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Simple Summary: Glycosaminoglycans (GAGs) are a class of carbohydrates that has been closely
associated with cancer progression. GAGs have been implicated in cancer cell growth and are known
to be involved in cell signaling. As GAGs are present in the extracellular matrix that surround
tumor cells (tumor environment), they are intricately involved in the processes of cell migration
and invasion, which are crucial for metastasis (spread to distant organs) to take place. Hence, the
significance of this review is to explore the potential use of GAGs as biomarkers and therapeutic
targets for metastatic renal cancer, which has poor rates of survival and faced with major challenges,
that include lack of precise monitoring of disease treatment and effective treatment strategies with
minimal toxicity.

Abstract: Renal cell carcinoma (RCC) makes up the majority of kidney cancers, with a poor prognosis
for metastatic RCC (mRCC). Challenges faced in the management of mRCC, include a lack of reliable
prognostic markers and biomarkers for precise monitoring of disease treatment, together with the
potential risk of toxicity associated with more recent therapeutic options. Glycosaminoglycans (GAGs)
are a class of carbohydrates that can be categorized into four main subclasses, viz., chondroitin sulfate,
hyaluronic acid, heparan sulfate and keratan sulfate. GAGs are known to be closely associated with
cancer progression and modulation of metastasis by modification of the tumor microenvironment.
Alterations of expression, composition and spatiotemporal distribution of GAGs in the extracellular
matrix (ECM), dysregulate ECM functions and drive cancer invasion. In this review, we focus on
the clinical utility of GAGs as biomarkers for mRCC (which is important for risk stratification and
strategizing effective treatment protocols), as well as potential therapeutic targets that could benefit
patients afflicted with advanced RCC. Besides GAG-targeted therapies that holds promise in mRCC,
other potential strategies include utilizing GAGs as drug carriers and their mimetics to counter
cancer progression, and enhance immunotherapy through binding and transducing signals for
immune mediators.

Keywords: glycosaminoglycans; renal cell carcinoma; metastasis; biomarkers; targeted therapy

1. Metastatic Renal Cell Carcinoma

Renal cell carcinoma (RCC) comprises more than 90% of cases of kidney cancer, with
clear cell RCC (ccRCC) being the most common type of RCC and making up the majority
of cancer-related deaths [1,2]. The “founding event” of ccRCC is often attributed to a
mutation in the von Hippel-Lindau (VHL) tumor suppressor gene [3], although by itself
is insufficient to cause ccRCC. The prognosis for RCC is poor, especially for metastatic
RCC (mRCC). The overall 5-year survival rate for RCC patients is 74% and decreases to
only 8% for patients with mRCC [4,5]. Despite improvements in early detection techniques
and considerable progress in systemic treatment, a quarter of patients with localized RCC
still develops metastatic deposits at distant sites following surgical removal of the primary
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tumor (post-nephrectomy) [6,7]. Distant metastases are mostly observed in the lymph
nodes, lungs, liver, bone and brain [8].

For early or resectable RCC, nephrectomy is usually performed in the management of
this cancer. As RCC is usually resistant to conventional chemotherapy and radiotherapy,
the standard treatments for mRCC have been interleukin-2 and interferon cytokine-based
therapies, until the availability of targeted therapies [2,9]. Several targeted treatments
are available for mRCC management, the most common being tyrosine kinase inhibitors
targeting Vascular endothelial growth factor (VEGF) signaling, such as sunitinib [10,11]
and sorafenib [12]. Sunitinib is commonly used as a first line treatment option for RCC,
with a higher response rate and longer progression-free survival than the conventionally
used interferon α as observed during a Phase 3 clinical trial [10]. Moreover, poor-risk RCC
patients were also observed to show responses to the drug in the same study. Although
sunitinib is still used in VEGFR-targeted therapy for advanced RCC [13], newer genera-
tion of multiple VEGF kinase inhibitors, such as Lenvatinib, has been found to be more
effective [14].

Another drug target is the mammalian target of rapamycin (mTOR) pathway, which
regulates cell proliferation and tumor metabolism [15]. Temsirolimus, a specific inhibitor
of mTOR, has been used as both first line and second line treatment options in advanced
RCC [16,17]. This intravenous drug has also been shown to achieve prolonged survival
over interferon α among mRCC patients in a Phase 3 clinical trial [18,19]. However, despite
the clinically beneficial outcomes that these targeted treatments offer, nearly all RCC
patients develop resistance to both VEGF-targeted and mTOR-targeted therapies. Thus, a
combination of VEGF and mTOR inhibitors has been administered as a strategy to delay
drug resistance to either class of the inhibitors [20,21].

Another treatment modality employed is immunotherapy targeting the programmed
cell death protein 1 (PD1) and its ligand PDL1, as demonstrated by the effects of the drug
nivolumab [22]. PDL1 is overexpressed in cancer cells, and inhibiting PD1-PDL1 interaction
promotes T-cell activation and killing of cancer cells. Nivolumab, used as second line treat-
ment for mRCC, has been reported to offer a longer overall survival and higher response
rates, with fewer adverse effects and a better quality of life, compared to the mTOR inhibitor
Everolimus [23]. A meta-analysis comprising 5121 patients with mRCC from six clinical
trials, revealed that Nivolumab plus cabozantinib (an oral inhibitor of multiple tyrosine
kinases) was associated with the highest likelihood of patients having maximal overall
survival, while the combination of Lenvatinib plus Pembrolizumab (a humanized antibody
used in cancer immunotherapy), the highest likelihood of progression free survival [24].
In fact, the European Association of Urology Guidelines has recommended combination
therapies of Axitinib plus Pembrolizumab, Cabozantinib plus Nivolumab, and Lenvatinib
plus Pembrolizumab for advanced RCC [14]. Another combination therapy which has
undergone a phase III clinical trial include, randomization of 873 patients who received
either axitinib and avelumab or sunitinib [25]. A recent report has also shown evidence
for clinically meaningful and durable benefits in advanced RCC patients treated with
Nivolumab plus Ipilimumab (a monoclonal antibody that targets CTLA-4) [26].

A summary of the present treatments available for mRCC is shown Table 1.
Biomarkers for RCC have facilitated identification of patients likely to respond to cer-

tain types of treatment and improved prognostic accuracy of cancer metastasis, recurrence,
and mortality. As common therapies involve the VEGF pathway, VEGF is a commonly
used serum biomarker to predict patient prognosis [27]. However, VEGF expression was
observed not to correlate well with receptiveness of the cancer to VEGF inhibitor (Sunitinib)
treatment [28]. Serum lactate dehydrogenase (LDH) is involved in the aforementioned
mTOR pathway and can potentially be a cheap and convenient biomarker to predict overall
survival of RCC patients [29,30]. Urinary markers such as aquaporin 1 and lipid droplet
protein perilipin 2 were shown to be elevated in patients with RCC while levels decreased
after excision of the tumor [31,32].
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Table 1. Current treatments available for mRCC.

Treatment Modality Selected Therapeutic Options

Cytokine-based therapy Interleukin-2
Interferon

TKIs

Sunitinib
Sorafenib
Lenvatinib
Cabozantinib
Axitinib

mTOR inhibitors
Temsirolimus
Everolimus

Immunotherapy

Nivolumab
Pembrolizumab
Ipilimumab
Avelumab

Combinatorial therapy
TKI + Immunotherapy Axitinib + Pembrolizumab

Cabozantinib + Nivolumab
Lenvatinib + Pembrolizumab
Axitinib + Avelumab

Immunotherapy + Immunotherapy Ipilimumab + Nivolumab

2. Glycosaminoglycans

Glycosaminoglycans (GAGS) are linear polysaccharides that consist of repeating
disaccharide units of uronic acid and an amino sugar [33]. They are found in almost every
mammalian tissue, providing structural scaffolding and hydration to the cells [34]. Figure 1
is an illustration of the four main classes of glycosaminoglycans: hyaluronic acid (HA),
chondroitin sulfate (CS), heparan sulfate (HS), and keratan sulfate (KS). Monomers of the
disaccharide building blocks consist of GlcA (d-glucuronic acid) and GlcNAc (N-acetyl-
d-glucosamine) for HA; GlcA and GalNAc (N-acetyl-d-galactosamine) for CS; GlcA or
IdoA (l-iduronic acid) and GlcNAc or GlcN (d-glucosamine) for HS; Gal (d-galactose) and
GlcNAc for KS. GAGs are highly polar and negatively charged with the polysaccharide
lengths generally varying between 4 and 200 mer [35]. With the exception of HA, GAGs
contain sulfate groups attached at specific sites [36]. The sulfate groups are added onto the
GAGs chain through post-polymerization modifications [37]. O-sulfotransferases mediate
the sulfation of CS and KS while the sulfation of HS is controlled by N-sulfotransferases,
C5 epimerases as well as O-sulfotransferases [35,38].

HA (the only GAG known not to have any sulfation sites) has a crucial role in cushion-
ing and lubricating the body that is attributable to its highly hydrophilic property, and is
therefore found in abundance in the eyes, joints, and heart valves [39]. HA is also abundant
in the skin and important in wound healing [40]. KS is present in the cornea, cartilage, and
bones, and associated with disorders such as macular corneal dystrophy and osteoarthri-
tis [41]. HS is usually located in the extracellular matrix (ECM), and is highly involved in
tumorigenesis [42–44]. CS is an important structural component of cartilage, providing
much of their resistance to compression [45]. CS can interact with various biomolecules
and form proteoglycans (PGs) with proteins, the major components of the extracellular
matrix and drive crucial biological activities. The various sulfation patterns of CS could
code for different biological regulatory functions [46,47]. For instance, C4S is known to
be important for cartilage regeneration and observed to be downregulated in degraded
osteoarthritic cartilage [48]. C4,6S augmented cartilage generation through enhancing type
II collagen production [49]. C4,6S, but not C4S or C6S, was reported to be able to interact
with several neurotrophic factors to stimulate neurite outgrowth [46].
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Figure 1. Structure of the four main glycosaminoglycans (GAGs). Disaccharide monomers of
Hyaluronic acid (A); Chondroitin sulfate (B); Heparan sulfate (C) and Keratan sulfate (D). The
possible sulfate sites are denoted with Ri, the superscript ‘i’ indicate the Carbon position where the
sulfate group is esterified; R = H or SO3H. Representative Glycosaminoglycans polysaccharides of
HA, CS, HS and KS consist of repeating disaccharides monomers with various sulfation patterns (E).

Interestingly, it is well established that GAGs are involved in cancer cell growth,
signalling, and metastasis [34,50]. HA levels are significantly elevated in breast [51],
lung [52], and ovarian cancers [53]. Certain sulfation motifs of exogenous CS were shown
to induce apoptosis and inhibit the growth of triple negative breast cancer cells [54]. Der-
matan sulfate was observed to be elevated with changes in the sulfation profiles in the
stroma of certain cancers such as liver [55], lung [56,57], pancreatic [58], colorectal [59] and
gastric [60] cancers.

3. GAGs and Metastasis

Cancer is a complex disease where malignant cells could acquire the ability to metas-
tasize to distant sites, thus accounting for the majority of cancer-related morbidity and
mortality. The fundamental processes of migration and invasion are crucial for cancer
metastasis, which is usually the primary cause of death in cancer patients [61]. The ECM,
which is composed mainly of GAGs and their PGs, would therefore play a significant
role in controlling cell behavior and movement [62]. GAGs are endowed with rigidity
property, thus providing structural integrity to the cells and passageways in the ECM
between cells [36]. Dysregulation of ECM modelling occurs during tumorigenesis and
metastasis, leading to changes in the tumor microenvironment (TME) and loss of tissue
homeostasis [63,64]. Disorganization in the ECM GAGs/PGs expression, composition and
spatiotemporal distribution are the main causes of the dysregulation of ECM functions and
the driver for cancer invasion [65]. GAGs modulate cancer invasion through binding with
various growth factors, adhesion molecules and cytokines [66].

HA is the only GAG that does not form PGs with any protein through covalent bond-
ing, and therefore not sulfated at all [37]. Increased HA synthesis through overexpression
of Hyaluronan Synthases (HS) was observed to promote cancer growth and metastasis
in xenograft models of breast, prostate, and colon cancers [67–70]. The presence of HA
provides cancer cells with a highly hydrated and malleable ECM which is essential for
changes in cell shapes and tissue penetration during invasion [71–73]. Pericellular HA
surrounding metastatic cancer cells could facilitate adhesion of cancer cells to endothelial
cells at the metastatic site [74,75] (Figure 2). Moreover, HA can interact with various cell-
surface receptors, notably CD44 and RHAMM, which are well established to be involved
in cancer cell survival, motility, and metastasis [76,77]. Studies have shown that disruption
of the binding of HA to either CD44 or RHAMM receptors [78–80], would suppress the
development of metastatic nodules in mice. HA-CD44 interaction has been reported to
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stimulate Matrix Metalloproteinase 2 (MMP2) and MMP9 expression and their cell-surface
presentation [81]. These MMPs play important roles in cancer invasion, as they aid in
digesting through the ECM barrier (which is essential in preventing cancer cells from
escaping their primary tissue architecture) and in facilitating the growth of cancer cells
at metastatic sites [82,83]. HA bound to RHAMM could induce the activation of FAK
which is required for actin filament and microtubule rearrangements as well as cancer cell
motility [84–87].
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Figure 2. Proposed mechanisms of the involvement of GAGs in cancer metastasis. In metastatic
renal cancer, HA, HS and HS present on the cell surface layer promote cancer cell invasion and
metastatic capabilities. (A) During metastasis, cancer cells traveling in the blood vessel adhere to the
endothelial cells through the binding and interaction between cell surface CD44 and HA present in
the ECM. (B) HA-bound CD44 receptors on cancer cells activates MAPK-ERK1/2 and AKT signaling
pathways to promote cell adhesion, migration and invasion. CD44 also increases MMP2 and MMP9
expression and secretion to help digest and remodel ECM proteins at the metastatic site. Cell surface
RHAMM, upon the binding of HA in the ECM, activates FAK-Src signaling pathways to help cancer
cells migrate through the blood vessel and start colonization at the metastatic site. (C) Cell surface
proteoglycan of CS and HS, such as Versican and Syndecan-1, promote cancer invasion though
activating Snail, EGFR and AKT signaling pathways.

CS, HS and KS can be sulfated and form PGs with the core proteins through covalent
binding at the Serine residues [88]. Alterations in cell surface CS expression, sulfation
patterns and consequently, ECM-degradative enzymes, such as MMPs, would result in
changes of cell invasiveness and disruption of cell-matrix interactions [33,89]. In vitro
studies on breast cancer revealed that a higher CS expression in tumor cells was concomitant
with increased cell proliferation, migration and invasion [90–93]. At the tissue level,
CS in general was observed to be significantly elevated in the stromal compartment of
breast tumors [94,95]. The sulfation patterns of CS also elicited various effects on cancer
invasion [89]. For instance, elevated expression of non-sulfated chondroitin in prostate
cancer was associated with adverse clinicopathological parameters [96]. C4,6S was noted
to suppress cancer cell invasion through inhibiting Wnt/β- Catenin signaling [97] and
enhancing the retention of tissue inhibitor of metalloproteinases (TIMP)-3, which disrupt
ECM processing and cell mobility [98]. On the other hand, C4,6S expression could promote
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ovarian cancer metastasis through interacting with VEGF, HGF [99,100] and P-Selectin [101],
which support survival of the circulating cancer cells and tissue colonization. C6S bound to
CD44 has been reported to promote cancer cell adhesion and migration [102]. C4S is known
to suppress cancer invasiveness and inhibit cathepsin S activity which regulate cell–cell
and cell-ECM contacts [103,104]. CS proteoglycans (CSPGs) also participate in cancer
cells migration, invasion, and metastasis. A large ECM CSPG (Versican) was observed
to promote cancer epithelial-to-mesenchymal transition (EMT) and metastasis through
EGFR/AKT [105], Snail/PAPSS2 [106] and TGFβ/NK-κB signaling [107] in liver, breast
and ovarian cancers. Intracellular CSPG Serglycin has been reported to interact with
CD44 [108,109] and activate IL-8 [110] signaling pathways to enhance cell migration and
metastasis in lung and breast cancer.

HS is present at the ECM interface to modulate various types of cell-ECM interac-
tions [111]. The capability of HS to bind to various chemokines, growth factors, mor-
phogens, enzymes and ECM proteins, confer functional properties such as controlling
cancer migration, EMT and metastasis [34]. Changes in HS sulfation patterns could also
affect cancer cell invasion and metastasis [112,113]. Reduction in 6-O-Sulfation of HS has
been observed to augment VEGF and FGF induced cell invasion in RCC [114]. On the
other hand, an increase in 3-O-Sulfation could enhance the EMT and invasion capacity
of pancreatic cancer cells [115]. Cell surface HS/CS Proteoglycans (HSPGs) Syndecan-1
is known to increase cancer stemness and invasiveness through stimulating the Notch
and EGFR signaling pathways and regulation of the focal adhesion kinase-Wnt signaling
axis [116,117]. In contrast, ECM HSPG Perlecan has been shown to inhibit cancer cell
invasion and digested by MMP7 during FAK driven invasion in prostate cancer [118].

KS expression was reported to be increased in pancreatic tumor tissues compared to
normal adjacent tissues and stroma, with KS expression being higher in lung metastatic
sites compared to the primary pancreatic tumor [119]. KSPG Lumican has been shown to
inhibit lung cancer invasion through binding with p120-catenin, which prevent activation
of Rho GTPases, FAK and cytoskeletal re-organization [120]. On the other hand, highly
glycosylated ECM Lumincan promote colon cancer cells migration through binding with
cell surface integrins, and activating actin cytoskeleton remodeling [121,122].

3.1. GAGs as Biomarkers in Metastatic RCC

GAGs have been investigated as potential biomarkers in a variety of cancers, examples
of which are shown in Table 2.

Table 2. GAGS as biomarkers in a variety of cancers.

GAG Source
of GAG

Cancer
(Organ of Origin)

Parameters Based on Altered Levels of Specific
GAGs and Significance Reference

HA Saliva Head and neck
(oral cavity, pharynx and larynx)

Increased salivary HA levels in head and neck squamous
cell cancer patients compared to normal [123]

Serum Liver
High serum HA levels associated with shorter
recurrence-free survival and overall survival in
hepatocellular cancer patients.

[124]

Urine Bladder
Increased urinary HA levels in bladder cancer patients
(compared with normal), with 83.1% sensitivity, 90.1%
specificity and 86.5% accuracy in cancer detection

[125]

Tissue Liver Intrahepatic cholangiocarcinoma is characterized by a
significant increase in HA [126]

HS Tissue Skin High antibody reactivity in cutaneous melanoma tumors
compared with nevi [127]
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Table 2. Cont.

GAG Source
of GAG

Cancer
(Organ of Origin)

Parameters Based on Altered Levels of Specific
GAGs and Significance Reference

CS Tissue Liver
Raised CS level with a more diverse CS sulfation
pattern is associated with poor differentiation status in
hepatocellular carcinoma

[126]

Serum Ovary Elevated CS levels in advanced stage and recurrent ovarian
epithelial cancer. [128]

Tissue Prostate
Increased CS levels in men with early prostate cancer. Low
CS concentration associated with significantly better
progression free survival following radical prostatectomy.

[129]

DS Tissue Esophagus CS/DS is significantly increased in esophageal squamous
cell carcinoma compared with normal tissue [130]

KS Serum Cartilage Raised KS levels in chondrosarcoma patients as compared
with age- and sex-matched controls. [131]

Tissue Thyroid
Strong labeling of sulfated forms of KS in papillary thyroid
cancer but not other types of thyroid neoplasms or in
normal tissues.

[132]

In ccRCC, GAG biosynthesis is usually dysregulated, leading to changes in secreted
GAG profiles (GAG disaccharide composition and sulfation) in the plasma and urine.
Comparing ccRCC tissues to their adjacent normal tissues, enzymes involved in the HS
biosynthesis were significantly downregulated, while those in the CS biosynthesis pathways
were significantly elevated (both at gene expression and protein levels). Likewise, plasma
and urine GAG profiles of ccRCC patients were higher in total CS compositions compared
to the healthy individuals. Unsulfated CS and 6-O-sulfated HS were also observed to be
enriched in metastatic ccRC (mccRCC) plasma and urine samples [133,134]. Moreover,
CS and HS, mRCC tumors also had higher cellular hyaluronan expression compared to
primary tumor tissues. Cellular hyaluronan has been associated with a higher tumor grade,
size, and more advanced stage as well as increased recurrence and mortality rates in RCC
patients [135].

To further explore the predictive and prognostic values of GAG in ccRCC, a GAG
score based on the free CS and HS concentrations as well as the sulfation compositions of
CS and HS in the plasma and urine has been developed. The formula for the score was
derived from Gatto et al. in 2018, using a discovery set of 86 samples and a validation set of
160 samples with an area under curve (AUC) of 0.999 and accuracy of 98.9%. The score took
into consideration the concentrations of the sulfate, non-sulfate and total CS and HS [136].
The score was able to distinguish between healthy and mccRCC patient samples in clinical
studies that were published recently in 2022 and few years back in 2018 [134,136]. It was
further observed that the GAG score had high sensitivity and specificity for the occurrence
of mccRCC. The GAG score could also be used as an independent prognostic factor for
post-operative recurrence of RCC, and identification of patients who had a high or low risk
of metastatic recurrence or death in early stage RCC [134,136].

Currently, GAGs and GAG scores are being evaluated in clinical trials around the
world as biomarkers for RCC. The Zealand University Hospital in Denmark is in the
process of conducting a study for patients with suspected renal tumors, to evaluate the
plasma and urine GAG score in order to differentiate GAG scores between RCC patients,
oncocytoma patients, and healthy individuals [137]. The Sahlgrenska University Hospital
in Sweden is conducting two concurrent studies on the sensitivity and specificity of GAG
scores on the early diagnosis of advanced RCC [138] and recurrent RCC, respectively [139].
For recurrent RCC patients, plasma and urine GAGs are being measured and compared
against radiological responses for advanced RCC and against post-surgical recurrence,
diagnosis, and tumor size. Plasma GAGs were recently ascertained to be highly sensitive
diagnostic and prognostic biomarkers in surgically treated RCC, and GAG scores useful
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for detection of early RCC, prediction and surveillance in recurrent RCC, in a completed
clinical trial [136]. A clinical study across multiple locations is also evaluating the use
of GAG scores based on serum and urine GAGs for detection of RCC recurrence with
comparison to the use of current reference standards [140].

3.2. GAGs as Targets for Metastatic RCC

GAGs are known to be usually dysregulated in abundance, sulfation patterns and
polysaccharide lengths across various types of cancer [141]. Qazi et al. observed that HA
and HS present on the cell surface PG layer (glycocalyx) promoted cancer invasion and
metastatic capabilities, in response to the interstitial flow in the tumor ECM present in
mRCC [142]. The same investigators demonstrated that digestion of glycocalyx HS and
HA using heparinase and hyaluronidase, reduced renal cancer interstitial flow-mediated
migration, and inhibited MMP1 and MMP2 expression. Knocking down of NDST1 (N-
sulfotransferase 1), a HS biosynthesis enzyme, suppressed invasion and metastasis of
aggressive renal cancer cells in vivo [143]. Additionally, Glypican-1, a cell membrane HS
proteoglycan, is the linkage between HS (interstitial flow sensor) and its downstream
migration promoting activation of the signaling axis such as the MAPK pathway. A study
has shown that knocking down of Glypican-1 would result in reduction of interstitial
flow-mediated migration of metastatic renal cancer cells [144]. The above studies suggest
that targeting the degradation of glycocalyx, especially extracellular HS/HA is a potential
therapeutic strategy to reduce metastasis in aggressive renal cancers. For instance, there
is a drug for targeting extracellular HS, naphthalene methanol-D-xyloside (NX), which
blocks the assembly of HS side chains onto their PGs [145]. In addition, Pegylated Human
recombinant Hyaluronidase (PEGPH20) is a drug used to remove extracellular HA—the
main constituent of the tumor ECM physical barrier which limits drugs, monoclonal
targeting antibodies (mAb) and immune cell access to the tumor mass [146]. PEGPH20
treatment has been reported to enhance anti-cancer drug efficacy and accessibility of mAb
and immune cells to breast and pancreatic tumor sites in both preclinical and clinical
settings [146–148]. However, despite the potential effects of the glycocalyx targeting drugs
and therapies, systemic administration of such compounds would deplete the glycocalyx
of endothelial cells and disrupt vascular homeostasis, leading to serious side effects such
as vascular leakage, excessive inflammatory responses and sustained nitric oxide induced
vasodilation [143,149]. Thus, several targeted strategies are being developed such as
nanoparticle delivery to direct the compounds specifically to the tumor mass, so as to
reduce the side effects of these therapies [150].

Besides the above-mentioned GAG-targeted therapies in mRCC, there are other
promising targeting strategies that has been explored in various types of cancer which
could be useful for renal cancers, such as utilizing GAGs as drug or cytokine carriers and
their mimetics to interfere with cancer progression [151].

3.2.1. GAGs as Anti-Cancer Drug Carriers

GAGs nanoparticles have been developed to deliver cancer chemotherapeutics com-
pounds into the tumor microenvironment [141,152]. A non-anticoagulant Heparin-deoxycholic
acid conjugate was used to deliver doxorubicin with good efficiency and lesser systemic
toxicity than free doxorubicin [153]. HA nanoparticles were observed to be effective in
delivering drugs to CD44 positive cancer cells [154]. Irinotecan carrying HA is currently
under phase II clinical trials for colorectal cancer (NCT01290783) and extensive-stage small
cell lung cancer patients [141,155].

3.2.2. GAGs, GAG Derivatives and Mimetics as Anti-Cancer Drugs

Low-molecular-weight heparin (LMWH), usually used for venous thromboembolism
prophylaxis during cancer treatment [156], was previously shown to reduce cancer metas-
tasis through binding and blocking of the interactions between cancer cells and several
membrane receptors such as Selectins and Integrins [157,158]. Some clinical studies also
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suggested its benefit to patient survival in advanced lung, colorectal, breast and other
solid cancers [159,160]. On the other hand, LMWH treatment has elicited serious side
effects such as bleeding and induction of thrombocytopenia due to its anticoagulant char-
acteristic, hindering its long-term usage for cancer treatment, while there are also clinical
studies suggesting LMWH having no survival advantage [161–163]. Recently, a class of
non-anticoagulant HS analogs and Heparinase inhibitors such as Roneparstat, Pixatimod
and HS06 are under development with promising anti-cancer effects [164–167]. Ronepar-
stat is known to reduce tumor growth and angiogenesis through inhibiting Heparinases
from digesting Syndecan-1 bound HS and is currently undergoing Phase I clinical trial for
advance myeloma [166]. Pixatimod treatment has been shown to reduce cancer growth
and metastasis in vivo by inhibiting Heparanase-2 [168] and activating NK and dendritic
cells [169–172]. The drug is currently under Phase II clinical trial for melanoma, lung and
colorectal cancers [170]. HS06 has been reported to inhibit cancer-stem-cell self-renewal
through activating MAPK signaling [167].

Approaches targeting HA, hyaluronan synthases (HAS) and hyaluronidase are un-
der investigation both preclinically and clinically with promising anti-cancer outcomes.
HA small oligosaccharides interfered with HA-CD44 mediated cell survival and inva-
sion signaling pathways and limited tumor growth and metastasis in colon and ovarian
cancers [173–175]. HA synthesis inhibitors such as 4-methylumbelliferone [176,177], 1,25-
dihydroxyvitamin D3 [178] and HAS targeting siRNA [179] have been reported to induce
apoptosis and reduce cell growth in lung, liver, breast and colon cancers in vivo. Recom-
binant human hyaluronidase PH20 (PEGPH20) has been shown to enhance chemother-
apy sensitivity by degrading extracellular HA thus improving the accessibility of anti-
tumor drugs, mAbs and immune cells [146,180–182]. However, a phase III clinical trial of
PEGPH20 on metastatic pancreatic cancer did not show any benefit in patient overall and
progression-free survival despite the favorable response rates [183].

CS and its derivatives have also been investigated at the preclinical stage for their uses
in cancer therapies. Chondroitinase removal of CS was reported to reduce melanoma cell
proliferation, invasion, and angiogenesis [184]. Fucosylated CS (FucCS) was observed to
inhibit metastasis in animal models though blocking of P- and L-Selectin [185]. Neoglycans-
modified CS chains with carbodiimide reduced breast cancer cell growth and induced
apoptosis with little toxicity to the normal tissue [186].

3.2.3. GAGs and GAG Derivatives in Cancer Immunotherapy

TME consists of molecules such as TGF-β and its superfamily members, which help
the tumor to escape the body’s immune-surveillances, and hinder NK lymphocytes’ access
and cytotoxicity activity [187]. GAGs are the main component of the tumor ECM with
the capability to bind and transduce signals for immune mediators such as inflammatory
chemokines and immune receptors [188,189]. In particular, accumulation of HA in the
tumor ECM is known to enhance immune evasion and therefore, a popular target for
cancer immunotherapy [190]. HA degradation has been demonstrated to increase PD-L1
antibody uptake, thus, attracting T and NK cells to the tumor in a mouse breast cancer
model [191]. Heparanase is a double-edged sword in tumor immunology. The HS-digesting
enzyme could sustain chronic pro-tumoral inflammation [192], while Heparanase from
the tumor associated macrophages (TAM) are known to promote macrophage infiltration,
cytokine secretion and phagocytic activity [193,194]. The Heparanase inhibitor Pixatimod
was demonstrated to prevent pro-tumoral macrophage infiltration and improve NK cells
activation via dendritic cells [169,195]. A phase I clinical trial has shown that Pixatimod
could stimulate the innate immune response leading to increased circulating NK cells in a
majority of the patients with advanced solid tumors [196].

A summary figure for the potential GAG-targeted therapeutics for mRCC is shown
in Figure 3.
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4. Conclusions

Despite the emergence of new targeted therapies and combinatorial therapy with
immuno-oncology agents, which have transformed the therapeutic landscape of advanced
RCC [197], there are still challenges faced in the management of mRCC. The availabil-
ity of reliable prognostic markers for advanced RCC and for precise monitoring of the
progress of disease treatment is still an unmet need. Moreover, selection of the optimal
treatment option will depend on the outcome to be achieved, as well as identification and
validation of predictive biomarkers associated with the desired treatment endpoints [198].
While recent advances in the use of combinatorial therapy to treat mRCC (immunother-
apy/immunotherapy or immunotherapy/TKI) have provided opportunities for more
efficacious treatments, there is also the added potential risk of toxicity, including protracted
and permanent toxicities [199].

GAGS are an important component of the ECM in the tumor microenvironment, which
provides crucial biochemical and biomechanical cues mediating cell–cell and cell-matrix
interactions, that drives cancer progression and modulate immune responses affecting T
cells and other critical elements of the immune system [50]. Interest in understanding the
structure-function relationships of GAGs has opened up the fields of glycosaminoglyca-
nomics and heparanomics [200,201]. Recent advances in technologies, including imaging
techniques, mass spectrometry, microarrays, and bioinformatics approaches [202–205], have
provided novel biological insights into the glycome and enhanced the field of glycobiology,
thereby enabling the knowledge gleaned to be used for better cancer detection and prog-
nostication, and establishing GAG-related cancer therapy [152]. The fact that Muparfostat
(PI-88), known to inhibit endo-beta-D-glucuronidase heparanase, has progressed to Phase
III clinical trial for hepatocellular cancer, with other efforts also being channeled towards
developing small molecule inhibitors and neutralizing antibodies of GAGs as anticancer
therapy [141], is ample evidence that GAGS have potential usage in the clinical setting.

Therefore, it is timely to evaluate the utility of GAGs as biomarkers in RCC, espe-
cially for risk stratification and strategizing efficacious treatment strategies. Because of the
inherent challenges associated with mRCC treatment, GAGS may also serve as exciting
alternatives for treating mRCC with the potential of augmenting current immunotherapy
and combinatorial therapy protocols. Moreover, of relevance is also the fact that non-clear
cell renal cell carcinoma (nccRCC), a highly heterogeneous group of kidney cancers com-
prising 15 to 30% of renal tumors, has no clearly defined treatment approaches and is under
represented in clinical trials (where the focus thus far has been on ccRCC) [206,207]. As
developing better therapeutic strategies for each subtype of nccRCC is clearly an urgent
need [16,207,208], GAGs would be attractive candidates for further exploration as therapeu-
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tic targets for this group of renal cancers, as they participate in fundamental mechanisms
that mediate tumor metastasis. Targeting of GAGs could therefore be potentially effective
to eradicate both metastatic ccRCC and nccRCC subtypes.
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66. Baghy, K.; Tátrai, P.; Regős, E.; Kovalszky, I. Proteoglycans in liver cancer. World J. Gastroenterol. 2016, 22, 379–393. [CrossRef]
67. Kosaki, R.; Watanabe, K.; Yamaguchi, Y. Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances

anchorage-independent growth and tumorigenicity. Cancer Res. 1999, 59, 1141–1145. [PubMed]
68. Itano, N.; Sawai, T.; Miyaishi, O.; Kimata, K. Relationship between hyaluronan production and metastatic potential of mouse

mammary carcinoma cells. Cancer Res. 1999, 59, 2499–2504.
69. Liu, N.; Gao, F.; Han, Z.; Xu, X.; Underhill, C.B.; Zhang, L. Hyaluronan synthase 3 overexpression promotes the growth of TSU

prostate cancer cells. Cancer Res. 2001, 61, 5207–5214. [PubMed]

http://doi.org/10.1038/modpathol.3800657
http://doi.org/10.1038/nchembio810
http://www.ncbi.nlm.nih.gov/pubmed/16878128
http://doi.org/10.1177/154405910408301111
http://www.ncbi.nlm.nih.gov/pubmed/15505240
http://doi.org/10.1016/j.carbpol.2019.115496
http://www.ncbi.nlm.nih.gov/pubmed/31826425
http://doi.org/10.1007/s00776-014-0643-y
http://doi.org/10.3390/jcm11051250
http://doi.org/10.1016/S0002-9440(10)64757-8
http://doi.org/10.1002/1097-0215(20010120)95:1&lt;12::AID-IJC1002&gt;3.0.CO;2-E
http://doi.org/10.1038/srep14355
http://www.ncbi.nlm.nih.gov/pubmed/163683
http://doi.org/10.1016/0006-291X(90)90606-N
http://www.ncbi.nlm.nih.gov/pubmed/2157432
http://doi.org/10.1002/1097-0142(19811101)48:9&lt;2016::AID-CNCR2820480918&gt;3.0.CO;2-A
http://www.ncbi.nlm.nih.gov/pubmed/6271389
http://doi.org/10.1016/S0925-4439(00)00051-X
http://www.ncbi.nlm.nih.gov/pubmed/11040445
http://doi.org/10.1590/S1679-45082015AO3477
http://www.ncbi.nlm.nih.gov/pubmed/26761548
http://doi.org/10.1038/bjc.1980.205
http://www.ncbi.nlm.nih.gov/pubmed/6448616
http://doi.org/10.1016/j.cell.2011.02.013
http://doi.org/10.1038/s41586-020-1998-1
http://doi.org/10.1073/pnas.1617037114
http://doi.org/10.1158/2159-8290.CD-18-0193
http://doi.org/10.1038/nrm3902
http://www.ncbi.nlm.nih.gov/pubmed/25370693
http://doi.org/10.3748/wjg.v22.i1.379
http://www.ncbi.nlm.nih.gov/pubmed/10070975
http://www.ncbi.nlm.nih.gov/pubmed/11431361


Cancers 2023, 15, 266 14 of 19

70. Jacobson, A.; Rahmanian, M.; Rubin, K.; Heldin, P. Expression of hyaluronan synthase 2 or hyaluronidase 1 differentially affect
the growth rate of transplantable colon carcinoma cell tumors. Int. J. Cancer 2002, 102, 212–219. [CrossRef] [PubMed]

71. Toole, B.P. Hyaluronan in morphogenesis. Semin. Cell Dev. Biol. 2001, 12, 79–87. [CrossRef]
72. Evanko, S.P.; Angello, J.C.; Wight, T.N. Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation

and migration of vascular smooth muscle cells. Arter. Thromb. Vasc. Biol. 1999, 19, 1004–1013. [CrossRef]
73. Hayen, W.; Goebeler, M.; Kumar, S.; Riessen, R.; Nehls, V. Hyaluronan stimulates tumor cell migration by modulating the fibrin

fiber architecture. J. Cell Sci. 1999, 112 Pt 13, 2241–2251. [CrossRef]
74. Simpson, M.A.; Wilson, C.M.; Furcht, L.T.; Spicer, A.P.; Oegema, T.R., Jr.; McCarthy, J.B. Manipulation of hyaluronan synthase

expression in prostate adenocarcinoma cells alters pericellular matrix retention and adhesion to bone marrow endothelial cells.
J. Biol. Chem. 2002, 277, 10050–10057. [CrossRef]

75. Offeddu, G.S.; Hajal, C.; Foley, C.R.; Wan, Z.; Ibrahim, L.; Coughlin, M.F.; Kamm, R.D. The cancer glycocalyx mediates
intravascular adhesion and extravasation during metastatic dissemination. Commun. Biol. 2021, 4, 255. [CrossRef] [PubMed]

76. Turley, E.A.; Noble, P.W.; Bourguignon, L.Y. Signaling properties of hyaluronan receptors. J. Biol. Chem. 2002, 277, 4589–4592.
[CrossRef]

77. Day, A.J.; Prestwich, G.D. Hyaluronan-binding proteins: Tying up the giant. J. Biol. Chem. 2002, 277, 4585–4588. [CrossRef]
[PubMed]

78. Yu, Q.; Toole, B.P.; Stamenkovic, I. Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor
cell surface CD44 function. J. Exp. Med. 1997, 186, 1985–1996. [CrossRef]

79. Misra, S.; Hascall, V.C.; Markwald, R.R.; Ghatak, S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate
the Activities of Inflammation and Cancer. Front. Immunol. 2015, 6, 201. [CrossRef] [PubMed]

80. Mohapatra, S.; Yang, X.; Wright, J.A.; Turley, E.A.; Greenberg, A.H. Soluble hyaluronan receptor RHAMM induces mitotic arrest
by suppressing Cdc2 and cyclin B1 expression. J. Exp. Med. 1996, 183, 1663–1668. [CrossRef] [PubMed]

81. Zhang, Y.; Thant, A.A.; Machida, K.; Ichigotani, Y.; Naito, Y.; Hiraiwa, Y.; Senga, T.; Sohara, Y.; Matsuda, S.; Hamaguchi, M.
Hyaluronan-CD44s signaling regulates matrix metalloproteinase-2 secretion in a human lung carcinoma cell line QG90. Cancer
Res. 2002, 62, 3962–3965.

82. Chambers, A.F.; Matrisian, L.M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 1997,
89, 1260–1270. [CrossRef]

83. Li, M.; Yan, T.; Cai, Y.; Wei, Y.; Xie, Q. Expression of matrix metalloproteinases and their association with clinical characteristics of
solid tumors. Gene 2022, 850, 146927. [CrossRef]

84. Hall, C.L.; Wang, C.; Lange, L.A.; Turley, E.A. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion
turnover and transient tyrosine kinase activity. J. Cell Biol. 1994, 126, 575–588. [CrossRef]

85. Assmann, V.; Jenkinson, D.; Marshall, J.F.; Hart, I.R. The intracellular hyaluronan receptor RHAMM/IHABP interacts with
microtubules and actin filaments. J. Cell Sci. 1999, 112 Pt 22, 3943–3954. [CrossRef] [PubMed]

86. Maxwell, C.A.; Keats, J.J.; Crainie, M.; Sun, X.; Yen, T.; Shibuya, E.; Hendzel, M.; Chan, G.; Pilarski, L.M. RHAMM is a centrosomal
protein that interacts with dynein and maintains spindle pole stability. Mol. Biol. Cell 2003, 14, 2262–2276. [CrossRef] [PubMed]

87. Wu, H.J.; Hao, M.; Yeo, S.K.; Guan, J.L. FAK signaling in cancer-associated fibroblasts promotes breast cancer cell migration and
metastasis by exosomal miRNAs-mediated intercellular communication. Oncogene 2020, 39, 2539–2549. [CrossRef] [PubMed]

88. Iozzo, R.V.; Schaefer, L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. J. Int. Soc.
Matrix Biol. 2015, 42, 11–55. [CrossRef]
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