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Simple Summary: Breast cancer is the most fatal female cancer, which the existing clinical and
pathological information sometimes fails to diagnose accurately. Recent artificial intelligence-based
studies have shown the capability of identifying molecular biomarkers using high-throughput
genomics data. Our aim was to apply machine learning methods to a large cohort of transcriptomics
data for gene reduction and the construction of a diagnostic model for cancer classification. Advanced
statistical methods and cross-validation with another set of machine learning methods increased
the accuracy of the diagnostic model and predicted a novel diagnostic nine-gene signature. Further,
survival analysis revealed a novel prognostic model of eight-gene signatures. Experimental validation
confirmed the expression of the identified gene signatures in breast cancer patients and increased
the reliability of the study. The identified gene signature biomarkers have the potential to improve
healthcare management with precise diagnosis and prognosis at a reduced cost.

Abstract: Background: Breast cancer (BC) is one of the most common female cancers. Clinical and
histopathological information is collectively used for diagnosis, but is often not precise. We applied
machine learning (ML) methods to identify the valuable gene signature model based on differentially
expressed genes (DEGs) for BC diagnosis and prognosis. Methods: A cohort of 701 samples from
11 GEO BC microarray datasets was used for the identification of significant DEGs. Seven ML
methods, including RFECV-LR, RFECV-SVM, LR-L1, SVC-L1, RF, and Extra-Trees were applied for
gene reduction and the construction of a diagnostic model for cancer classification. Kaplan–Meier
survival analysis was performed for prognostic signature construction. The potential biomarkers
were confirmed via qRT-PCR and validated by another set of ML methods including GBDT, XGBoost,
AdaBoost, KNN, and MLP. Results: We identified 355 DEGs and predicted BC-associated pathways,
including kinetochore metaphase signaling, PTEN, senescence, and phagosome-formation pathways.
A hub of 28 DEGs and a novel diagnostic nine-gene signature (COL10A, S100P, ADAMTS5, WISP1,
COMP, CXCL10, LYVE1, COL11A1, and INHBA) were identified using stringent filter conditions.
Similarly, a novel prognostic model consisting of eight-gene signatures (CCNE2, NUSAP1, TPX2,
S100P, ITM2A, LIFR, TNXA, and ZBTB16) was also identified using disease-free survival and overall
survival analysis. Gene signatures were validated by another set of ML methods. Finally, qRT-
PCR results confirmed the expression of the identified gene signatures in BC. Conclusion: The ML
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approach helped construct novel diagnostic and prognostic models based on the expression profiling
of BC. The identified nine-gene signature and eight-gene signatures showed excellent potential in BC
diagnosis and prognosis, respectively.

Keywords: breast cancer; gene expression profiling; artificial intelligence; machine learning methods;
diagnostic and prognostic model

1. Introduction

Breast cancer (BC) is the most common cause of cancer death in women, with 1 in
8 cancer cases, and its incidence has increased significantly despite the preventive and
curative approaches utilized in recent years [1,2]. In 2020, the International Agency for
Research on Cancer (IARC) and World Health Organization (WHO) reported 2.26 million
new BC cases and 684,996 global cases of BC mortality in females, surpassing lung cancer
with 2.20 million new cases. Further, the diagnosis of new cases and BC death by 2040 is
predicted to increase to over 3 million and 1 million, respectively [3,4]. BC is a heteroge-
neous disease and the symptoms may include a bump, skin dimpling, nipple discharge,
scaly hair patch and flaky skin around the nipple, and thickness/swelling in some parts of
the breast [5]. BC survival rates were found to be variable, at ~80%, ~60%, and ~40% in
high-, mid-, and low-income countries, respectively.

An accurate diagnosis is key for the optimal treatment of cancer patients. At present,
cancer classification and diagnosis heavily depend on the subjective evaluation of physical
examination, clinical/pathological test, radiological scan, and histopathological informa-
tion, but they are subject to human errors [6]. Surprisingly, medical error is the third leading
cause of death, even in the most advanced countries such as the USA [7]. Additionally, in
some instances, (i) incomplete or misleading clinical information, (ii) complicated radio-
logical images, and (iii) variable, atypical, or lack of morphologic features in histological
information may result in diagnostic confusion, and thus affect patient care [2].

Molecular diagnostics offer precise, fair, and efficient breast cancer classification, but
are not widely applied in clinical settings. Microarray-platform-based assays, including
the Affymetrix GeneChip Human Genome U133 Plus 2.0 array (Affymetrix, Santa Clara,
CA, USA), have the ability to measure thousands of gene expressions simultaneously
for each data point (sample) [8,9]. Expression profiling to check for variability in gene
expression is an important factor influencing the precision and accuracy of clinical deci-
sions in the diagnosis of BC [1,8,10–13]. Despite the large-scale, high-dimensional, and
highly redundant type of microarray data, with numerous tools to identify genes that are
differentially expressed across cancer/disease phenotypes, the interpretation of results and
follow-up analysis are quite challenging. DNA-microarray-based gene expression profiling
is promising for BC diagnosis and prognosis [12,14], but limitations such as small sample
size, biased case vs. control distribution, multiple BC subtypes, variable populations,
and different platforms, complicate the analysis, and the identification of gene signatures
remains an issue [15–19].

In 1999, the first gene expression signature was identified to classify leukemia into
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Since then, a
series of gene expression signatures have been reported for various cancers to classify
tumors, tumor types, tumor stages, and predict the disease prognosis [20,21].

BC is a very heterogeneous disease and is categorized into five molecular subtypes:
HER2+, basal (ER−/HER2−/PR−), luminal A (ER+/HER2, with a low-proliferative phe-
notype), luminal B (ER+/HER2, with a high-proliferative phenotype), and normal BC [17].
Each subtype exhibits distinct transcriptomics patterns, and finding unified BC biomarkers
or the gene signature applicable to all molecular subtypes remains a challenge [13,22].
Hence, multiple datasets need to be integrated to find universal diagnostic/prognostic
biomarkers broadly applicable to all BC subtypes.
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A stringent filtration condition drastically reduces the number of DEGs, but filters out
many biologically relevant genes as well, whereas a lenient cutoff allows for many genes
to pass through, and a follow-up issue arises in selecting the most interesting genes. Al-
though conducting gene ontology and pathway enrichment analysis is useful in predicting
biological processes, cellular components, molecular function, networks, and canonical
pathways for the detected DEGs, the selection of the most relevant genes, a diagnostic
and/or prognostic biomarker, in cancer remains a challenge. Machine learning methods
and different evaluation techniques such as the Kaplan–Meier (KM) estimator might be
useful in identifying the biologically relevant genes from a long DEG list, without any
obvious selection way [8,11].

Another problem in high-throughput gene expression profiling is reducing the ex-
tremely high dimensionality of irrelevant or redundant gene features responsible for cancer
classification accuracy. Feature selection methods have been used to select key genes from
thousands of expressed genes, but the large numbers of microarray genes used in most
existing methods for cancer classification often hamper the model outcomes. For an efficient
diagnostic model for BC, machine-learning-based feature selection methods were applied
to a smaller number of differentially expressed genes passing the standard statistical cutoff
of p < 0.5 and log2folds change > 2 in BC.

To address these challenges, we integrated eleven GEO oligonucleotide microarray
datasets to create a gene expression database of 701 samples (356 breast tumors and
345 normal breast tissues) and applied different R packages and machine learning methods
on gene expression data for the molecular classification, accurate diagnosis, and prognostic
evaluation of the identified gene signatures in BC. A larger sample size gave greater
analysis power because it constricted the distribution of the test statistic. Further, an
almost equal group (3356 vs. 3345) reduced the biases in machine-learning-based data
analysis, and increases the accuracy of the model and predicted biomarkers. We also
demonstrated that the combined use of molecular pathway analysis, expression analysis,
feature selection methods, and survival analysis was helpful in selecting gene signatures
with high confidence.

2. Materials and Methods
2.1. Data Sets and Patients

The raw gene expression data, a set of binary files in a CEL format, of BC from
eleven datasets, including GSE61304, GSE42568, GSE7904, GSE3744, GSE29431, GSE26910,
GSE31138, GSE71053, GSE10780, GSE30010, and GSE111662, were retrieved from the
Gene Expression Omnibus (GEO) database using “GEOquery” library of the R program
(https://www.ncbi.nlm.nih.gov/geo/, accessed on 2 January 2023). We selected only the
human breast tumor samples to eliminate differential genetic interference in different BC
cell lines. Clinicopathological information from the original studies was used for analysis.
The ratio of breast tumors to normal breast was biased in the majority of the deposited
GEO datasets, including GSE61304, GSE42568, GSE7904, GSE3744, and GSE26910. Thus,
we included additional normal breast cases (GSE30010 and GSE111662) to balance the data
(n = 701, 356 = BT vs. 345 = NB) for a better outcome, while identifying DEGs or applying
ML methods to develop a diagnostic model (Table 1). This study was approved by the
university’s CEGMR bioethical committee (16-CEGMR-bioeth-2022), dated 13 October 2022,
and we recruited patients for the validation of potential biomarkers after obtaining their
consent.

2.2. Preprocessing and Differential Expression Analysis

The median expression values of less than 5.55 intensity on the log2 scale of each
probe, indicating the failure of true hybridization, were filtered out. We also excluded the
probes expressed in less than two samples. We merged all the raw CEL files (n = 701) and
applied the RMA method for the normalization of expression values, and generated box
plots using the “oligo” package from R software. Principal component analysis (PCA) was

https://www.ncbi.nlm.nih.gov/geo/
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performed using “prcomp function”, and hierarchical clustering was carried out using the
“pheatmap” R package to correlate the samples with the probes.

Table 1. GEO datasets from the GPL570 platform used for gene expression profiling.

Dataset Title/Description Normalization Methods No. of Samples Percentage of
Cancer

GSE61304
Novel biomarker discovery for
stratification and prognosis of
breast cancer patients

MAS5 signal intensity 62 (58 breast tumor +
4 normal breast) 94%

GSE42568 Breast cancer gene expression
analysis

Log2 GCRMA signal
intensity

121 (104 breast tumor +
17 normal breast) 86%

GSE7904 Expression data from human
breast tissue RMA expression value 50 (43 breast tumor +

7 normal breast) 86%

GSE3744 Human breast tumor
expression

GCRMA calculated signal
intensity, log2 transformed

47 (40 breast tumor +
7 normal breast) 85%

GSE29431 Identifying breast cancer
biomarkers RMA expression values 66 (54 breast tumor +

12 normal breast) 82%

GSE26910 Stromal molecular signatures
of breast and prostate cancer Log2 RMA signal 12 (6 breast tumor +

6 normal breast) 50%

GSE31138
Identifying novel
anti-angiogenic targets in
human breast cancer

Log2 RMA signal 6 (3 breast tumor +
3 normal breast) 50%

GSE71053

Differential effect of surgical
manipulation on gene
expression in normal breast
tissue and breast tumour tissue

Log2-normalized signal 18 (6 breast tumor +
12 normal breast) 33%

GSE10780

Proliferative genes dominate
malignancy risk gene signature
in histologically normal breast
tissue

RMA expression value 185 (42 breast tumor +
143 normal breast) 23%

GSE30010
Expression data from breast
samples of postmenopausal
women

RMA expression value 107 (0 breast tumor +
107 normal breast) 0%

GSE111662

Whole breast tissue gene
expression in comparison to
expression in epithelial and
stromal tissues

RMA expression values 27 (0 breast tumor +
27 normal breast) 0%

Total 701 (356 breast tumors +
345 normal breasts) 51%

We used linear models for the microarray “Limma” package of R to identify differen-
tially expressed genes (DEGs), using an empirical Bayesian method to assess the differences
in gene expression. Wang et al. (2021) conducted a study demonstrating the superior
performance of the moderated t-test when the sample size was ≥40. [23,24]. Our study,
with a sample size of 701, comprising 356 breast tumors and 345 normal breast samples,
exceeds the required 95% power of the test, and the nearly equal representation of the
test (tumor) and control (normal) groups mitigates biases in machine-learning-based data
analysis, and enhances the accuracy of the model and predicted biomarkers. The “decide-
Tests” function was used to differentiate between the altered (up or down) and normal
expression. The “topTable” function from R was applied with a cut-off-adjusted p-value
(Benjamini–Hochberg-corrected false discovery rate) < 0.05 and log2 fold change > ±2
to detect the most significant DEGs in BC compared with normal samples. Unannotated
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probes, not representing genes, were removed, and duplicate probes, representing single
genes, were averaged for expression values to get a unique set of DEGs.

2.3. Functional Pathway and Gene Set Enrichment Analysis

We used a comprehensive set of functional annotation tools, such as the QIAGEN Inge-
nuity Pathway Analysis (IPA knowledgebase v84978992, QIAGEN, USA) and WEB-based
Gene SeT AnaLysis Toolkit (WebGestalt 2019, https://www.webgestalt.org/, accessed
on 2 January 2023), to investigate and understand the biological meaning of long-list sig-
nificant DEGs [1,25,26]. We explored gene ontologies, enriched and canonical pathways,
upstream regulators, disease and functions, and the networks associated with BC. Over-
representation (or enrichment) analysis (ORA), a statistical method, was used to determine
the presence of known genes in pre-defined sets, as well as in dataset/DEGs.

2.4. Machine Learning and Feature Selection Methods

We applied machine learning methods to BC transcriptomics data and considered
performance measurements such as classification accuracy, specificity, sensitivity, and AUC,
to identify the most informative features. To determine the effectiveness of a classification
model, a set of performance metrics was used for assessment, such as measuring the
model’s ability to accurately classify instances into the correct categories. We used the
confusion matrix to compute the accuracy, precision, recall, and F1 score, as shown in
Equations (1)–(4).

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision =
∑ TP

∑ TP + ∑ FP
(2)

Recall = ∑ TP
∑ TP + ∑ FN

(3)

F1 − score =
2 ∗ precision ∗ recall

precision + recall
(4)

In addition, the model’s performance was evaluated by plotting the receiver operating
characteristic curve (ROC) and the area under the ROC (AUC), which is a metric used to
measure the model’s effectiveness. Models with larger AUCs are considered to have higher
performance.

The Scikit-learn (sklearn) in python platform was used to build the ROC curves of
the DEGs and measure the AUC to compare the diagnostic value of the DEGs, and to
predict the accuracy of the detected DEGs. The ROC curve, reflecting the relationship
between sensitivity and specificity, and AUC were used to determine the diagnostic value
of a factor in a specific disease, with AUC values between 0.5 and 1 representing low and
high authenticity, respectively.

We used seven machine learning algorithms, including (i) recursive feature elimi-
nation with cross validation (RFECV) with logistic regression, (ii) RFECV with support
vector machine (SVM), (iii) Lasso regularization (L1) with logistic regression, (iv) Lasso
regularization (L1) with support vector classification (SVC-L1), (v) random forest (RF)
classifier, (vi) extremely randomized trees (extra trees) classifier, and (vii) genetic algorisms
(GA), to find the most significantly expressed genes in all samples (n = 701, 356BT + 345NB)
and construct the diagnostic model from candidate DEGs. To validate the constructed diag-
nostic and prognostic models, we used five additional ML methods, including (i) adaptive
boosting (AdaBoost), (ii) gradient-boosted decision trees (GBDT), (iii) K-nearest neighbors
(KNN), (iv) multilayer perceptron (MLP), and (v) the extreme gradient boosting (XGBoost).

https://www.webgestalt.org/


Cancers 2023, 15, 3237 6 of 26

2.4.1. RFECV with Logistic Regression or with SVM

We used RFECV with logistic regression and SVM in Python using the RFECV class
from the scikit-learn library. The RFECV with logistic regression or SVM is a method of
feature selection in machine learning. It is a combination of two techniques: recursive
feature elimination (RFE) and cross validation (CV). RFE is a backward selection algorithm
that starts with all the features and removes the weakest feature until a specified number
of features is left. CV, on the other hand, is a technique used to evaluate the performance
of a model by dividing the data into several folds and training the model on different
folds, while testing it on one fold at a time. In RFECV with logistic regression or SVM,
the RFE algorithm is combined with CV to eliminate features, while also evaluating the
performance of the logistic regression model. This helps determine the optimal number of
features that provide the best performance, while avoiding overfitting. By combining these
two techniques, RFECV with logistic regression or SVM ensures that the final feature set is
not only informative, but also generalizable to new data.

2.4.2. LASSO Regularization (L1) Using Logistic Regression or Support Vector
Classification

We used L1 with logistic regression and SVM from the scikit-learn library to identify
the most significant genes [27]. LASSO regularization is a technique used to reduce the
number of features in a model and prevent overfitting. The technique shrinks the magnitude
of the coefficients using a penalty term proportional to the absolute value of the coefficients,
resulting in some coefficients becoming zero. It helps select the most relevant features,
while reducing the impact of irrelevant or noisy features on the model’s performance.
L1 regularization is particularly useful when dealing with a large number of features or
highly correlated features. The loss function of Lasso regression is defined as shown in (5):

n

∑
i=1

(Yi −
p

∑
j=1

Xijβ j)
2 + λ

p

∑
j=1

∣∣β j
∣∣ (5)

where lambda is the regularization parameter that controls the strength of the penalty term.
In logistic regression with LASSO regularization, the L1 penalty term helps reduce

the impact of irrelevant or noisy features on the model’s performance by shrinking their
coefficients toward zero. This can improve the model’s interpretability and reduce the risk
of overfitting, especially when dealing with high-dimensional data.

In SVM, LASSO regularization is implemented by adding a penalty term to the
objective function that minimizes the classification error. The penalty term is dependent
on the magnitude of the coefficients of the features, so larger coefficients receive a larger
penalty. This ensures that features with a large impact on the classification result receive a
smaller penalty and are more likely to be included in the final model.

2.4.3. Random Forest

The random forest classifier is a machine learning algorithm used for both classification
and regression problems [28]. It is an ensemble of decision trees, where each tree is trained
on a random subset of data. The final prediction is made by taking the average of all the
trees’ predictions. In feature selection, a random forest classifier is used to select the most
important features in the dataset. The algorithm calculates the importance of each feature
by measuring the average decrease in impurity for that feature. The higher the average
decrease, the more important the feature is considered.

2.4.4. Extra Trees Classifier

The extra trees classifier is an ensemble machine learning algorithm that can be used
for feature selection in Python [29]. It is a type of random forest classifier where multiple
decision trees are grown and combined to make a prediction. The algorithm works by
randomly selecting a subset of features at each split in the tree and determining the most
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important features based on their impact on the final prediction. By aggregating the feature
importance scores across all trees, the extra trees classifier can provide a ranking of the most
important features for a given dataset. This can be useful in identifying the most relevant
features for building a predictive model and reducing the dimensionality of the data.

2.4.5. Genetic Algorithm

This algorithm uses principles of evolution and natural selection to find the optimal
combination of features that result in the best model performance. The algorithm starts
with a random set of features and uses a fitness function to evaluate the performance of
each combination. The best performing combinations are then recombined and mutated
to create a new generation of features, and the process continues until a satisfactory set of
features is found [30].

2.4.6. XGBoost

This algorithm is an ensemble learning method that works by combining multiple
weak models into a strong one [31]. It uses gradient boosting, which is a method of
iteratively training decision trees on residuals to improve the model performance. It
provides faster computation and parallelization of training, which is useful when working
with large datasets. It also has built-in regularization techniques to reduce overfitting,
which is a common problem in machine learning.

2.4.7. GBDT

This is a machine learning algorithm that works by building an ensemble of decision
trees in a way that each subsequent tree focuses on the errors made by the previous trees [32].
This iterative process results in a model that can learn complex non-linear relationships in
data. It has the ability to handle large datasets, handle missing data, and provide accurate
predictions with high interpretability.

2.4.8. MLP

This is a type of feedforward artificial neural network that consists of multiple layers
of nodes that process information from the input layer to the output layer through a series
of nonlinear transformations [33]. The nodes in each layer are connected to the nodes in the
previous and next layers, and each node applies an activation function to the weighted sum
of its inputs. The goal of training the MLP is to minimize this cost function by adjusting
the weights and biases in the network using an optimization algorithm such as gradient
descent. This allows the model to learn the best set of weights that can accurately predict
the binary classification labels for unseen data. The cost function in the binary classification
of MLP uses the binary cross-entropy loss of function and is defined as shown in (6):

cross − entropy = − 1
N

N

∑
i=1

(yilog(pi ) + (1 − yi)log(1 − pi )) (6)

where N is the number of samples,
yi is the actual outcome,
pi is the probability of the tumor class, and
1 − pi is the probability of the normal class.

2.4.9. AdaBoost

This is an ensemble learning algorithm that combines several weak learners to create a
strong learner [34]. It works by repeatedly fitting a weak learner to the data, and adjusting
the weights of the training samples to focus on the misclassified ones. The algorithm
then combines these weak learners to form a strong learner that is capable of accurately
predicting the target variable.
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2.4.10. KNN

The K-nearest neighbors (KNN) is a popular machine learning algorithm belonging
to the family of instance-based or lazy learning algorithms, which means that it does
not attempt to learn a function from the training data [35]. Instead, KNN stores all the
training data, and classifies new data based on the similarity of its features to those in the
training set. The number of nearest neighbors (K) is a hyperparameter that can be tuned to
improve performance.

2.5. Survival Analysis Using the Kaplan–Meier Estimator

The KM estimator, a statistical technique tool (available at https://kmplot.com/
analysis/, accessed on 10 February 2023) was used for calculating survival probability
functions to investigate the overall and relapse-free survival of prognostic genes for breast
cancer patients. It is assumed that the occurrence of the event is fixed in time, and both the
censored observations and data points have an equal chance of survival [8,36].

The mathematical expression of KM is expressed as shown in (7):

S(t) = ∏
i:ti≤t

ni − di
ni

= ∏
i:ti≤t

(
1 − di

ni

)
(7)

S(t) stands for survival function.
In this context, ni refers to the count of individuals at risk at a specific time ti , and

di is the count of events that happen at the same time, ti . The survival curve remains
unchanging between the two events or times, i.e., between ti and ti + 1 [36].

This analysis was conducted for mRNA (gene chip) microarray data for the relapse-
free and overall survival. The KM analysis was performed with a confidence interval and
log rank p-value cut-off of >95% and ≤0.05, respectively. We proceeded to further check
the mRNA (RNA seq) datasets for overall survival for genes which were significant in
both microarray data for relapse-free survival and overall survival. Finally, we established
eight gene hubs (four upregulated and four downregulated) for prognostic importance.

The web-based KMplot tool incorporates three databases in the background: TCGA,
EGA, and GEO [37]. The Kaplan–Meier method is a strong non-parametric statistical
approach used for predicting the likelihood of survival. The KM analysis was performed
with a confidence interval and log rank p-value cut-off of >95% and ≤0.05, respectively.

2.6. RNA Isolation and qRT-PCR

Trizol was used to lyse the cells, and chloroform and isopropanol were used to extract
RNA. After determining the RNA concentration, the cDNA (complimentary deoxyribonu-
cleic acid) was reverse-transcribed. The primer sets were designed for the identified gene
signature using Primer-3 software (V.0.4.0). ABI 7500 instruments were used for real-time
quantitative PCR. Endogenous GAPDH gene expression was measured as the internal
control to determine the relative expression of the detected genes. The reaction was run
in a final volume of 10 µL, comprising 5 µL SYBR-Green qPCR master mix (KAPA Biosys-
tems, Wilmington, MA, USA), 10 pmol of each primer, and 20 ng genomic DNA. PCR was
performed in triplicate using the SYBR-Green qPCR master mix (KAPA Biosystems, USA)
in a 96-well plate. Raw data were generated through the use of StepOne Plus™ Real-Time
PCR Systems and Data Assist software. qPCR data were analyzed by ∆∆CT or the Livak
method, and the GraphPad PRISM software was used for presentation.

2.7. Statistical Analysis

All statistical analyses were conducted using R software (version v.4.2.2) (R core team
2021). R was also used for the picture generation. The chi-squared test was used to compare
categorical variables of patient characteristics. The Wilcoxon rank sum test was used to com-
pare the expression signature. The p-values were adjusted for multiple comparisons using
the Benjamini–Hochberg method, and the default value <0.05 was considered statistically

https://kmplot.com/analysis/
https://kmplot.com/analysis/
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significant, otherwise specified. Cox regression analysis (univariate and/or multivariate)
was used to assess the contribution of all parameters, such as evaluating the independent
predictive OS performance of different clinical factors and the detected biomarkers. The
KM curve and time-dependent ROC curve were drawn by the R package “survminer” and
“survivalROC”, respectively.

3. Results
3.1. Differentially Expressed Genes in BC

Breast tumor (356) and normal breast tissue (345) samples from the Affymetrix GeneChip
Human Genome U133 Plus 2.0 arrays platform (HG-U133_Plus_2) with 54,675 features/probes
from 11 different GEO data series were used as discovery cohorts. Out of 54,675 hybridized probes,
only 46,597 probes passed the cut-off: median expression >5.5 and present in at least
two samples. The expression data were GC-RMA-normalized. The raw intensities and
RMA-normalized expression values were shown in Boxplot (Figure 1).
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Figure 1. Boxplot showing the expression distribution for dataset GSE7904. (A) Raw (un-normalized)
expression distribution with log2 scale in the range of −200 to 400. (B) Normalized intensities showing
almost similar distributions of expression intensities, with the log2 scale in the range of 0 to 12.
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For a tumor-normal matrix, the “decideTests” function differentiated 46,597 probe
signal intensities into altered (over-expressed (15,000), under-expressed (21,952)) and un-
altered (9645) expression. The “topTable” functions revealed the most significant DEGs
in breast cancer (n = 487) for the screening criteria of the adjusted P-value (Benjamini–
Hochberg-corrected false discovery rate) < 0.05 and fold change (log2FC > ±2). Addi-
tionally, unannotated probes, not representing valid genes (n = 20), were removed first,
then duplicate genes, multiple probes representing single genes (n = 193), were averaged
for expression values (n = 83) to get a unique set of DEGs (n = 355, upregulated = 77 and
downregulated = 278) (Figure 2 and Table 2).
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Figure 2. Volcano plot showing differentially expressed genes: (i) the majority were non-significant
(black), (ii) upregulated DEGs (red), and (iii) downregulated DEGs (blue).

Table 2. Top ten up- and downregulated differentially expressed genes from a total of 355 DEGs in
breast cancer.

Gene Symbol Gene Name Log2FC adj.p-Value Decide Test

COL11A1 Collagen Type XI Alpha 1 Chain 4.36 1.69 × 10−172 Upregulated

TOP2A DNA Topoisomerase II Alpha 3.96 4.16 × 10−220 Upregulated

S100P S100 Calcium-Binding Protein P 3.70 3.57 × 10−137 Upregulated

COL10A1 Collagen Type X Alpha 1 Chain 3.59 7.47 × 10−192 Upregulated

RRM2 Ribonucleotide Reductase Regulatory Subunit M2 3.47 4.44 × 10−205 Upregulated

CKS2 CDC28 Protein Kinase Regulatory Subunit 2 3.26 8.66 × 10−201 Upregulated

MMP1 Matrix Metallopeptidase 1 3.21 7.95 × 10−113 Upregulated

COMP Cartilage Oligomeric Matrix Protein 3.15 6.27 × 10−137 Upregulated

NUSAP1 Nucleolar And Spindle-Associated Protein 1 3.08 9.67 × 10−194 Upregulated
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Table 2. Cont.

Gene Symbol Gene Name Log2FC adj.p-Value Decide Test

ANLN Anillin, Actin-Binding Protein 3.07 2.42 × 10−173 Upregulated

ADH1B Alcohol Dehydrogenase 1B (Class I), Beta Polypeptide −4.84 2.10 × 10−168 Downregulated

ADIPOQ Adiponectin, C1Q And Collagen Domain Containing −4.47 6.08 × 10−119 Downregulated

PLIN1 Perilipin 1 −4.20 8.42 × 10−161 Downregulated

LEP Leptin −4.11 7.20 × 10−105 Downregulated

LPL Lipoprotein Lipase −4.09 2.35 × 10−130 Downregulated

SDPR Serum Deprivation Response −4.06 1.34 × 10−201 Downregulated

RBP4 Retinol Binding Protein 4, Plasma −4.06 4.37 × 10−118 Downregulated

C2orf40 Chromosome 2 Open Reading Frame 40 −4.05 3.15 × 10−211 Downregulated

ABCA8 Atp-Binding Cassette Subfamily A Member 8 −4.05 4.21 × 10−166 Downregulated

NTRK2 Neurotrophic Tyrosine Kinase, Receptor, Type 2 −4.04 4.78 × 10−181 Downregulated

3.2. Function Pathway Analysis and Network Enrichment Analysis

Functional analysis based on the Z-score and −log(p-value) indicated activation of
the kinetochore metaphase signaling pathway (2.71, 7.35), PTEN pathway (2.64, 2.31),
HOTAIR regulatory pathway (2.12, 2.71), and WNT/β-catenin signaling pathway (2.45,
1.47), and suppression of the senescence pathway (−3.16, 3.02), phagosome formation
(−3.15, 2.09), FAK signaling (−3.128, 1.74), oxytocin signaling pathway (−3.05, 3.8), and
breast cancer regulation by Stathmin1 (−3.0, 2.06) (Figure 3). Most significantly enriched
molecular processes were the extracellular matrix, cell division, mitotic cell cycle process,
cell migration, and the regulation of cell proliferation (Table 3).
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Table 3. Gene ontology of biological processes derived from the enrichment of differentially expressed
genes in breast cancer.

Gene Set Description Gene Set
Size

Expect
Values

Overlap
Value

Enrichment
Ratio FDR

GO:0031012 Extracellular matrix 487 09.48 35 3.69 3.31 × 10−8

GO:0051301 Cell division 576 11.21 41 3.65 2.69 × 10−9

GO:1903047 Mitotic cell cycle process 780 15.18 46 3.02 2.62 × 10−8

GO:0016477 Cell migration 1352 26.32 68 2.58 1.45 × 10−9

GO:0042127 Regulation of cell proliferation 1535 29.88 72 2.40 3.75 × 10−9

GO:0048870 Cell motility 1493 29.06 69 2.37 1.64 × 10−8

GO:0051674 Localization of cell 1493 29.06 69 2.37 1.64 × 10−8

GO:0009719 Response to endogenous stimulus 1574 30.64 71 2.31 2.01 × 10−8

GO:0008283 Cell proliferation 1953 38.02 87 2.28 6.20 × 10−10

GO:0009888 Tissue development 1814 35.31 77 2.18 3.31 × 10−8

3.3. Machine Learning Algorithms for the Identification of Diagnostic Biomarker Genes

Initially, seven ML algorithms predicted genes with diagnostic importance using
355 DEGs significantly expressed in BC samples, and important genes predicted by at
least four ML models were selected for further analysis (n = 65). Additionally, we ana-
lyzed each dataset individually and checked the status of 355 DEGs in each dataset; the
genes present in at least four datasets were selected for further analysis (n = 94). We
identified 28 common genes passing both criteria (DEGs > 3 ML and DEGs > 4 datasets)
as the potential hub of BC diagnostic and prognostic biomarkers (Figure 4A). With more
stringent conditions (DEGs > 5 ML and DEGs > 7 dataset) and based on their role in tu-
morigenesis, a novel diagnostic nine-gene signature (COL10A, S100P, ADAMTS5, WISP1,
COMP, CXCL10, LYVE1, COL11A1, and INHBA) was identified for BC. An unsupervised
hierarchical clustering-based heatmap showed a correlation in a pairwise fashion between
the samples and probes. A heatmap of unfiltered probes (n = 54676) was ambiguous and
non-conclusive, while the unique set of DEGs (n = 355), hub genes (n = 28), and gene
signatures (n = 9) for BC diagnosis showed a distinct correlation between the samples and
gene expression (Figure 4B).

3.4. Machine-Learning-Algorithm-Based 10-Fold Cross-Validation

We used a 10-fold cross-validation technique to evaluate the performance of ML
models for diagnostic and prognostic gene signatures. To perform 10-fold cross-validation,
the dataset was divided into 10 equally sized folds. The model was then trained and
validated 10 times, each time using a different fold for validation and the remaining nine
folds for training. The process was repeated for all the folds, and the results were averaged
to obtain an estimate of the model’s performance. This provided a more reliable estimate of
the model’s performance compared to using a single-train test split, which may be biased
based on the specific data that were selected; it can also help prevent overfitting.

For validating the diagnostic performance of our nine-gene signature, a new set of
ML algorithms (GBDT, XGBoost, AdaBoost, KNN, and MLP) was employed to evaluate
the model. By comparing the diagnostic efficiency, accuracy, and precision of different
algorithms, the constructed diagnostic model was validated (Figure 5 and Table 4). Each
ML model’s performance was evaluated by measuring a range of performance metrices,
including AUC, accuracy, precision, recall, and the F1 score. Here, all the ML methods
predicted were above 95, and the ML model had the greatest AUC value indicating the
candidate gene signature as a potential biomarker. KNN showed the highest values for all
the evaluation metrics (mean F1 = 0.982), which indicates that it performed the best among
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the five models. In contrast, MLP showed the lowest values for all evaluation metrics.
Furthermore, biomarkers that could distinguish disease samples and normal samples were
analyzed according to PCA, as it groups the samples based on similarities (Figure 6).
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Table 4. Machine learning methods for the 10-fold cross-validation of the diagnostic nine-gene signature.

ML Model Mean AUC Mean ACC Mean Precision Mean Recall Mean F1

KNN 0.989 0.981 0.983 0.980 0.982

GBDT 0.995 0.973 0.970 0.978 0.973

AdaBoost 0.992 0.974 0.972 0.977 0.975

XGBoost 0.994 0.971 0.969 0.975 0.972

MLP 0.975 0.960 0.961 0.961 0.960
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Figure 6. PCA plot showing an overall distribution of the samples (n = 701), including breast
tumor (blue) and normal breast tissue (red) based on transcriptomics profiles: (A) 54,675 probes,
(B) 355 DEGs, (C) 28 hub genes, and (D) diagnostic nine-gene signature.

3.5. Survival Analysis to Identify Genes with Prognostic Importance

Survival analysis using the KM estimator was conducted for 28 hub genes. First,
relapse-free survival and overall survival analyses were performed for mRNA (gene-chip),
followed by the overall survival for mRNA (RNA seq). We identified a novel prognostic
gene signature of eight genes (CCNE2, NUSAP1, TPX2, S100P, ITM2A, LIFR, TNXA, and
ZBTB16) that were significant (log-rank p-value < 0.05) under both RFS and OS conditions
(Tables 5 and 6, and Figures 7 and 8). The hazard ratio (HR) compares the risk of death
(overall survival) and postoperative follow-up (relapse-free survival) occurring between
the high and low expressions of the gene. The HR value < 1 or >1 indicates that the risks
associated with a lower expression and higher expression of the gene are significantly
different. On the other hand, the confidence intervals (CI) indicate the level of uncertainty
around the estimated survival probability at each time point. A narrower confidence
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interval indicates that the survival estimate is more precise and that the sample size is large
enough to produce reliable results. The CI value demonstrates the precision and reliability
of the results. Finally, the log-rank p-value measures the statistical significance that helps
determine whether the observed difference in survival between the groups (high and low
expression of the gene) is statistically significant (<0.05), i.e., unlikely to have occurred by
chance. Therefore, log-rank p-values are the deciding factors for survival significance.

Table 5. mRNA (gene chip) and the relapse-free survival analysis of 28 hub genes, with the measured
hazard ratio (HR), confidence interval (CI), and log-rank p-value.

Gene Symbol Probe_IDs HR CI Log-Rank p-Value Decision
(Log-Rank p-Value)

ADAMTS5 219935_at 0.9 0.77–0.94 1.50 × 10−3 Significant

CCNE2 205034_at 1.9 1.67–2.06 1.00 × 10−16 Significant

CKS2 204170_s_at 1.7 1.51–1.85 1.00 × 10−16 Significant

CXCL10 204533_at 1.2 1.12–1.37 4.40 × 10−5 Significant

EDNRB 206701_x_at 0.8 0.69–0.85 2.20 × 10−7 Significant

FABP4 203980_at 0.9 0.81–0.99 2.58 × 10−2 Significant

GPC3 209220_at 0.8 0.76–0.92 5.00 × 10−4 Significant

ITM2A 202747_s_at 0.7 0.63–0.77 1.40 × 10−12 Significant

LIFR 225575_at 0.7 0.56–0.75 1.60 × 10−8 Significant

MATN2 202350_s_at 0.9 0.78–0.95 3.30 × 10−3 Significant

LYVE1 219059_s_at 0.9 0.81–0.99 3.78 × 10−2 Significant

NUSAP1 218039_at 1.7 1.54–1.89 1.00 × 10−16 Significant

SCN4B 236359_at 0.6 0.55–0.75 1.00 × 10−8 Significant

SDPR 222717_at 0.7 0.57–0.77 9.70 × 10−8 Significant

SPRY2 204011_at 0.9 0.79–0.97 1.02 × 10−2 Significant

TF 214063_s_at 0.9 0.78–0.96 5.20 × 10−3 Significant

TNXA 216333_x_at 0.7 0.63–0.77 2.40 × 10−12 Significant

TPX2 210052_s_at 1.6 1.48–1.82 1.00 × 10−16 Significant

WISP1 229802_at 0.8 0.64–0.87 1.00 × 10−4 Significant

ZBTB16 205883_at 0.7 0.58–0.72 1.00 × 10−16 Significant

COL11A1 37892_at 1.2 1.12–1.38 2.30 × 10−5 Significant

INHBA 210511_s_at 1.2 1.06–1.3 1.70 × 10−3 Significant

S100P 204351_at 1.5 1.31–1.61 6.30 × 10−3 Significant

COL10A1 205941_s_at 1.0 0.88–1.08 6.60 × 10−1 Insignificant

COMP 205713_s_at 0.9 0.85–1.04 2.53 × 10−1 Insignificant

GJB2 223278_at 1.0 0.88–1.19 7.89 × 10−1 Insignificant

LRRC15 213909_at 0.9 0.82–1.01 7.16 × 10−2 Insignificant

MME 203435_s_at 1.1 0.98–1.2 1.28 × 10−1 Insignificant
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Table 6. mRNA (gene chip) and the overall survival analysis of 28 hub genes, with the measured
hazard ratio (HR), confidence interval (CI), and log-rank p-value.

Gene SymboL Probe_IDs HR CI Log-Rank p-Value Decision
(Log-Rank p-Value)

CCNE2 205034_at 1.47 1.22–1.78 5.00 × 10−5 Significant

CKS2 204170_s_at 1.32 1.09–1.59 3.70 × 10−3 Significant

ITM2A 202747_s_at 0.61 0.5–0.73 2.00 × 10−7 Significant

LIFR 225575_at 0.59 0.45–0.78 1.00 × 10−4 Significant

NUSAP1 218039_at 1.65 1.36–2 1.90 × 10−7 Significant

SDPR 222717_at 0.70 0.53–0.92 8.90 × 10−3 Significant

TNXA 216333_x_at 0.71 0.59–0.85 3.00 × 10−4 Significant

TPX2 210052_s_at 1.56 1.29–1.89 3.20 × 10−6 Significant

ZBTB16 205883_at 0.63 0.52–0.76 1.40 × 10−6 Significant

S100P 204351_at 1.50 1.25–1.82 2.10 × 10−5 Significant

ADAMTS5 219935_at 0.85 0.7–1.02 8.00 × 10−2 Insignificant

COL10A1 205941_s_at 0.96 0.79–1.15 6.38 × 10−1 Insignificant

COMP 205713_s_at 1.06 0.88–1.27 5.67 × 10−1 Insignificant

CXCL10 204533_at 0.9 0.75–1.09 2.98 × 10−1 Insignificant

EDNRB 206701_x_at 0.88 0.73–1.06 1.85 × 10−1 Insignificant

FABP4 203980_at 0.84 0.7–1.02 7.78 × 10−2 Insignificant

GJB2 223278_at 1.18 0.9–1.54 2.29 × 10−1 Insignificant

GPC3 209220_at 0.84 0.7–1.02 7.47 × 10−2 Insignificant

MATN2 202350_s_at 0.85 0.7–1.02 8.10 × 10−2 Insignificant

LRRC15 213909_at 0.87 0.72–1.04 1.30 × 10−1 Insignificant

LYVE1 219059_s_at 1.04 0.86–1.25 6.90 × 10−1 Insignificant

MME 203435_s_at 0.83 0.69–1.01 5.95 × 10−2 Insignificant

SCN4B 236359_at 0.83 0.63–1.08 1.68 × 10−1 Insignificant

SPRY2 204011_at 0.89 0.74–1.08 2.36 × 10−1 Insignificant

TF 214063_s_at 0.99 0.82–1.19 9.08 × 10−1 Insignificant

WISP1 229802_at 0.79 0.6–1.03 8.33 × 10−2 Insignificant

COL11A1 37892_at 1.12 0.93–1.35 2.37 × 10−1 Insignificant

INHBA 210511_s_at 1.12 0.93–1.36 0.2212 Insignificant

CKS2 204170_s_at 1.32 1.09–1.59 0.0612 Insignificant

SDPR 222717_at 0.7 0.53–0.92 0.0628 Insignificant

First, we validated the prognostic eight-gene signature using mRNA (RNA seq) dataset
based on the RFS and OS analyses by collectively measuring the hazard ratio (HR), con-
fidence interval (CI), and log-rank p-value (Figure 9 and Table 7), and the prognostic
signatures were again validated using five ML methods, including GBDT, XGBoost, Ad-
aBoost, KNN, and MLP. Among the five ML models, GBDT showed the highest values for
the mean AUC (0.993), mean accuracy (0.980), and mean F1 score (0.98), while XGBoost
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showed the highest mean precision (0.981). KNN showed the second-highest values for all
the evaluation metrics, while MLP showed the lowest values (Figure 10 and Table 8).
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Table 7. mRNA (RNA seq) based on the relapse-free survival and overall survival analyses of eight
prognostic gene hubs collectively measuring the hazard ratio (HR), confidence interval (CI), and
log-rank p-value.

Survival
Type Gene Hub HR CI Log-Rank

p-Value
Decision by

Log-Rank p-Value Expression

RFS CCNE2, NUSAP1,
TPX2, S100P 1.62 1.46–1.79 1.00 × 10−16 Significant Upregulated

RFS
ITM2A, LIFR,
TNXA-TNXB,

ZBTB16
0.58 0.50–0.68 1.90 × 10−12 Significant Downregulated

OS CCNE2, NUSAP1,
TPX2, S100P 1.44 1.19–1.74 0.00014 Significant Upregulated

OS
ITM2A, LIFR,
TNXA-TNXB,

ZBTB16
0.57 0.43–0.75 4.20 × 10−5 Significant Downregulated

Table 8. Machine learning model for the 10-fold cross-validation of the prognostic eight-gene signature.

ML Model Mean_AUC Mean_ACC Mean_Precision Mean_Recall Mean_F1

GBDT 0.993 0.980 0.983 0.977 0.980

XGBoost 0.992 0.976 0.981 0.972 0.976

AdaBoost 0.987 0.967 0.965 0.972 0.968

KNN 0.985 0.979 0.978 0.980 0.979

MLP 0.979 0.966 0.975 0.958 0.966
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Figure 9. RFS and OS analyses and the validation of upregulated (CCNE2, NUSAP1, TPX2, and
S100P), and downregulated (ITM2A, LIFR, TNXA, and ZBTB16) gene groups (mRNA, RNA seq) of
the prognostic gene signature. The X-axis and Y-axis represent time in months and the probability of
the survival of patients. The impact of the high and low expression of the gene on patient survival is
shown in red and black lines, respectively.
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Figure 10. Gradient-boosting decision trees (GBDT) based on the ML model for the prognostic gene
signature showing the mean ROC (AUC 0.993 ± 0.006).

3.6. qRT-PCR Analysis

qPCR was used to confirm the identified BC biomarkers (gene signatures) by deter-
mining the relative expression of 16 genes (nine-gene signature for diagnosis: COL10A,
S100P, ADAMTS5, WISP1, COMP, CXCL10, LYVE1, COL11A1, and INHBA; and eight-gene
signature for prognosis: CCNE2, NUSAP1, TPX2, S100P, ITM2A, LIFR, TNXA, and ZBTB16),
with an overlap of the S100P gene (Figure 11). GAPDH was used as the internal control. We
found qPCR results in concordance with microarray-analyzed expression patterns (Table 9).
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Figure 11. qRT-PCR results showing overexpression of COL10A, S100P, WISP1, COMP, CXCL10,
COL11A1, INHBA; CCNE2, NUSAP1, TPX2, and S100P genes, and under-expression of ADAMTS5,
LYVE1, ITM2A, LIFR, TNXA, and ZBTB16 genes.



Cancers 2023, 15, 3237 20 of 26

Table 9. Expression of gene signatures in microarray and qRT-PCR. The results of qRT-PCR are
represented by the quantitative expression (Rq) and fold-change (FC), along with the standard
deviation (StdDev) and p-values.

Gene
Microarray qRT-PCR

FC adj.p-Value Rq FC StdDev p-Value

Expression of Diagnostic Gene Signature

COL11A1 3.907519 5.1 × 10−163 9.834254 3.297816 0.64495 3.47 × 10−7

COL10A1 3.842333 2.1 × 10−178 10.30614 3.365432 0.660567 1.84 × 10−8

S100P 3.701498 3.6 × 10−137 5.345665 2.418369 0.995349 2.73 × 10−11

COMP 3.150415 6.3 × 10−137 6.191366 2.630258 0.425433 5.81 × 10−15

INHBA 3.042628 2.6 × 10−157 7.21937 2.851873 0.901961 1.97 × 10−8

WISP1 2.551547 6 × 10−105 4.783692 2.258124 0.461439 2.9 × 10−8

ADAMTS5 −3.13169 3.3 × 10−184 0.209914 −2.25213 0.511629 2.88 × 10−9

CXCL10 2.530934 2.16 × 10−95 4.763343 2.251974 0.86944 2.16 × 10−5

LYVE1 −3.14204 1.2 × 10−142 0.177332 −2.49548 0.877592 1.73 × 10−6

Expression of Prognostic Gene Signature

CCNE2 2.530327 3.7 × 10−154 5.112678 2.354079 0.392123 3.1 × 10−15

NUSAP1 2.732299 2.4 × 10−124 7.065653 2.820823 0.9127 3.81 × 10−10

TPX2 2.145025 5.6 × 10−135 5.179436 2.372795 0.432888 4.72 × 10−10

ITM2A −2.54576 9.1 × 10−149 0.241341 −2.05085 0.683145 4.21 × 10−8

LIFR −3.0494 5.6 × 10−159 0.271185 −1.88265 0.853309 1.78 × 10−6

TNXA −2.54523 1.9 × 10−129 0.228871 −2.12739 0.736176 7.89 × 10−7

ZBTB16 −2.4943 1.12 × 10−115 0.187856 −2.4123 0.567998 3.32 × 10−9

S100P 3.701498 3.6 × 10−137 5.345665 2.418369 0.995349 2.73 × 10−11

4. Discussion

In recent years, multiple molecular diagnostic prognostic and predictive biomarkers
have been proposed, and despite the availability of few molecular tests, traditional patho-
logical factors such as the number of lymph node metastases, tumor size, and tumor grade,
continue to be mandatory for clinical decisions [38]. However, in the era of personalized
treatment, these factors alone are inadequate and require molecular/genomic assistance, as
cancer occurs via genetic alterations that transform normal cells into tumor cells. Although
significant knowledge exists related to carcinogenesis, a complete understanding of cancer
development mechanisms is still required. In recent years, genomics and proteomics have
played a vital part in the development of different biomarkers for breast cancer [39,40].
Gene expression profiling can detect genetic alterations in the origin, growth, proliferation,
and metastasis of tumors, and classify them accordingly. Gene expression signatures,
derived from DEGs, specifically correlate these genetic alterations with clinical variables
such as the diagnosis and prognosis [20,41]. A correct and timely diagnosis is the start-
ing point of treatment and determination of prognosis is the most immediate challenge
in patient management. This can be best achieved through a combination of traditional
clinicopathological prognostic factors, molecular biomarkers such as single-gene tests (ER,
PR, HER2) and specific multigene tests (gene signatures).

Among the 355 DEGs identified in a combined BC cohort, COL11A1, TOP2A, S100P,
COL10A1, and RRM2 were the most upregulated, while ADH1B, ADIPOQ, PLIN1, LEP, and
LPL were the most downregulated DEGs in BC. The pathway and enrichment analyses of
DEGs revealed activation of the kinetochore metaphase signaling pathway, PTEN path-
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way, HOTAIR regulatory pathway, etc., and suppression of the senescence pathway and
phagosome formation pathways in BC. The most significantly enriched molecular processes
were the extracellular matrix, cell division, mitotic cell cycle process, cell migration, and
regulation of cell proliferation. First, to verify the reliability of our method of screening
for biomarkers, we confirmed our finding of DEGs, pathways, and gene ontologies using
literature mining and verification. Matching our results with previous findings was good
evidence that they are indeed involved in the development and progression of BC [42–46].

Kinetochore architecture and its functional regulation is one of the most fascinating
multi-protein machineries in a cell [47]. The kinetochore metaphase signaling is essential for
chromosome segregation in mitosis and meiosis [48]. The critical regulators of alignment
and segregation of chromosomes during mitosis, aurora B kinase (AURKB), dual specificity
protein kinase TTK (Mps1), and kinetochore protein NDC80 homolog (NDC80) previously
reported were significant in our study too [49]. Another essential pathway that was
significantly upregulated in our study was PTEN/PI3K/AKT. This controls the signaling
of numerous biological processes, including apoptosis, cell proliferation, cell growth, and
metabolism. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a
dual protein/lipid phosphatase, of which the main substrate is phosphatidyl-inositol,3,4,5
triphosphate (PIP3), the product of PI3K [50,51]. The PTEN tumor suppressor is the
chief brake of the PI3K-Akt pathway and a common target for inactivation in somatic
cancers [52]. PTEN activity is frequently lost in several metastatic human cancers due
to mutations, deletions, or promoter methylation silencing [50]. Senescence is associated
with mitochondrial metabolic activities such as the tricarboxylic acid cycle, oxidative
phosphorylation, and glycolytic pathways. The old senescent cells die during aging or
apoptosis. The senescence pathway promotes cell cycle arrest triggered in response to stress
with increased AMP/ADP:ATP and NAD+/NADH ratios, and activating AMPK, p53, p16,
KRAS, etc. [53–55]. The in vitro demonstration of oncogene-induced senescence establishes
senescence as a vital tumor-suppressive mechanism, in addition to apoptosis. Senescence
not only stops the proliferation of premalignant cells (tumorigenesis), but also eases the
clearance of affected cells through the immunosurveillance [56]. In vivo studies showed
that suppression of the senescence pathway can also promote mammary tumorigenesis [57].

AI and ML techniques based on automated medical diagnosis are increasing gradually
for clinical, pathological, and radiological reports. The fusion of multiple techniques in
different types of data processing for cancer study must be a further instrument to obtain
successful results. An earlier convolution neural network approach had been applied for
image processing in medical diagnosis [58]. However, using AI and ML in the evaluation
of high-throughput genomics data from patients in diagnostic decision-making is still a
bottle neck in healthcare [59–61]. Typically, microarray data have thousands of features
(genes/probes), but only a few samples (in tens or hundreds). For ML classification, it
is better to have a large cohort with fewer features. Eleven BC datasets from different
studies were integrated to increase the cohort size. Transcriptomics profiling resulted in
355 DEGs associated with BC, but this number was technically too big to recommend for
gene signature biomarkers for diagnostic or prognostic tests. However, AI and ML have the
potential to filter out genes with the best diagnostic and prognostic importance. Thus, for
BC diagnosis via binary classification (whether or not BC), we used seven ML and feature
selection methods (RFECV-LR, RFECV-SVM, RF, extra trees, LASSO, SVM-L1, SVM-L2,
and GA) for gene reduction, and found high accuracy in the models. We identified a hub of
28 genes predicted by at least three ML methods and present in at least four BC datasets.
RFECV-LR and RFECV-SVM improved the classification accuracy of logistic regression
by selecting the most relevant features for the model and helped reduce overfitting by
removing irrelevant or redundant features. Recursive feature elimination was utilized to
rank the genes, with a random forest classifier used to evaluate gene fitness through five-
fold cross-validation [62]. The extra trees method was versatile, less prone to overfitting,
computationally efficient, robust to noise, and could handle missing data [29,63]. LASSO
had advantages in its ability to handle multicollinearity, and provided a sparse solution for
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both variable selection and shrinkage problems [64,65]. SVM models were frequently used
for classification and regression tasks using L1 and L2 regularization [66]. L1 regularization
had improved the interpretability of the model and reduced overfitting by encouraging
sparsity and selecting only the most relevant features for the classification task. GA utilized
the concept of survival of the fittest and was based on a population-based search approach
for a robust and efficient search [67].

Based on the importance of the 28 hub genes in BC and using stringent filter con-
ditions such as the genes predicted to be diagnostically important by at least five ML
methods and present in at least seven BC datasets, a novel nine-gene signature (COL10A,
S100P, ADAMTS5, WISP1, COMP, CXCL10, LYVE1, COL11A1, and INHBA) was identi-
fied. Similarly, by evaluating 28 hub genes using RFS and OS analyses by KM plot, a
novel prognostic model consisting of an eight-gene signature (CCNE2, NUSAP1, TPX2,
S100P, ITM2A, LIFR, TNXA, and ZBTB16) was identified. Many gene expression signatures
have been proposed for BC diagnosis and prognosis in recent years; few are under trial
and five of them succeeded to get FDA approval for commercial and clinical application,
including OncotypeDX (21-gene signature), MammaPrint (70-gene signature), Prosigna
(58-gene signature), EndoPredict (12-gene signature), and Breast Cancer Index (7-gene
signature) [68,69].

Gene signature validation was crucial before recommendation for further analysis and
clinical trials. We used 10-fold-cross validation by five ML methods including KNN, GBDT,
AdaBoost, XGBoost, and MLP. Several studies have reported successful applications of
these ML methods in BC gene hub/signature validation [70–75]. KNN-based validation
was used to classify genes based on their expression profiles, and identify the gene clusters
associated with cancer metastasis [72,73]. GBDT and AdaBoost were used to identify the
key genes and pathways associated with breast cancer metastasis [72,74,76]. In addition,
to identify disease-associated genes and pathways, XGBoost predicted cancer recurrence
based on gene expression data [71,73]. The MLP method predicted gene clusters from
expression data that were functionally related and associated with BC [70,72].

CCNE2 (Cyclin E2), involved in cell cycle regulation, can serve as an individual
indicator of the likely outcome for BC patients. It is upregulated in tumor tissues and has
the potential to function as a biomarker and linked to worse metastasis-free survival (MFS)
outcomes and a poor overall survival [77,78]. NUSAP1 (nucleolar and spindle-associated
protein 1) playing a critical role in cell division and being a useful prognostic marker, has
been implicated in various types of cancer, including BC [79]. The TPX2 (targeting protein
for xenopus kinesin-like protein 2), a microtubule-associated protein involved in spindle
formation and cell division, is highly expressed in various cancers, including BC [80]. A
high expression of TPX2 can reduce the survival time of HER2-positive patients, as well as
triple negative BC [81]. S100P, a calcium-binding protein, is involved in cell proliferation,
differentiation, and apoptosis. An overexpression of S100P in BC cells makes it more
aggressive, and hence it has the potential as a prognostic and therapeutic biomarker [8].
ITM2A (integral membrane protein 2A) regulates cellular growth and survival, and its
low expression may play a role in the progression of BC, especially at advanced stages
and higher grades of triple-negative breast cancer [82]. A decreased expression of LIFR
(leukemia inhibitory factor receptor) may be a marker for a poorer prognosis and reduced
survival in BC [83]. TNXA (tenascin XA) is an extracellular matrix protein involved in cell
adhesion and migration. The survival analysis of abnormally expressed TNXA in breast
tissue indicates poor prognosis [84]. A low expression of ZBTB16 (zinc finger and BTB
domain-containing protein 16) in BC has been associated with a poor prognosis and an
increased risk of metastasis [85,86].

5. Conclusions

Artificial intelligence and machine learning approaches for the identification of novel
diagnostic and prognostic gene signature biomarkers for breast cancer using microarray-
based gene expression profiles were attempted. Initially, we identified a total of 355 DEGs
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via gene expression profiling of BC microarray data, and our artificial-intelligence-based
strategy significantly reduced the number of genes needed for an effective evaluation
of diagnostic and prognostic importance. As a result, two novel gene signatures were
highlighted, (i) diagnostic nine-gene signature (COL10A, S100P, ADAMTS5, WISP1, COMP,
CXCL10, LYVE1, COL11A1, and INHBA) and (ii) prognostic eight-gene signature (CCNE2,
NUSAP1, TPX2, S100P, ITM2A, LIFR, TNXA, and ZBTB16), using machine learning algo-
rithms and survival analysis. The results were confirmed via qPCR of BC samples, and
validated by another set of ML methods to measure the model accuracy and precision. To
the best of our knowledge, the identified diagnostic and prognostic gene signatures are
novel and have clinical potential.
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