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1. Notes on Models 
As noted in the main text, three different Geant4-DNA constructors are considered, 

Opt2, Opt4 and Opt6. The major difference between these constructors is their electron 
interaction models which simulate elastic and inelastic interactions with differing models 
and energy limits. Opt2 simulates elastic interactions through a partial wave model and 
inelastic interactions through the Emfietzoglou dielectric model. Opt4 updates these in-
teractions using the Uehara screened Rutherford and Emfietzoglou-Kyriakou models for 
elastic and inelastic respectively. Opt6 incorporates interactions from the CPA100 track 
structure code, using the independent atom method model for elastic interactions, and the 
relativistic binary encounter Bethe model and dielectric model for inelastic ionisation and 
excitation interactions respectively. Opt2 also considers inelastic sub-excitation interac-
tions down to electron energies of 2 eV. These differences lead to significant differences 
in the distribution of interactions, as described in the main text, and consequently opti-
mum physics parameters. 

2. Energy Range for SSB Production 
As discussed in the main text, rather than using a distinct threshold for defining an 

SSB, many models make use of an energy-dependent probability, which is 0 below some 
lower threshold, and increases linearly to a value of 1 at some upper threshold. For exam-
ple, many models have used a combination of a lower threshold of 5 eV and an upper 
threshold of 37.5 eV. 

The impact of such a threshold was also investigated in this work, by reproducing 
the analysis and fitting presented in the main work for such a probabilistic threshold 
model. Instead of being given by a single threshold energy value, 𝐸 , two values are 
now required, specifying the extent of the range between damage probabilities of 0 and 1. 
For the purposes of this analysis, we will define these in terms of the central energy of the 
window, 𝐸 , and the energy width of the range, 𝑤, both of which are defined in eV. 
So, for example, a range beginning at 15 eV and reaching 1 at 25 eV would have a central 
value of 𝐸 = 20 eV, and a width of 𝑤𝑖𝑑𝑡ℎ = 10 eV.  

Fits were performed in this work for widths ranging from 0 to 20 eV. The fit which 
was produced for the 20 eV width is shown in Figure (FIG)a. This has similar overall per-
formance to that seen in the main text for a single threshold. Indeed, across all energy 
range widths considered there was little impact on fit quality compared to the single 
threshold, suggesting that appropriate selection of parameters can yield very similar re-
sults regardless of the choice of model here.  

Figure (FIG)b shows how the best-fitting central value changes with increasing en-
ergy width. It can be seen that for small widths (𝑤 less than approximately 7.5 eV), there 
is little impact on 𝐸 , while above this value the central energy appears to increase 
approximately linearly with increasing 𝑤. Fitting linear regressions to the central energy 
above 7.5 eV window sizes suggests that all models have a slope consistent with 0.5𝑤. 

This means that, since the lower bound of the damage window is given by 𝐸 −0.5𝑤, that as the energy width increases above a certain point, the best-fitting threshold 
increases so as to keep the lower bound of the energy window constant. This can be shown 
in Figure (FIG)c, which shows the upper and lower bounds of the best-fitting energy 
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windows. It can be seen that while this increases approximately symmetrically at low 
widths, above 7.5 eV the lower bound is approximately constant, while the upper bound 
increases much more rapidly. This suggests that best-fitting models are those which do 
not allow any breaks below some energy deposit. 

In particular, it can be seen that the minimum energies (ranging from 26 to 29 eV 
across the different models) correspond well with a number of small peaks which can be 
seen in the energy deposit histogram, which relate to combinations of two of the larger 
ionisation potentials of water. As in the single threshold model, this suggests that the best-
fitting values may be very sensitive to particular features of the way radiation interacts 
with water, and their exact values may need to be treated with care when extrapolating to 
real biological materials. 

 
Figure S1. Physical damage fitting with different threshold ranges. (A) Best-fitting curves for dam-
age simulated with a 20 eV wide threshold window. In all cases models were able to effectively 
reproduce data, with some increases in central value of energy threshold (legend). (B) Central en-
ergy value, 𝐸 , for different widths. It can be seen that these values are initially independent 
of w, but begin to increase as w becomes larger. (C) Damage window bounds for each model, with 
the lower curve representing the energy where SSB probability begins to increase above 0, and the 
upper where it becomes 1. Notably, for all models the lower threshold is roughly constant above a 
certain window size, while the upper bound increases rapidly. 

SSB Probability Normalisation 
As noted in the main text, a major challenge with interpreting the SSB distribution 

data in this work is the inherent normalisation in the observed data preventing the quan-
tification of the absolute yield of breaks. Instead, measured intensities of bands corre-
sponding to different fragment sizes are quantified and normalised to give a fragment size 
probability distribution.  
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While simulations can compare to this probability distribution, this leads to ambigu-
ities in the interpretation of data, as discussed in the main text. One option to address this 
would be to attempt to convert from the fragment size distribution to an absolute break 
distribution, to resolve this issue. However, this is not without challenges.  

In Kandaiya et al, the authors denoted the probability distribution of fragment sizes 
as 𝑓 , where 𝑖 was the number of nucleotides to the 32P-labelled end of the DNA strand, 
and thus size of the fragment in base pairs. To convert this into 𝑝 , the probability of an 
SSB occurring at this position, they noted that for an fragment of size 𝑖 to be visible, there 
can be no breaks at any points closer to the 32P. Thus fragment probabilities can be ex-
pressed as: 𝑓 = 𝑝 (1 − 𝑝 ) … (1 − 𝑝 ) 

This can be rearranged to give: 

𝑝 = 𝑓(1 − 𝑝 ) … (1 − 𝑝 ) (1)

In principle this can then be solved recursively, by assuming that for all undetected 
fragments 𝑝 = 0, and thus for the first detected fragment it can be approximated as 𝑝 =𝑓 , and the analysis can proceed from there. This led to an estimate of significantly higher 
SSBs closer to the iodine, as expected, peaking with a 100% break rate at the site of the 
iodine. 

However, the overall response of this system, particular for sites near the iodine, is 
under-constrained by the available data. Consequently a range of different SSB distribu-
tions are equally consistent with these fragment sizes, and the obtained values can be 
strongly influenced by the chosen interpretation. In this particular approach, the above 
assumptions lead in all cases to high SSB yields in the vicinity of the iodine, and a value 
of 1 at the largest nucleotide size, regardless of the underlying probability distribution. 

To illustrate this, consider the estimation of the first few break probabilities, with 𝑓  
being the smallest fragment size (most distant SSB) detected. From the above assumption, 
we then have: 𝑝 = 𝑓  

Then, applying the formula above for the second and third bases, we have: 𝑝 = 𝑓(1 − 𝑝 ) = 𝑓(1 − 𝑓 ) 

𝑝 = 𝑓(1 − 𝑝 )(1 − 𝑝 ) = 𝑓(1 − 𝑓 ) 1 − 𝑓1 − 𝑓 = 𝑓(1 − 𝑓 ) 1 − 𝑓 − 𝑓1 − 𝑓 = 𝑓(1 − 𝑓 − 𝑓 ) 

It can be seen that, based on the initial assumptions, 𝑝  depends on 𝑓  divided by 
1 minus the sum of the two previous fragment probabilities, 𝑓  and 𝑓 . This relationship 
continues for larger fragment sizes, with a general form of: 𝑝 = 𝑓1 − ∑ 𝑓  

If this condition is considered for the largest fragment detected with length 𝑛 base 
pairs, we then have: 𝑝 = 𝑓1 − ∑ 𝑓  

However, because 𝑓  form a probability distribution over the 𝑛 fragment sizes, we 
also have ∑ 𝑓 = 1, and thus 1 − ∑ 𝑓 = 𝑓 , and so, regardless of the value of 𝑓 , 𝑝 = 1. This effect also serves to increase the normalised probability of breaks in the vi-
cinity of the iodine. This is illustrated in the main text in Figure 6, where even when 
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beginning from SSB with a known probability distribution from physical data, normalis-
ing it in this fashion leads to a significantly different SSB distribution, in terms of both 
scale and shape in the vicinity of the iodine. This unfortunately prevents many of the es-
timates from being used for absolute calibration within this work. 

 


