, we created a heatmap to display
the variations in DEG expression between healthy and tumor tissues (Figure 3C). Finally,
combined with the WGCNA results, 30 overlapping hub genes were chosen (Figure 3D).

http://software.broadinstitute.org/gsea/index.jsp
https://cibersort.stanford.edu/
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1 
 

 

1 
 

 Figure 2. (A) A sample dendrogram and trait heatmap. Patient condition is indicated by color
intensity. (B) Histogram of frequency distribution when = 3; scale-free topology check when = 3.
(C) Dendrogram of differentially expressed gene groups using the dissimilarity metric (1-TOM).
(D) Heatmap illustrating the association between clinical data and module eigengenes for LGG.
(×10−H) (E–H)Scatter diagrams demonstrating the relationship between module membership and
gene significances in blue, black, turquoise, and purple modules. (I) The average gene significance
distribution in modules associated with the presence of LGG disease. (J) Plotting of the network
heatmap for all WGCNA genes. (K) A conventional MDS plot with the input of TOM dissimilarity.
Module assigns a color to each dot with a gene designation.
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Figure 1. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Table 1. This is a table caption. Tables should be placed in the main text near to the first time they
are cited.

Title 1 Title 2 Title 3

Entry 1 Data Data
Entry 2 Data Data 1

1 Tables may have a footer.

The text continues here (Figure 2 and Table 2). 64

Figure 3. (A) Survival analysis in MMD1. (B) A volcano plot showing the IRGs that were expressed
differently in the MMD1-LGG data. (C) Heatmap of IRGs differentially expressed between high-
and low-mRNAsi-score samples (fold change > 1, p = 0.05, MMD1). (D) Venn diagrams showing
the common genes found in the DEG and WGCNA. (E) Survival analysis (OS) of Venn diagram
genes in TCGA-LGG. (F) The findings of a separate survival analysis (DSS) for Venn diagram genes
in TCGA-LGG. (G) The findings of a separate survival analysis (PFS) for Venn diagram genes in
TCGA-LGG. (H) Lasso Cox curve for hub genes. (I) Forest plots of four hub genes.

3.3. Screening for Potential Prognostic Genes

We subsequently included the 30 hub genes for OS and DSS analysis; 24 hub genes
showed significant OS survival (Figure 3E). In the DSS analysis, 20 genes had p-values that
were less than 0.05 (Figure 3F), and in the PFS analysis, 18 genes had p-values that were
less than 0.05 (Figure 3G). Furthermore, a lasso Cox analysis (Figure 3H) was employed to
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screen the hub genes, which showed significance in terms of survival in the above three
analyses. Four prognostic genes were then acquired as prognostic biomarkers for LGG
and used in the multivariate Cox regression analysis: C3AR1 (p < 0.001, HR = 0.98), IL18
(p = 0.009, HR = 1.02), SLC11A1 (p = 0.01, HR = 1.02), and MSR1 (p < 0.0001, HR = 1.01)
(Figure 3I).

Poorer OS (p = 0.0045; Figure 4A) and DSS (p = 0.0027; Figure 4B) were observed in
LGG patients who had higher C3AR1 expressions. The OS and DSS of patients who had
higher IL18 expressions were also worse than those with lower IL10 expressions (p = 0.0014
and p = 0.0001, respectively, in Figure 4C,D). In addition, patients who had higher MSR1
expressions reported poor OS, as shown in Figure 4E (p = 0.0001). The results of the DSS
analysis of PPP4C matched those of the OS analysis (p = 0.00015; Figure 4F). Poorer OS
(p < 0.0001; Figure 4G) and DSS (p < 0.0001; Figure 4H) were observed in LGG patients who
had higher SLC11A1 expressions.
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Figure 4. Kaplan–Meier survival curve and disease-free survival curve: (A,B) C3AR1, (C,D) IL18,
(E,F) MSR1, and (G,H) SLC11A1.

3.4. Potential Function of DEGs

As shown in Figure 5A, DEGs were included in the GO and KEGG enrichment analysis
in order to investigate the roles of these prognostic biomarkers. Additionally, a GO BP
analysis indicated that the DEGs were highly enriched in cell activation and migration,
the positive regulation of response to external stimulus, myeloid leukocyte activation,
leukocyte migration, myeloid leukocyte migration, granulocyte migration, positive regula-
tion of cytokine production, leukocyte activation involved in immune response, leukocyte
migration, and the cytokine-mediated signaling pathway. A KEGG analysis indicated
that the above genes have a role in cytokine–cytokine receptor interactions, natural-killer-
cell-mediated cytotoxicity, the B cell receptor signaling pathway, the chemokine signaling
pathway, lipid and atherosclerosis, the TNF signaling pathway, osteoclast differentiation,
and the Toll-like receptor signaling pathway (Figure 5B).
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3.5. Verification of Hub Gene Expression in Normal Tissues and LGG Tissues

We thoroughly compared the expression of four prognostic biomarkers in LGG tissues
to normal tissues. C3AR1 (p = 8.1 × 10−5; Figure 6A), IL18 (p = 1.5 × 10−4; Figure 6B), MSR1
(p = 1.5 × 10−5; Figure 6C), and SLC11A1 (p = 0.01; Figure 6D) all have higher expressions in
LGG than in normal tissues. Additionally, the relationships between prognostic biomarkers
were further explored. C3AR1 was strongly related to IL18 (R = 0.825, p = 3.3 × 10−129;
Figure 6E), MSR1 (R = 0771, p = 7.6 × 10−117; Figure 6F), and SLC11A1 (R = 0.733,
p = 4.16 × 10−88; Figure 6G). As shown in Figure 6H–J, the connection between the other
three hub genes is strong. The above results suggest that the prognostic biomarkers may
collectively affect LGG prognosis. We verified the translation expression level of all prog-
nostic biomarkers except C3AR1 using the HPA database: SLC11A1, medium staining
(Figure 7B); IL18, medium staining (Figure 7D); and MSR1(Figure 7F), medium staining. All
prognostic biomarkers showed medium staining. These results indicate that all prognostic
biomarkers were evidently expressed in the LGG samples, except for C3AR1, which had
no staining in both LGG tissues and normal tissues. The prognostic biomarkers SLC11A1
(Figure 7A), IL18 (Figure 7C), and MSR1 (Figure 7E) were all not detected in the normal
samples.
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Figure 7. Hub gene expression in normal human and LGG tissue detected by immunochemistry from
HPA database. (A) Typical IHC staining of SLC11A11 in normal tissue; (B) typical IHC staining of
SLC11A1 in LGG tissue; (C) typical IHC staining of IL18 in normal tissue; (D) typical IHC staining of
IL18 in LGG tissue; (E) typical IHC staining of MSR1 in normal tissue; and (F) typical IHC staining
for MSR1 in LGG tissue.

3.6. IPS Building

In order to quantify the risk of LGG patients, we then developed a risk-predicting sys-
tem with all four prognostic biomarkers (C3AR1, IL18, MSR1, and SLC11A1). The following
formula was used to compute the risk scores for the LGG samples: Risk
score = 0.010 × ExpSLC11A1 + 0.020 × ExpMSR1 + 0.009 × ExpIL18 − 0.022 × ExpC3AR1,
that was validated using a multivariate Cox regression analysis (Figure 4F). By setting
the median risk score as the criterion, the data from 649 LGG patients in MMD2 were
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separated into two groups (high-risk-score group, n = 324; low-risk-score group, n = 325).
After performing a survival analysis, we discovered that LGG patients with lower risk
scores had better OS than patients who had higher risk scores (p = 3.3 × 10−16; Figure 8A).
Figure 8B displays the ROC values for the risk system (one-year AUC: 0.829; three-year
AUC: 0.727; five-year AUC: 0.663). We found that patients in the high-risk-score group had
a greater mortality rate than those in the low-risk-score group (Figure 8C). To check the
accuracy and reproducibility of this signature, we performed the same analyses as before
with MMD2. We continued to divide the LGG patients into high- and low-risk (n = 182)
groups. Similar to the previous conclusion, the OS of LGG patients with higher risk ratings
was considerably worse (p = 1.5 × 10−5; Figure 8D). MMD2 correctly determined that
the expected values at 1, 3, and 5 years would be 0.727, 0.785, and 0.805, respectively
(Figure 8E). The results from the TCGA-LGG data are consistent with those in Figure 9F.
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Meier OS curves in MMD1. (E) Time-dependent ROC for IPS in MMD1. (F) Risk assessment heat
map based on MMD1: the sample is sorted from lowest to highest risk.
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Figure 9. (A) The results of the univariate analysis of risk score, family history of brain tumor, age at
primary diagnosis, radiation therapy, and gender based on MMD2. (B) OS univariate analysis of risk
score and family history of brain tumor in MMD2. (C) Nomogram for calculating the patients’ one-,
three-, or five-year OS. The length of the line indicates the risk level of the factor, and the scale can
be used to evaluate the hazard score for each variable. Calibration graphs for forecasting the one-,
three-, and five-year OS are shown in (D–F), respectively. (G–I) DCA for evaluating the clinical value
of immune-related prognostic signatures for one-, three-, and five-year OS; the y-axis displays the net
benefit, and the x-axis displays the percent of threshold likelihood.

3.7. Clinical Nomogram Based on Created Immune-Related Prognostic Signature

We tried to build a nomogram to provide doctors a visual prognosis decision-making
model. The risk score determined by the IPS and a few crucial clinical factors were first
obtained. Risk score (p = 2.8 × 10−6) and family history of primary brain tumor (p = 0.02)
were discovered to be significantly associated with the OS of LGG patients in the univariate
Cox analysis (Figure 9A). Accordingly, the multivariate Cox analysis showed that the risk
score (p = 4.4 × 10−7) can be used to accurately determine the prognosis of LGG patients
(Figure 9B). Next, we developed a nomogram based on the risk score and family history of
primary brain tumors (Figure 9C). The calibration curve showed that the nomogram could
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accurately forecast the survival of LGG patients (Figure 9D–F). The net clinical benefit of
the nomogram was also calculated using DCA. The outcome suggests that, when predicting
the three-year survival rate, our nomogram was more effective than the IPS (Figure 9G–I).
© nomogram and IPS each have their own advantages in various cases.

3.8. GSEA Analysis

We carried out a GSEA analysis to explore the potential role of the IPS. Using the
standards established before in the KEGG analysis, we came to the conclusion that the IPS
influenced MHC class protein complex assembly, MHC II class protein complex assembly,
and peptide antigen assembly with MHC II class protein complexes using GO datasets
(Figure 10A,B). The IPS is also effective in identifying asthma, allograft rejection, and
autoimmune thyroid disease via KEGG enrichment.
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3.9. Correlation between Immune Infiltration and IPS in LGG

We used ESTIMATE and CIBERSORT to calculate the degree of immune infiltration
of MMD2 and explored their correlation. As indicated in Figure 10C, the risk scores and
hub genes both have a strong relation to the ESTIMATE score and immune score. The IPS
and immune cell types were strongly related when assessed via CIBERSORT (Figure 10D).
These signature and hub genes were significantly related to EMSE (p < 0.01), macrophage
M1 (p < 0.01), mast cell resting (p < 0.05), B cells (p < 0.01), and NK cell resting (p < 0.01).
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3.10. Predicting Immunotherapy Response

We also assessed some circulated drugs’ IC50. The high-risk-score group had a low
IC50 compared to several chemical drugs such as temozolomide (p < 0.0001, Figure 11A),
staurosporine (p < 0.0001, Figure 11B), sepantronium bromide (p < 0.001, Figure 11C),
dinaciclib (p < 0.0001, Figure 11D), dactinomycin (p < 0.001, Figure 11E), and bortezomib
(p < 0.0001, Figure 11F), which means that the above drugs were more sensitive to the
high-risk-score group.
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3.11. Validation of Hub Genes’ Expression

The q-PCR results showed that MSR1 (p < 0.05; Figure 12A), IL18 (p < 0.05; Figure 12B),
SLC11A1 (p < 0.05; Figure 12C), and C3AR1 (p < 0.05; Figure 12D) were highly expressed in
the glioma tissue compared with the normal tissues.
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Figure 12. Relative mRNA levels of (A) MSR1, (B) IL18, (C) SLC11A1, and (D) C3AR1 in LGG (n = 6)
were significantly higher than in normal peritumoral tissues (n = 6) (Student’s t-test,** p < 0.01,
* p < 0.05).
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4. Discussion

Low-grade gliomas (LGGs), which are the second most common intracranial tumor,
are diagnosed in seven out of one million people, tending to develop in younger people.
In fact, WHO grade I gliomas are benign and generally occur in children, while tumors
of WHO grades II–III are rarely curable and frequently progress to higher grades. Al-
though the survival rate of LGGs is higher, LGGs also cause a reduced quality of life and
are life-threatening. Additionally, the development of surgical strategy, radiotherapy, and
chemotherapy for LGG has experienced a slowdown. Unfortunately, patients have not expe-
rienced significant improvements in their quality of life as a result of the progress made [29].
Thus, effective therapeutic approaches and prognostic markers are urgently needed in
clinical treatment. In order to provide new prognostic prediction and immunotherapy for
LGG, we therefore sought to identify meaningful prognostic biomarkers.

Immunotherapy is a significant and popular approach in preventing and treating
tumors [30]. Presently, increasingly more studies have been exploring new prognostic
biomarkers associated with the tumor immune microenvironment, including LGG. Recent
research has investigated the microenvironmental landscape in brain tumors, including
LGG, HGG, and brain metastases, and uncovered the features of disease-specific immune
cells, which has helped us to explore immunotherapy for brain tumors [31]. Tan et al. found
a relationship between prognosis for patients with glioma and IRGs via four datasets of
GEO and found that the combined use of six candidate genes was effective in assessing
the prognosis of glioma, particularly in LGG [32]. However, similar studies on LGG are
still rare. In this study, we determined biomarkers associated with the prognosis of LGG.
The latest evidence suggests that the mRNA expression-based stemness index (mRNAsi)
in LGG has a prognostic value. Zhang et al. developed a stemness-index-based signature
with seven genes, having good applications for risk stratification and survival prediction
in low-grade gliomas [33]. Thus, we utilized this stemness index to classify LGGs and
used several improved methods based on various datasets and databases to explore their
immune-related prognostic markers.

We performed DEG and WGCNA analyses based on IRGs. Afterward, 30 overlapping
genes were selected from the results. Four IRGs (interleukin 18 (IL18), macrophage scav-
enger receptor 1 (MSR1), solute carrier family 11 member 1 (SLC11A1), and complement
C3a receptor 1 (C3AR1)) were further selected using two different types of survival analyses.
Thus, these four IRGs were identified as candidate biomarkers for forecasting the prognosis
of LGG and a series of methods were used to further validate them. They were all highly
expressed in the high-mRNAsi-score group compared with the low-mRNAsi-score group
of LGG according to datasets from GEPIA, TCGA-LGG data, and the HPA database. In
previous studies, these four genes all appeared in tumor or other disease immune-related
mechanisms. Recent studies have found that pyroptosis, an inflammatory type of cell
death sparked by certain inflammasomes, has an influence on the proliferation, invasion,
and migration of tumors. IL18 is one of the main activated cytokines in the process of
pyroptosis, suggesting a role for IL18 in tumors [34]. The findings of Padala et al. [35]
indicated that an analysis of the genotypic and haplotype variants of the IL18 gene play
a crucial role in predicting the risk of breast cancer. Previous studies demonstrated that
MSR1 exhibited high expressions in M2-like pre-tumor macrophages, which were related
to tumorigenesis and development, including immunosuppressive factor generation and
angiogenesis [36]. Ji et al. [37] thoroughly analyzed the expression level of MSR1 in LGG
and found that LGG tissues expressed significantly more MSR1 than normal brain tissues.
Further studies revealed that MSR1 might be involved in changes in the tumor microen-
vironment (TME) and was a potential prognostic biomarker in LGG. SLC11A1 expresses
as a multichannel membrane protein, which is associated with host resistance to some
pathogens and iron metabolism. Mutations in SLC11A1 are involved in inflammatory dis-
eases, including Crohn disease and rheumatoid arthritis [38]. A study by Zhu et al. found
that rs7573065 in SLC11A1 caused an increased risk and a reduced overall survival rate of
prostate cancer, suggesting SLC11A1 as a candidate risk factor and prognostic biomarker
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for prostate cancer [39]. C3AR1 has been found to have a relationship with prognosis or
immune infiltration in a variety of tumors. By affecting the polarization of M2 macrophages,
C3AR1 may lead to an immunosuppressive microenvironment, as a result, leading to the
progression of esophageal squamous cell carcinoma [40]. In stomach adenocarcinoma
(STAD), a high expression of C3AR1 is positively correlated with increased tumor immune
infiltration, as well as poor prognosis. C3AR1 can also promote the immune escape of
STAD by activating the polarization of M2 macrophages and T cell exhaustion [41].

Overall, this study confirmed that the four IRGs were closely associated with tumor
prognosis and could be used as new immune-related prognostic biomarkers for LGG. In
addition, through these four prognostic biomarkers, we formed an IPS, which, combined
with DEG and WGCNA, showed good clinical applicability. We used the IPS and primary
brain family history to create a nomogram, which could be applied clinically to predict OS
probability in LGG.

This study had certain limitations. Despite the fact that this study was based on
multiple datasets, it lacked further experimental validation. In a follow-up study, more
experiments will need to be conducted to clarify the potential molecular mechanism in
LGG. We also need to validate the study with more clinical data in the near future.

5. Conclusions

In this study, four immune-related predictive biomarkers for LGG were identified and
proven to be IRGs. The development of more efficient immunotherapy techniques was
facilitated by the creation of a prognostic signature to evaluate and forecast the prognosis
of LGG patients. The immune-related prognostic score was then used to build a nomogram
and was subsequently used to more accurately predict the prognosis of LGG patients. In
summary, creating the immune related model based on mRNAsi is beneficial for clinical
doctors to assess the prognosis of patients and determine further treatment.
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