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Simple Summary: Guanine nucleotide-binding protein-like 3 (GNL3) and proliferation-associated
protein 2G4 (PA2G4) are molecules involved during metaphase-to-anaphase transition and growth
regulation. GNL3 and PA2G4 have been found to be overexpressed in several human cancers,
including prostate cancer. Clinical data suggest that GNL3 and PA2G4 could be developed as
prognostic biomarkers of clinical significance in prostate cancer. This review article mainly highlights
the function of GNL3 and PA2G4 and focuses on the opportunities for their development as prognostic
biomarkers in prostate cancer.

Abstract: Prostate cancer is a multifocal and heterogeneous disease common in males and remains the
fifth leading cause of cancer-related deaths worldwide. The prognosis of prostate cancer is variable
and based on the degree of cancer and its stage at the time of diagnosis. Existing biomarkers for the
prognosis of prostate cancer are unreliable and lacks specificity and sensitivity in guiding clinical
decision. There is need to search for novel biomarkers having prognostic and predictive capabilities
in guiding clinical outcomes. Using a bioinformatics approach, we predicted GNL3 and PA2G4 as
biomarkers of prognostic significance in prostate cancer. A progressive increase in the expression of
GNL3 and PA2G4 was observed during cancer progression having significant association with poor
survival in prostate cancer patients. The Receiver Operating Characteristics of both genes showed
improved area under the curve against sensitivity versus specificity in the pooled samples from three
different GSE datasets. Overall, our analysis predicted GNL3 and PA2G4 as prognostic biomarkers of
clinical significance in prostate cancer.
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1. Introduction

Prostate cancer is a prevalent disease in males worldwide with an existing rate of 29%
for all diagnosed cancers and the fifth leading cause of cancer-related deaths [1]. According
to Globocan 2020, approximately 1.14 million prostate cancer cases were diagnosed and
0.375 million deaths occurred in 2020 [2]. Prostate cancer is a heterogeneous disease,
ranging from remarkably low-aggressive, organ-confined to high-aggressive, non-organ
confined lethal phenotypes. The therapeutic decision and survival outcome of prostate
cancer is dependent on appropriate patient stratification to different risk groups; therefore,
it is very important to differentiate between indolent and aggressive diseases. Clinical
diagnosis and prognosis of prostate cancer is currently based on digital rectal examination
(DRE), serum levels of prostate-specific antigen (PSA), and pathologic Gleason score. The
PSA test as a screening tool for prostate cancer was first approved by the Food and Drug
Administration in 1986, and is still controversial because of high false-positive rates and
the risks associated with biopsies and over-treatment [3]. As such, PSA is a non-specific
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biomarker for prostate cancer, and its expression has also been reported in other organs
such as the adrenals, small intestine, kidney, and salivary tissue [4]. There is a strong debate
regarding PSA as a diagnostic and prognostic marker since it is unable to differentiate
between indolent and aggressive forms of prostate cancer. This is evidenced by the fact that
many men harbor aggressive prostate cancer while displaying low levels of serum PSA.
Moreover, the Gleason grading system used with prostate biopsy specimens to evaluate
the clinical progression of men with prostate cancer needs further refinement for more
accurate grade stratification. Together with these parameters, it is especially important to
focus on other types of molecular markers that can support clinical outcomes and disease
prognostication [5,6].

In the past decade more advancements in genomic, epigenomic, proteomic, and
bioinformatics-based techniques have been implicated, which are helpful in identifying
potential diagnostics and prognostic biomarkers for prostate cancer [7–10]. A biomarker
is a measurable biological indicator that can provide information about the incidence or
progression of a disease or the effects of an undertaken treatment [11]. A clinically rele-
vant biomarker should be safe and obtained through a non-invasive protocol, have high
sensitivity and specificity and high positive and negative predictive values, and make
possible clinical decisions [11]. In recent years, a number of clinical and biological prognos-
tic biomarkers of prostate cancer have been reported, such as androgen receptor variant
V7 [12], PTEN [13], or c-MYC gene inactivation [14], although, none of them have been
approved as a prognostic biomarker for use in the clinical settings [15]. Other biomarkers
such as TMPRSS2-ERG gene fusion [16], non-coding RNA (PCA3) [17,18], and kallikrein
included in basic PHI (prostate health index) or 4K tests have shown to increase sensitivity
and specificity of serum PSA in prostate cancer patients. Pathogenic variants in genes
such as BRCA1 and BRCA2 mismatch repair genes [19] and HOXB13 [20] confer modest
to moderate lifetime risk of prostate cancer. Notably, BRCA2 has emerged for its clinical
relevance in the treatment and screening of prostate cancer [19]. Genome-wide association
studies (GWAS) have identified several single-nucleotide polymorphisms (SNPs) that are
independently associated with incremental risk of prostate cancer [21]. Although more
than 150 SNPs associated with prostate cancer have been identified, the clinical utility
remains uncertain. Moreover, there are a few commercially available molecular prognostic
biomarkers in clinical use such as OncotypeDX Genomic Prostate Score, Prolaris, ProMark,
and Decipher, based on a gene set panel altered in prostate cancer (Table 1).

Table 1. Commercially available kits for prostate cancer diagnosis and prognosis.

Panel Specimen AUC for Prostate
Cancer Detection Limitations Refs.

PCA3 Urine 0.65

Recommended only for the precise
population of prostate cancer patients
who have a first negative biopsy report.
PCA3 score rises with age, independent
of PC occurrence.

[17,18]

PHI Serum 0.70

Used to detect the probability of finding
any prostate cancer on repeat biopsy,
irrespective of the GS. It does not have
de facto common use because of
pre-analytical stability of [2] proPSA
and high cost.

[22,23]

4Kscore® Serum 0.71
4Kscore® test has been restricted to
those prostate cancer patients who have
not had DRE in the previous 96 h.

[24]
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Table 1. Cont.

Panel Specimen AUC for Prostate
Cancer Detection Limitations Refs.

ConfirmMDx® Prostate biopsy tissues 0.74

Recommended for those prostate cancer
patients who had negative prostate
biopsy. There is no recommendation for
the routine clinical application.

[25]

ExoDX Prostate
IntelliScore Urine 0.70 Lack of evidence in respect of

clinical utility [26]

Prostate Core
Mitomic Test Serum - False negative results in malice of

high sensitivity. [27,28]

MiPS Mi(chigan)
Prostate Scor Urine 0.69 Lack of evidence in respect of

clinical utility [26]

TMPRSS2-ERG
gene fusion Urine -

Not widely used due to long processing
time, very high cost, and the necessity of
dedicated equipment.

[28]

SelectMDX Urine 0.71–0.81

Diagnostic as well as prognostic
correctness in ethnically diverse study
population is unidentified till date.
SelectMDx shows declined sensitivity,
specificity, and NPV.

[29,30]

Prolaris Tissue 0.78

There is no evidence to describe the
effect of the prolaris cell cycle
progression test on patient-important
clinical outcome results.

[30,31]

OncotypeDx Tissue 0.73 This test is not intended to take ethnic
discrimination into account. [32,33]

ProMark Tissue 0.72 Test is imperfect and skips the high-risk
nearby zone of prostate tumor. [26,33]

AUC: Area under curve; PC: Prostate cancer; PHI: Prostate health index; Digital rectal exam (DRE); PCA3: Prostate
cancer antigen 3; NPV: Negative predictive value.

These molecular tests, recognized as companion diagnostics, help in guiding clinicians
to establish an appropriate treatment strategy, and predict recurrence and progression
risk [34]. More recent studies are directed towards the use of artificial intelligence and its
algorithms for clinical applications in monitoring, detection, diagnosis, and treatment to
generate new predictive models [35]. However, there is still a need for identification of
precise molecular markers that can aid in early diagnosis and prognosis and establishment
of response to various treatments in prostate cancer patients. The integration of clinically
valuable potential prognostic biomarkers is very important to the treatment of prostate
cancer as they suggest their potential utility in disease management. In the present review,
we performed bioinformatic analysis to identify genes that are differentially expressed in
prostate cancer compared to normal prostate utilizing TCGA dataset. We also performed
Kaplan–Meier survival analysis, receiver operating characteristic analysis, protein–protein
interaction, co-expression analysis, and elucidation of biological pathways on these datasets.
Based on the published information and our bioinformatics approach, we propose GNL3
and PA2G4 as prognostic biomarkers in prostate cancer.

2. Identification of Prognostic Biomarker(s) in Prostate Cancer

A total of 164 genes were identified as prostate cancer biomarkers of prognostic
significance that were extracted using the ULCAN online tool (https://ualcan.path.uab.
edu/analysis-surv.html, accessed on 3 March 2023). We checked the expression pattern
of identified genes in prostate cancer specimens compared to normal prostate samples. A
total of 30 biomarkers were selected based on their significant higher differential expression

https://ualcan.path.uab.edu/analysis-surv.html
https://ualcan.path.uab.edu/analysis-surv.html


Cancers 2023, 15, 2723 4 of 14

in prostate cancer compared to normal prostate tissue. Then, we sorted the top seven
biomarker genes based on the grade-dependent (Gleason score 6–10) expression patterns in
prostate cancer specimens compared to normal prostate tissue (TCGA database). Next, we
performed a literature search to ensure the available reports on the prognostic relevance
of these genes. Based on the information CHCHD8, GNL3, PA2G4, and RRP9 genes were
selected to further explore the prognostic significance in prostate cancer. In our differential
expression analysis, we found that CHCHD8, GNL3, PA2G4, and RRP9 have 27.0-, 38.6-,
12.8-, and 7.6-times higher expression in prostate cancer specimens in comparison to normal
prostate tissue. The expression profile of CHCHD8, GNL3, PA2G4, and RRP9 genes in
prostate cancer compared to normal tissue samples together with grade-specific expression
based on Gleason score is shown in Figure 1A–D.
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Figure 1. Expression of genes with prognostic significance in prostate cancer patients derived
from TCGA dataset. Expression of (A) CHCHD8 (B) GNL3 (C) PA2G4 and (D) RRP9 in prostate
cancer with their Gleason scores and normal prostate tissue samples. CHCHD8, Coiled-coil-helix-
coiled-coil-helix domain containing 8, GNL3, Guanine nucleotide-binding protein-like 3, PA2G4,
Proliferation-associated protein 2G4, and RRP9, Ribosomal RNA processing 9.

The GNL3, CHCHD8, PA2G4, and RRP9 genes were selected to predict their ability in
overall and disease-free survival in prostate cancer patients. For this, we performed survival
analysis in prostate cancer specimens available in the TCGA database using the Kaplan–
Meier survival method in the GEPIA2 online tool (http://gepia2.cancer-pku.cn/#index,
accessed on 6 March 2023) with the hazard ratio (HR) of more than 1.0 criteria used to
predict the potential of genes as prognostic biomarkers. We found that the higher expression
of GNL3, CHCHD8, PA2G4, and RRP9 genes with HR more than 1.0 was closely associated
with poor overall survival (Figure 2A–D) and disease-free survival in prostate cancer
patients (Figure 3A–D).
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Figure 2. Overall survival analysis of signature genes in prostate cancer patients from TCGA dataset.
Effect of (A) CHCHD8 (known as COA4), (B) GNL3, (C) PA2G4, and (D) RRP9 expression on overall
survival in prostate cancer patients. The log rank values for CHCHD8 p = 0.11; GNL3 p = 0.0091;
PA2G4 p = 0.063; and RRP9 p = 0.0073, respectively. Blue line, low gene expression; Red line, high
gene expression.

Next, the Receiver Operating Characteristic (ROC) analysis was performed to evaluate
the diagnostic potential of CHCHD8 GNL3, PA2G4, and RRP9 genes (Figure 4A–D). ROC
curve analysis is a popular method to measure the diagnostic value of any biological marker
in context of sensitivity, specificity, and area under curve (AUC). Several studies reported
potential diagnostic biomarkers for various cancers using GSE database by performing a
ROC analysis. Typically, the AUC value > 0.5 have significant difference between diseased
and non-diseased stages. To perform the ROC analysis, we extracted the expression values
of each gene from three different GSE datasets (GSE3325, GSE6919, and GSE55945) of
prostate cancer specimens and normal prostate samples from NCBI-GEO-datasets. Then
we performed the ROC analysis using the online ROC plotter statistics tool (http://www.
rad.jhmi.edu/jeng/javarad/roc/JROCFITi.html, accessed on 9 March 2023) in that GSE
datasets. We found that GNL3 and PA2G4 showed comparatively significant and better
performance in prostate cancer specimens compared to normal samples (Figure 4B,C). The
GNL3 and PA2G4 genes showed a significant AUC value compared to AUC of commercially
available biomarkers (0.60–0.70) (Table 1).

http://www.rad.jhmi.edu/jeng/javarad/roc/JROCFITi.html
http://www.rad.jhmi.edu/jeng/javarad/roc/JROCFITi.html
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3. Biological Pathways and Protein–Protein Interaction Analysis

Previous analysis identified GNL3 and PA2G4 as the lead genes after Kaplan–Meier
survival and ROC analysis. Further, these two gene sets were chosen to study their involve-
ment in biological pathways, protein–protein interaction (PPI), and co-expression pattern.
We utilized FunRich, an offline software to determine the involvement of GNL3 and PA2G4
in different biological signaling pathways by applying a statistically significant p value
less than 0.05. PPI and co-expression analysis was performed using PPI string database.
We observed that GNL3 and PA2G4 were enriched in the regulation and co-regulation
of androgen receptor (AR) activity, androgen receptor-mediated signaling, regulation of
β-catenin signaling, and Wnt signaling pathways (Figure 5A–C).

The top ten biological pathways of GNL3 and PA2G4 with their gene count percentage
and significant –log10 p value include syndecan-4 mediated signaling, glypican network,
canonical and non-canonical Wnt signaling, β-catenin signaling, and androgen receptor
(AR) signaling pathways (Figure 5A). Accumulating data suggests that AR-mediated sig-
naling pathways play a crucial role in the development, progression, and resistance to
antiandrogen therapy of prostate cancer. Accumulating evidence indicates a significant role
of androgen receptor splice variants in mediating resistance of castration-resistant prostate
cancer to current therapies and in predicting therapeutic responses [36,37]. Similarly, Wnt
signaling components also play a significant role in prostate tumorigenesis and promote
resistance against androgen deprivation therapy [38,39]. Both canonical and non-canonical
Wnt signaling pathways regulate several developmental and biological processes including
cell proliferation, self-renewal, and stem cell differentiation. In the non-canonical Wnt
signaling pathway, Wnt5a, Wnt5b, and Wnt11 ligands bind to a panel of diverse receptors
to activate Wnt signaling, including receptors of the Frizzled family and other media-
tors such as tyrosine-protein kinase transmembrane receptor (ROR1, ROR2 or RYK) [40].
Binding of these non-canonical Wnt ligands can activate multiple intracellular pathways
including the planar cell polarity and calcium signaling pathways. The non-canonical Wnt
signaling pathway plays a role in prostate cancer progression to an AR-indifferent or neu-
roendocrine phenotype where the Wnt secretion mediator, Wntless is recognized as a major
driver of neuroendocrine-differentiated prostate cancer characterized by aggressive tumor
growth [41]. These Wnt prostate tumors express minimal to low levels of AR and reduced
PSA. The canonical Wnt signaling is dependent on β-catenin as an effector of Wnt proteins,
and its high level induces tumorigenesis. In the absence of extracellular Wnt signals, cy-
toplasmic β-catenin is phosphorylated by glycogen synthase kinase 3 (GSK3) as part of a
destruction complex including adenomatous polyposis coli (APC) and axin proteins. The
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phosphorylated β-catenin is then ubiquitinated and degraded. Wnt signaling inhibits this
process leading to the accumulation of β-catenin in the nucleus by enabling the formation
of transcriptionally active complexes [42]. Interaction of β-catenin and its crosstalk with
AR has been well documented in prostate cancer. AR binds β-catenin directly to stimulate
AR-mediated gene transcription that provides a growth advantage engaging downstream
targets such as c-Myc and cyclin D1, even at the castration levels of androgens [43]. The
PPI network analysis further revealed that GNL3 and PA2G4 have greater interaction
with their co-expressed/co-occurred proteins (Figure 5B,C). In the co-expression analy-
sis, we found that GNL3 protein strongly co-expressed with WDR12 and GNL2 proteins.
Similarly, PA2G4 protein expression was closely associated with the expression of RPL4
protein (Figure 5C).
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The coiled-coil-helix-coiled-coil-helix domain containing 8 (CHCHD8) is a putative
COX assembly factor known as cytochrome c oxidase assembly factor 4 homolog (CoA4).
COA4 is a newly identified CcO assembly factor which is a twin CX(9)C motif mitochon-
drial protein localized in the intermembrane space linked with the inner membrane of
mitochondria. Its transport into intermembrane space depends on the MIA40 trans-site
receptor machinery [44,45]. It is well-known that the mitochondria organelles are a leading
source of cellular energy and reactive oxygen species (ROS) [45]. Preclinical and clinical
studies have demonstrated that increased levels of ROS, especially free radicals, cause
oxidative damage in DNA, proteins, and lipids which lead to the pathogenesis and the
progression of prostate cancer. Cytochrome c oxidase (CcO) is an enzyme in the mitochon-
drial respiratory chain that powers cellular energy production as ATP. CcO enzyme is a
tightly regulated protein that is involved in mitochondrial mediated oxidative metabolism,
phosphorylation, and ATP formation. In general, the CoA4 protein plays a role in CcO
assembly for the mitochondrial respiratory chain. Therefore, deletion and a mutation in the
CoA4 protein impair the assembly of CcO, which induces the amplification of hydrogen
peroxide production and prevents cell proliferation in a normal condition [46]. Moreover,
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it has also been shown that CoA4-lacking cells suppress CcO activity [25]. The suppressed
activity of CcO has been implicated in the metabolic shift towards glycolysis, and defects in
the assembly of the CcO complex lead to the induction of Ca2+/Calcineurin-mediated retro-
grade signaling. Ca2+/Calcineurin-mediated retrograde signaling can activate PI3-kinase,
IGF1R, and AKT. It is well documented that these proteins are involved in the oncogenic
transformation and cancer progression [47]. However, the role of CoA4 is limited in cancer.
Krobthong et al. (2022) reported that cancer-promoting proteins, including CoA4, were
downregulated in the natural peptides treated A549 lung cancer cells compared to the
non-treated cells. The authors describe that natural peptides have anti-proliferative and
anti-metastatic activities by suppressing cancer-promoting proteins and further reported
that the anti-oxidative activity of natural peptides may be attributed to higher expres-
sion of ROS-reducing proteins [48]. This study indicates that CoA4 may be involved in
ROS production.

The Guanine nucleotide-binding protein-like 3 (GNL3) is alternatively known as
nucleostemin. In general, GNL3 stabilizes the telomeric repeat binding factor 1 (TRF1)
protein during the processes of mitosis and stimulates the metaphase-to-anaphase transition.
GNL3-mediated stabilization of TRF1 controls the telomere and cell cycle progression [49].
Telomeres are the protective structures of chromosome ends that are gradually shortened by
each cell division, eventually leading to cellular senescence. Malignant cells maintain the
telomere length for unlimited growth by telomerase reactivation or a recombination-based
mechanism. Therefore, telomere length has emerged as an emerging therapeutic target
in majority of human cancers. Elevated expression of GNL3 in various cancers has been
detected. Several studies reported that elevated expression of GNL3 protein promotes
cell proliferation, invasion, migration, and epithelial-to-mesenchymal transition in several
cancers, including prostate cancer [50–52]. It has been reported that loss of GNL3 expression
inhibits cell proliferation, migration, invasion and induces apoptosis in various types of
cancer cells [53,54]. Recently, Zhang et al. (2022) found the overexpression of GNL3 protein
promotes malignant behavior of liver cancer cells. The authors further demonstrated that
knockdown of GNL3 inhibits proliferation, migration, and invasion of liver carcinoma
cells. These results highlight that aberrant expression of GNL3 is associated with poor
overall survival of hepatocellular carcinoma patients [44]. Another in vitro study found
that overexpression of GNL3 protein accelerates epithelial-to-mesenchymal transition
and decreased expression of GNL3, thereby lowering growth, migration, and invasion of
osteosarcoma cells [54]. Similarly, Dai et al. (2021) showed that upregulated expression
of GNL3 promotes non-Hodgkin lymphoma progression by stimulating the oncogenic
Wnt/β-catenin signaling [55]. Another study found that elevated expression of GNL3 with
STAT3 activation is an early process in the progression of low-grade dysplasia squamous
cell carcinoma [56]. Sami et al. (2019) demonstrated that nucleostemin (GNL3) protein is
a predicted biomarker in the most aggressive phenotype of breast cancer [57]. Lin et al.
(2019) revealed that higher nucleostemin expression is associated with poor progression-
free survival in triple-negative/basal-like breast cancers [58]. Few other studies found
upregulation of GNL3 in prostate cancer. Liu et al. (2009) reported that nucleostemin acts
as a critical G1/S barrier regulator, and its higher expression promotes prostate cancer
progression [59]. Another study reported that higher expression of nucleostemin at the
mRNA and protein level in prostate cancer cells and tissues and that decrease in its
expression inhibits PC-3 cell proliferation [60]. Furthermore, a study reported that higher
nucleostemin expression enhances prostate cancer tissues’ malignant behavior [35]. Various
in vitro studies reported that decreased expression of GNL3 noticeably reduces proliferation
in prostate cancer cells [52,60–62].

The proliferation-associated protein 2G4 (PA2G4) is an ErbB3-binding protein 1 (EBP1).
EBP1 (PA2G4) is ubiquitously expressed in the nucleus and cytoplasm of malignant and
non-malignant cells [63,64]. Cytoplasmic Ebp1 protein binds with the cytoplasmic domain
of ErbB3 protein and leads to activation of ErbB3 that has been linked with several human
cancers, and it has also been reported that ErbB3 signaling plays a crucial role in prostate
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cancer [63,65]. However, elevated expression of the PA2G4 gene has also been associated
with the prognosis of various cancers including hepatocellular carcinoma, nasopharyngeal
carcinoma, neuroblastoma, breast, and pancreatic cancers [63,66]. Several studies reported
that higher expression of PA2G4 protein promotes cell proliferation, invasion, and migration
and inhibits apoptosis in various cancer cells. Recently, Sun et al. (2022) found differential
expression of PA2G4 in hepatocellular carcinoma compared to normal liver tissue and
reported that the overexpression of PA2G4 accelerates epithelial-to-mesenchymal transition
in hepatocellular carcinoma via stabilizing the mRNA of FYN oncogene and its overexpres-
sion is associated with poor prognosis of hepatocellular carcinoma patients [67]. Another
study reported that higher expression of PA2G4 protein is responsible for poor outcomes
in nasopharyngeal carcinoma. Further studies demonstrated that elevated expression of
PA2G4 is closely associated with poor survival of nasopharyngeal carcinoma patients and
acts as an independent prognostic indicator in the survival of these patients [68]. Liu et al.
(2015) reported that high levels of Ebp1 are positively associated with the TNM stages
of cervical cancer and involved in lymphatic metastasis [69]. Hou et al. (2021) reported
that silencing of the PA2G4 gene repressed cell viability and induced apoptosis by acti-
vating the expression of caspase-3 and caspase-9 in glioblastoma cells [70]. Few studies
reported overexpression of Ebp1 (PA2G4) protein in prostate cancer. It is known that the
ErbB3 protein receptor is a crucial regulator in prostate cancer progression, and it has been
demonstrated that binding of Ebp1 with ErbB3 protein is involved in their activation. Loss
of expression of Ebp1 protein leads to deactivation of ErbB2/3 signaling, which signif-
icantly suppresses the growth of castration-resistant prostate cancer xenografts [71–73].
Ectopic expression of Ebp1 regulates cellular proliferation and enhances differentiation
in prostate cancer cells [74]. Gannon et al. (2008) demonstrated that high expression of
Ebp1 is directly associated with prostate cancer and progressively involved in the transition
from the hormone-sensitive to the hormone-refractory stage. Furthermore, in vitro and
in vivo study revealed that overexpression of Ebp1 causes therapeutic resistance, and its
downregulation increases the sensitivity towards lapatinib in prostate cancer [75].

The Ribosomal RNA processing9 (RRP9) is a U3 small nucleolar RNA binding protein.
The Rrp9 protein consists of a WD repeat domain and an N-terminal region, and these
WD repeat domains are commonly involved in the interactions between the proteins [76].
Besides WD repeat domain, RRP9 also has another domain that is β-propeller that is
composed of seven WD subdomains and mediate the interaction of RRP9 within the
small subunit (SSU)-processome. The SSU-processome is a large ribonucleoprotein that is
required for the assemblage of the SSU of the ribosomes and for the activation of the 18S
rRNA, and the SSU processome is basically responsible for cell survival. RRP9 protein is
involved in the functioning of U3 small nucleolar RNA, and U3 and RRP9 are responsible
for 18S rRNA production by the SSU processome complex required for early pre-rRNA
cleavages at the sites of A0, A1, and A2 [77]. Mutated RRP9 suppresses cell growth,
while WT RRP9 restored yeast cell growth [77]. A recent study reported that a RRP9
neddylation deficit prevents pre-rRNA processing and leads to the downregulation of
ribosomal biogenesis. Some studies suggested that overexpression of RRP9 enhances tumor
cell proliferation, colony formation, and cell migration [78]. Moreover, ribosomal RNA
biogenesis has been associated with various human malignancies [79]. Zhang et al. (2022)
explored the role of U3 small nucleolar RNA binding protein RRP9 in pancreatic cancer.
They reported that the RRP9 protein activates the AKT signaling pathway by binding
with the DNA binding area of IGF2BP1 in pancreatic cancer cells, accelerating cancer
progression, inhibiting apoptosis, and causes resistance against gemcitabine via decrease
in DNA damage. It is reported that the expression of RRP9 is inversely correlated with
the prognosis of pancreatic cancer patients [79]. Du et al. (2022) explored the oncogenic
role of RRP9 in colon cancer. They found that elevated expression of RRP9 is involved in
colorectal cancer tumorigenesis and its progression, and that the loss of RRP9 inhibits cell
proliferation and migration, promotes tumor cell senescence, and halts tumor growth in
nude mice xenografts [78].
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There are few limitations in the study. Firstly, our analysis is mainly associated with
the acquired information from various datasets and resources, and the results were not
validated at a further biological experimental level. Next, our research was limited to
the selection of candidate biomarker associated with the pathogenesis and prognosis of
prostate cancer, which may lead to the negligence of some information. Finally, our study
focused on the gene subsets which were identified having significant expression level
change between cancer and non-cancer specimens in multiple datasets. Further studies are
needed to compare GNL3 and PA2G4 expression with other established prostate cancer
markers in terms of accuracy and probability.

4. Conclusions

In summary, GNL3 and PA2G4 play crucial biological roles in cancer, supporting
important cellular processes such as cell migration, proliferation, apoptosis, and tumor
growth. Functional studies on GNL3 and PA2G4 demonstrate a significant biological
connection between their expressions in regulating various biological functions. In prostate
cancer, aberrant expression of GNL3 and PA2G4 correlate with tumorigenesis and metas-
tasis. Based on our analysis, GNL3 and PA2G4 showed better performance as prognostic
biomarkers and may be used separately or in combination in prostate cancer. However,
additional research is still required.
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