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These results are promising and open the fields to new therapeutic approaches incorporating immune
checkpoint blockade. This review aims to synthesize recent research on TILs in OC patients.

Abstract: Epithelial ovarian cancers (EOC) are often diagnosed at an advanced stage with carcino-
matosis and a poor prognosis. First-line treatment is based on a chemotherapy regimen combining a
platinum-based drug and a taxane-based drug along with surgery. More than half of the patients
will have concern about a recurrence. To improve the outcomes, new therapeutics are needed, and
diverse strategies, such as immunotherapy, are currently being tested in EOC. To better understand
the global immune contexture in EOC, several studies have been performed to decipher the landscape
of tumor-infiltrating lymphocytes (TILs). CD8+ TILs are usually considered effective antitumor
immune effectors that immune checkpoint inhibitors can potentially activate to reject tumor cells. To
synthesize the knowledge of TILs in EOC, we conducted a review of studies published in MEDLINE
or EMBASE in the last 10 years according to the PRISMA guidelines. The description and role

of TILs in EOC prognosis are reviewed from the published data. The links between TILs, DNA
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This article is an open access article 1. Introduction

distributed under the terms and Despite advances in medical treatment and surgery, ovarian cancer is the most lethal

gynecological cancer. According to recent epidemiological estimates, there were 21,410
news cases of ovarian cancers in the United States in 2021, accounting for 13,770 deaths; this
makes it the sixth most common cause of cancer-related death in women after lung, breast,
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colon, rectum, and pancreas cancers [1], with a 5-year survival rate of 46% [2] when all
stages are combined. The most common histologic type is epithelial ovarian cancer (EOC),
with 75% of the patients being diagnosed at advanced FIGO stages (III or IV) [2]. EOC
includes a wide range of diseases with varying prognoses. The most common histologic sub-
types are the following: high-grade serous ovarian carcinoma (HGSOC), which is usually
associated with a poor prognosis; low-grade serous carcinoma (LGSOC); mucinous carci-
noma; endometroid carcinoma; and clear cell carcinoma (CCC) [3]. These different subtypes
present distinct anatomical origins, molecular profiles, and prognoses. The recommended
first-line therapy includes complete cytoreduction associated with carboplatin—paclitaxel
intravenous chemotherapy [4]. Three randomized controlled trials [5-7] showed that, in
patients with a high tumor burden who are eligible for primary cytoreduction surgery
(pCRS), neoadjuvant chemotherapy followed by interval cytoreduction surgery (iCRS) is
associated with lower surgery-related morbidity. However, retrospective studies highlight
the contrast between pCRS and iCRS patients’ profiles [8]. Patients who undergo iCRS
usually present a high tumor burden that prevents upfront surgery. Patient evaluation with
imaging and diagnostic laparoscopy is essential to determine the patient’s eligibility for
PCRS [9]. The standard chemotherapy regimen consists of three-week cycles of carboplatin
at AUC 5/6 and paclitaxel at 175 mg/m? [10]. The number of cycles is determined by the
tumor load, the disease stage, the presence of metastases, and the patient’s condition. In
recent years, new treatment options, such as hyperthermic intraperitoneal chemotherapy
(HIPEC) following iCRS [11,12], have been shown to improve overall survival (OS) and
disease-free survival (DFS). Currently, studies are evaluating the impact of HIPEC during
pCRS [13,14]. Adding bevacizumab, an antiangiogenic drug (vascular endothelial growth
factor (VEGF) inhibitor), to chemotherapy or using it as maintenance therapy has been
shown to result in an improvement in DFS in women with a high risk of disease progres-
sion [15,16]. Poly(-adenosine diphosphate ribose) polymerase (PARP) inhibitors have also
been shown to have a beneficial effect when used in maintenance therapy [15,17]. The use
of olaparib in maintenance therapy for HGSOC and endometrioid ovarian cancer with
BRCA mutation decreases the risk of recurrence [18]. Since 2011, targeted immunotherapy
drugs have opened new horizons for cancer treatment [19]. Immune checkpoint inhibitors
(ICIs) are being developed and evaluated in various types of cancers [20]. The use of
immunotherapy requires a better understanding of the different aspects of the tumor’s
immune microenvironment. Recently, tumor immune infiltrates have been widely studied
in EOC, particularly tumor-infiltrating lymphocytes (TILs).

This study aims to provide an overview of the scientific literature on TILs in EOC.
TILs evaluation, prognostic impact, and relation with the new treatment options, PARP
inhibitors and ICIs, are summarized in a systematic review.

2. Materials and Methods

This systematic literature review was conducted according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses PRISMA guidelines [21], using specific
eligibility criteria. We reviewed all articles identified through MEDLINE (via OVID)
and EMBAGSE between January 2010 and August 2021. The combinations of mesh terms
related to TIL subsets and EOC used in the search strategy are available in File S1. We
included original English articles related to research studies using human EOC tissue. We
excluded reviews, letters, and editorials. Studies focusing exclusively on tumor-associated
neutrophils, macrophages, myeloid-derived suppressor cells, and natural killer cells were
also excluded. The outcomes analyzed were TIL description, survival impact, and TIL
modification with standard or new treatment.

All articles were independently screened for eligibility by two authors (DH and SLG).
The process of selection was performed in two steps: the first step was the selection of
the articles based on the titles and the abstracts, and the second step consisted of selecting
the articles based on an evaluation of the full text. Two reviewers extracted the data
independently and any disagreements were discussed with a third reviewer. For the
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included studies, data on study design, study period, number of patients, sample used,
method and cut-off used to identify TILs, and other outcomes were extracted.

3. Results
3.1. Study Selection

Through our systematic search, 1279 unique articles were identified, including 211 that
underwent full-text evaluation. The results of the review process are presented in Figure 1.
After excluding articles with a too high risk of bias, study population, follow-up, and
measurement of outcomes were examined. Ultimately, 122 original studies were included
in the final review. The articles were grouped according to the main outcomes.

IDENTIFICATION Articles identified through database (MEDLINE,
EMBASE) searching from 2010 to 2021, in english
n=3063

Review, commentary, conference review,
editorial, letter excluded

|

Articles screened
n=1534

[

Duplicate removed

}

Abstracts screened
n=1279

SCREENING

ELIGIBILITY I Not advanced EOC and not TiLs (n=838)
Data from animals (n=95)

Articles excluded --=-==-=---- * Clinical trials (n=53)

Chapter, letter or review (n=75)
Case reports (n=7)

Full-text screened

n=211
Other immunological markers (n=46)
INCLUDED [ Plasma studies (n=10)
Articles excluded ====-======~= - Data from animals (n=5)
Not EOC mostly (n=5)
Edito, review (n=9)
Small cohort EOC (n=14)

Studies included
n=122

Figure 1. Schematic diagram of the selection process for the studies included in this review. Review
according to Moher [21], EOC: epithelial ovarian cancer.

3.2. TIL Definition

e TILs in EOC are a subject that has gained a lot of interest in the last five years. In
the published scientific data, TILs are evaluated using different methods, including
genetic signature, count of TILs in hematoxylin and eosin (H&E) based pathological
immunohistochemistry (IHC), and immunofluorescence (IF) [22]. The International
Immuno-Oncology Biomarkers Working Group defined, in 2017, “intra-epithelial”
(iTILs) as TILs present in the tumor and “stromal” (sTILs) as TILs that are present
within 1 mm beneath the epithelial layer [23]. To evaluate the inflammatory infiltrate,
sTILs and iTILs are expressed in percentages or median counts. In IHC, between three
and 10 fields in stained slides are observed in x200 or x400 high-power fields (HPF).
TILs in H&E, in IHC, or in IF with specific antibodies are analyzed with either an
absolute count or a semi-quantitative cut-off. For example, Goode and al. divided
iTILs CD8+ infiltration into four categories: 0, low: 1-2, median: 3-19, and high >
20 [24]. Other authors concluded that TILs > 5 or 10 per HPF should define positive
iTILs in EOC [25].

e  Tumoral tissues and ascites from pCRS patients represent the main samples used in the
studies [26]. The data showed variability in the immune infiltrate among the different
tissue samples within the same patient (ovaries, omentum, and peritoneum) [27-31].
One study confirmed the feasibility of TIL evaluation in tumor samples that is per-
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formed using a 16-gauge needle biopsy [32]. Systematic tumor core biopsies can
represent the immune microenvironment [33].

e  The description of TILs in EOC uses various techniques, especially the cut-offs are
extremely variable between the studies. To date, there is no consensus, apart from
H&E which is not yet used in clinical routine, on the type of marker or the thresholds
to identify TILs.

3.3. TIL Phenotypes

In H&E, TIL evaluation includes mononuclear infiltrate, lymphocytes, and plasma
cells [23]. Sometimes TILs are spotted using CD3 marking [34]. Various subsets of T cells
may be found in EOC: CD8+ T cytotoxic and CD4+ T helper lymphocytes are identified
by either the molecules on their surface or the pattern of cytokines they produce. T
helper CD4+ cells are divided into subtypes: Thl cells that produce interleukin 2 (IL-2)
and interferon INF-y (acting on CD8+ cells); Th2 cells that produce IL-4, 5, 6, 10, and 13
(humoral immunity) [35]; Th17 cells that produce IL-17; and T Follicular helper (TFH) that
interacts with B lymphocytes [36]. Tumor-infiltrating B lymphocytes (B-TILs) have been
shown to be present in several solid tumors, including EOC [37]. Regulatory T cells (TREG)
produce cytokines with immunosuppressive activities, including IL-10 and TGFf [36].
The expressions of FOXP3 and CD25 often identify TREG. All immune cells are detected
in different locations within and around the tumor epithelium. EOC is a heterogeneous
disease regarding TILs. In terms of histologic subtypes, HGSOC is studied in the majority
of studies. LGSOC, mucinous carcinoma, endometrioid carcinoma, and CCC are also
studied in most studies, while carcinosarcoma is studied in only a few cases. Table 1 shows
the description of TILs in the articles reviewed here. Only recent studies with relevant
samples and/or results are shown to improve readability. In those studies, the number
of cases ranges from a few dozen patients to several hundred, depending on the method
used. The tumor stages studied vary, with most cases being at the most advanced stages
(Il and IV). Most of the materials used are derived from formalin-fixed, paraffin-embedded
(FFPE) samples, with partial analysis (IHC, tissue microarray (TMA)) or global analysis
(whole tissue sections (WTS), flow cytometry, gene expression profiles, and mRNA profiles).
IHC sheds light on the heterogeneity between sTILs and iTILs [38]. A study of 37 cases
of advanced EOC showed a good correlation between TMA and WTS regarding CD8+
TIL infiltration assessment [39]. CD3+TILs or sTILs [34] and Th17 [40,41] are present at a
higher level in EOC than in borderline or benign ovarian. Th1, Th2, and Th17 profiles are
diverse within the same patient between tumor and ascites or intra-cystic fluid [29,40,42,43],
and between omentum and ovarian tissue [44]. The absolute median count [45] and the
CD4/CD8 ratio have a high variability [46]. CD3+T-cells in the ascites increase with a
higher frequency of CD4+CD45RA-FoxP3+ T-cells in the ascites compared to the peripheral
blood [47]. The frequency of TREG increases in the ovarian tumors compared to the blood
samples [48]. Heterogeneity is also seen between tumor grades, with TREG and CD8+
TILs being higher in grade 2 or 3 than in grade 1 [49]. Tertiary lymphoid structures (TLS)
are present in HGSOC [50], with a potential role in immunosuppression. Figure 2A is a
simplified view of the immunologic network at the tumor site.

A new way to classify cancers is based on gene expression profiles. Using this way, in
2011, the Cancer Genome Atlas (TCGA) divided HGSOC into four distinct groups: mes-
enchymal, immunoreactive, proliferative, and differentiated [51]. The most used algorithms
for genetic analysis, ESTIMATE [52] or CIBERSORT [53], have been used in 379 cases of
EOC [54], with 22 immune cells being studied, and confirmed the wide variability in TILs
between tumors, especially in CD8+ or TFH. Using the same method in a large EOC cohort
(n = 2086, stages I to IV), TCGA and CIBERSORT algorithms allowed us to underline the
heterogeneity and to highlight a proportion of 12.2% of macrophages, 6.6% of TFH, and
6.3% of memory CD4 T cells among the TILs [55]. TCGA analysis of 3176 EOC samples
illustrate, as expected, the heterogeneity between histologic subtypes, especially between
high- and low-grade serous carcinomas [56]. Murakami established an IHC classification
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that distinguishes four subgroups: mesenchymal transition, immune reactive, solid and
proliferative, and papilloglandular [57]. The new classification of IHC has been used in 70
ovarian or peritoneal samples and confirms the heterogeneity in sTIL density [58]. In par-
ticular, the heterogeneity in TILs is observable in the primary tumor versus recurrence [59].
For example, the median FOXP3 count is higher during recurrence than at diagnosis [60].
Thus, new techniques are used, including spatioimageomic transcriptomics [61] and imag-
ing mass cytometry +/— combined with machine learning approaches [62], to specify the
phenotypic and spatial heterogeneities in TILs in EOC.
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Figure 2. Immunologic network in EOC: (A) simplified TIL view and location; (B) Main immune
checkpoints studied in EOC. Simplified diagram of the main TILs described in the articles studied
in this review. T cells infiltrating the stroma or tumor epithelium are identified via CD3, and/or
CD4 and CD8. The subtypes of T cells, including TH1, TH2, TH17, TFH, and TREG, are illustrated.
The main immune checkpoints described in this review are represented. iTILs: intra-tumoral, sTILs:
stromal, B-TILs: B tumor-infiltrating lymphocytes, TCR: T cell receptor, PD-1: programmed-death
1, PD-L1: PD-1 ligand 1, PD-L2: PD-1 ligand 2, CTLA4: cytotoxic T-lymphocyte-associated protein
4, Tim-3: T cell immunoglobulin and mucin domain-containing protein 3, and LAG-3: lymphocyte
activating gene 3.

The specific markers provide the knowledge on TILs infiltration in EOC, including
the type of T cells, cytotoxic T cells, and suppressors. The clinical cohorts used only
partially reflect the disease. Indeed, most data are analyzed based on operable diseases
from diagnosis, which unfortunately constitute only a part of the patients in practice.
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Table 1. TIL phenotypes in the reviewed studies.

Study Author Number of Subtype/ TIL Specimen . .
(Publication Year) Cases n= Tumor Stage Moment Phenotype Processing Location TIL Description
CRS (n = 9) and primary tumor and heterogeneity in TIL density
Hagemann (2011) [63] 10 (@ fecurrenczz (n=1) CDs3, CD8, FoxP3 two intraperitoneal iTILs and sTILs inter- and intra-patient (primary
h metastases versus metastasis)
NEW PATHOLOGICAL
CLASSIFICATION:

Murakami (2016) [57] 132 ItolV at diagnosis: pCRS CD8 tumor samples iTILs and sTILs Fnesenchymali trans1’f1on,
immunereactive, solid and
proliferative, and
papilloglandular

Ojalvo (2017) [64] 52 Mto IV PCRS (37) and CD8, FoxP3 tumor samples iTILs median FOXP3 count recurrent >

recurrence (15) primary
ovarian samples of % of Treg cells, Th17 cells, and
Zhu (2017) [41] 126 ItoIV pCRS CD4, %11)73’1130)(133’ the central areas of iTILs ratio of Treg/Th17 cells: high in
EOC patients with EOC
Higher intratumoral
Th1, Th2, Th9, Th17, expressionmarkers may rescue
Nakamura (2019) [65] 839 no data no data M1, and M2 tumor samples TILs or neutralize the negative
macrophage associations of inflammation or
angiogenesis
o 40 NACT and 10 CD45, CD3, CD4, . transcriptomic heterogeneity in
Jiménez (2020) [27] 50 IIC and IV pCRS CDS, NK, FoxP3 tumor samples iTILs each patient
pCRS CD45. CD3. CD8 tumor sample, differences in the expression
Dotzer (2019) [30] 49 IIIC and IV (35CC0,8CC1,6 PD:1 PD,—Ll ! peritoneum, and iTILs and sTILs between primary cancer and
CC2) ! omentum omental and peritoneal lesions
CD45, CD8, CD56,
Oberg (2020) [43] 29 III and IV at diagnosis CD3, [FN-y, IL-4, blood, ascites, and TILs heterogeneity in TILs vs ascites

IL-9, IL-10, IL-17,
TNF-«

tumor samples
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Table 1. Cont.

Study Author Number of Subtype/ TIL Specimen . .

(Publication Year) Cases n= Tumor Stage Moment Phenotype Processing Location TIL Description
Heterogeneous immune
microenvironment: infiltration

Gao (2020) [55] 2086 [to IV no data 22 immune cells tumor samples TILs varied between
clinicopathological subgroups
(stage, type, and survival)
b, moptolgia ighr STIL denly n il
Lakis (2020) [58] 70 III and IV PCRS subtypes: IR, SD, PG, tumor samples iTILs and sTILs . -

MT heterogeneity between implants
of the same patient
heterogeneity in CD8 and NK

Zhou (2021) [54] 379 ITtoIV no data 22 immune cells tumor samples TILs cells; TFH, monocyte,. .
macrophage: proportion higher
in OC than normal tissue

. heterogeneity between stromal

Zhu (2021) [62] 41 IIIB and IV PCRS CD8+, CD4+ tumor samples iTILs and sTILs .

and tumoral tissues
‘ ' PD-1,CDS, CD4, ' heterogenelty'between stromal
Karakaya (2021) [38] 66 ItoIV at diagnosis tumor samples iTILs and sTILs and tumoral tissues and

CD3

between histologic types

This table summarizes the studies describing TILs in EOC. The description of the clinical cohort (number of cases, tumor stage, and moment), the type of T cells studied, the tissue
specimen, and the location (stroma or intraepithelial) is correlated with the main outcome about TIL description for each of the articles. pCRS: primary cytoreductive surgery, iCRS:
intervalle cytoreductive surgery, iTILs: intra-tumoral TILs, sTILs: stromal TILs, NACT: neoadjuvant chemotherapy, OC: ovarian cancer, vs: versus, IR: immune reactive, SD: solid and
proliferative, PG: papilloglandular, MT: mesenchymal transition.



Cancers 2022, 14, 5332

8 of 21

B-TILs

TREG

CD8+ TILs

CD4+ TILs

CD3+ TILs

H&E

3.4. TILs and Patients’” Survival

The survival benefits of TILs in EOC have been noted for a long time. In 2003, Coukos
and colleagues analyzed 186 advanced EOC tissue samples and detected intra-epithelial
CD3+ (iCD3) TILs in 55% of the patients. The 5-year survival rate of these patients was
38%, compared to 4.5% in patients with no detectable TILs [66]. Figure 3 summarizes the
studies published in the last ten years that evaluated the impact of TILs on survival. Table 2
shows the characteristics of the patients in the different studies. In the absence of specific
antibodies in IHC, most studies employed the H&E analysis [57,67-69] with median count
or semi-quantitative categories, and survival rates were evaluated (OS and DEFS). OS is
calculated from the date of histological diagnosis to death (or, in rare cases, from the date
of first treatment to the date of death), and DFS is calculated from the date of beginning of
treatment to the date of progression or death.

m Poor None Good

5/7

nunnnmnmm

0 10

2/9
15/22
5/8
9/11

5/5
20 30 40 50 60 70 80 90 100

Figure 3. Synthesis of the effects of TILs on prognosis in EOC. This figure summarizes the conclusion
of the articles exploring the effects of TILs on EOC prognosis, either being evaluated in HES or via
the study of a surface marker. B-TILs are mostly identified using CD20. H&E: hematoxylin and eosin,
and B-TILs: B tumor-infiltrating lymphocytes.

In 2016, Murakami et al. confirmed the positive effect on OS and DFS; the immunore-
active subtype is the group with the better prognosis compared to three of the other
groups [57]. TILs are known to be associated with favorable prognostic factors in many
solid tumors, including HGSOC [25]. Different types of infiltrating immune cells have
varying effects on the prognosis of the patients [36]. CD8+ TILs [66,70,71], Th1 TILs, and
Th17 TILs [65,72] are associated with a positive effect. Th2 TILs are associated with ei-
ther a negative [29,56] or a positive impact [65]. TREG TILs are associated with either a
negative [73] or a positive impact [74,75]. CD3-staining iTILs based on the TILs count are
counted either manually or using digital imaging analysis to determine the number of T
cells per HPF (ranging from 15 to 20 HPF). Several studies found a positive effect of CD3+
TILs [44,63,76-79], and one showed no impact on the prognosis [80]. The CD3 location
can modify the prognosis: sCD3+ TILs are associated with an improved 10-year survival
rate [81], whereas iCD3+ TILs have no impact on OS or DFS [82]. Moreover, the studies’
results are sometimes contrasting, with an effect on DFS but not on OS [83], or with a
positive effect on OS only [84]. In one study, at diagnosis, most patients showed stromal
CD3+ immune infiltration with high heterogeneity in the intra-epithelial CD3+ [85]. In
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this cohort, while an increase in stromal CD8+/FoxP3+ over 10-fold was associated with a
better OS, no association was observed when considering iTILs counts [85].

CD4+ memory TILs (CD45RO+) are most frequently positively correlated with DFS
or OS [56,79,86]. This is the case for iCD4+ TILs, but not sCD4+ TILs [87]. However, this
positive impact is not consistent [80,82,88]. A significant infiltration of CD8 TILs is most
often associated with a positive prognostic effect on OS [24,54,56,76,77,79,81,89-92]. When
only intraepithelial CD8 cells are studied, the results are more heterogeneous, with one
study having a positive effect on OS [24], two studies having a positive effect on DFS [87,93],
three studies without a significant impact [39,94,95], and three studies having a negative
effect on survival [82,96,97]. The results for TREG also vary, with either studies showing
a negative impact on OS and DFS [45,78,90,94], or finding no impact or [49,79,82] even a
positive impact [45,98].

Some studies evaluated B-TILs and TILs and showed a positive impact on
survival [50,81,88,89,99], while others showed no impact at all [82,100]. Using machine
learning-based refined differential gene expression and marker combination analysis, 44
markers were evaluated in 839 patients. A higher expression of Th1, Th2, and Th17 associ-
ated genes was correlated with better survival outcomes [65]. A 2086 SOC cohort showed
that TFH had a negative impact on prognosis [55]. In HGSOC, the presence of CD103 with
CD3+ and CD4+ was correlated with a better survival [97,101].

Altogether, recent studies are more controversial than the original study. The variabil-
ity in the results can be explained by OC heterogeneity, different histology, and intra-patient
variability. The clinical cohorts used are also an explanation. Indeed, iCRS are not repre-
sented in recent studies (Table 2), and the complete surgery rate is unfrequently used in
favor of the optimal surgery rate, which is sometimes much lower than the recommenda-
tions for good practice. These confounding factors, type of sample used, and homogeneity
of the clinical cohorts reduce the comparability between the studies.

Table 2. Patient characteristics in studies evaluating prognostic impact.

Study Author Number  Advanced §er0us Median D?lla)ltxilllﬂflig
(Publication Year) of Cases Stage Histology Moment Follow-Up (Residual Tumor
n= (%) (%) (Months) <2.5 cm) (%)

Nielsen (2012) [89] 264 92.5 100 PCRS 1.9 30
Bachmayr-Heyda (2013) [93] 203 95.5 88.2 pCRS 48 69.5
Webb (2014) [101] 497 58.9 443 PCRS no data 100
Hermans (2014) [90] 210 100 77.1 At diagnosis no data 30
De Leeuw (2015) [91] 187 34 100 pCRS no data 100
Murakami (2016) [57] 132 82 100 PCRS no data no data
Santoiemma (2016) [81] 135 71 65.9 no data no data 59.3
Lundgren (2016) [100] 154 no data 58.4 pCRS 87 no data
Goode (2017) [24] 5078 47.8 62.9 PCRS 489 424
James (2017) [67] 707 40 44.4 PCRS no data no data
Pinto (2018) [87] 128 80.5 100 At diagnosis no data 80
Hwang (2019) [68] 256 62 56.6 At diagnosis no data 91
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. Optimal
Study Author Number  Advanced $er0us Median Debulking
LT of Cases Stage Histology Moment Follow-Up .
(Publication Year) o o (Residual Tumor
n= (%) (%) (Months)
<2.5 cm) (%)
Martin de la Fuente (2020) [84] 130 100 100 At diagnosis no data 60
. PCRS (47%) or 75.7 (51.4
Paijens (2021) [97] 268 94.8 100 iCRS no data complete)
Wu (2021) [102] 441 87 no data no data no data 62.4
Li (2021) [103] 308 88.9 no data no data no data 614 (182
complete)
Chen (2020) [104] 189 59.3 12.7 At diagnosis 37 no data

This table details the clinical characteristics in studies evaluating the prognostic impact of TILs in EOC. Manage-
ment of EOC is pCRS or iCRS when primary surgery is not possible. Optimally, the goal of surgery is complete
resection, with residual tumor: 0 mm. pCRS: primary cytoreductive surgery, iCRS: intervalle cytoreductive
surgery, and NACT: neoadjuvant chemotherapy.

3.5. Influence of DNA Repair Deficiency and TILs

Genetic alterations in ovarian cancer are dependent on diverse genes. Mismatch
repair (MMR) pathway dysregulation represents 5 to 13 % [105] of SOC (including Lynch
Syndrome), and BRCA mutations and alterations in homologous recombination are present
in 23% and 50%, respectively [106]. Dysregulation of genes implicated in DNA repair
leads to a higher mutational burden in ovarian cancers [107], and patients with homolo-
gous recombination deficiency (HRD) have been reported to have a higher expression of
neoantigens [108,109]. Wang et al. reported a study using TCGA database to analyze the
infiltration pattern in ovarian cancer. They classified the tumors into two clusters. The clus-
ter enriched in cytotoxic and immunosuppressive cells tended to have a higher mutational
load than the cluster with less immune cell infiltration [110]. Likewise, several studies
showed a significantly higher number of CD3+ and CD8+ TILs in HRD [109,111,112] and
microsatellite instability tumors [105,113]. There seems to be no difference in TIL infil-
trations rates between BRCA1- and BRCA2-mutated patients [109,114]. However, it is
noteworthy that homologous recombination proficient (HRP) patients are a heterogeneous
group. In this group, some patients express high HLA class 1 molecule and high expression
of neoantigens; thus, the accumulation of DNA mutations is not the only process implicated
in patients with high immune infiltrate [108]. Understandably, there is more programmed
death-ligand (PD-L)1 expression in HRD+ tumors than in HRP when considering combined
positive score (CPS); however, interestingly, PD-L1 expression in tumoral cells seems to
be equal in the two groups [109]. To conclude, a hypothesis is that high neoantigen load
leads to the recruitment of TILs, which is counterbalanced by the expression of immune
checkpoints. Lastly, it has been reported that some ovarian cancers with DNA repair
deficiency escape immune surveillance despite being a «hot» phenotype according to the
morphological diversification of the tumors. This mechanism is being evaluated in 514
cases of advanced HGSOC using TCGA analysis [115]. The ESTIMATE and ABSOLUTE
algorithm applications highlight the spatial heterogeneity [115]. Anti-PARPs provide new
options for patients presenting with a HRD+ tumor. Understanding the TIL landscape for
these tumors is very helpful to propose anti-PARPs in combination with immunotherapy.

3.6. TILs and Immune Checkpoints

Programmed death-1 (PD-1 or CD279), with the activation-induced expression on
T-cells, can bind to its ligands PD-L1 and PD-L2 to decrease the ability of TILs in destroying
tumor cells. PD-L1 overexpression is one way for ovarian cancer to escape the immune
surveillance [113]. Monoclonal antibodies targeting the immune inhibitory checkpoints,
such as PD-1 and PD-L1, have been tested to evaluate the intensity and quality of T-cell
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activation [116,117]. PD-(L)1 inhibitor has been approved in the treatment of melanoma,
non-small cell lung cancer, small cell lung cancer, head and neck squamous cell carcinoma,
urothelial carcinoma, renal cell cancer, and cervical cancer [118]. Biomarkers used to guide
treatment are PD-L1s evaluated with IHC, tumor mutation burden, or mismatch repair. In
the past, PD-L1 tumor staining was widely used to determine the responders in treated
patients. Tumor proportion score (TPS) for PD-L1 is representative of the proportion of
tumor cells with membranous PD-L1 expression. More recent studies incorporate the
presence of PD-1 or PD-L1 in TILs [118]. Combined positive score (CPS) includes the
number of tumor cells, lymphocytes, and macrophages stained with PD-L1 divided by the
total number of viable tumor cells and then multiplied by 100 [119]. Figure 2B illustrates
the main immune checkpoints studied in EOC. It has been developed to better predict
the response to immunotherapy. Table 3 shows the scores in the main-reviewed studies.
Scoring expression in the immune checkpoint molecules, the definition of positive TILs, and
PD-L1 positive tumors are very heterogeneous. Various studies evaluating HGSOC tissue
samples showed that high expressions of PD-1 and PD-L1 in tumors are associated with a
better DFS [84,120-123]. Combined analysis of PD-L1 expression in tumors and CD8+ iTILs
allows the stratification of patients based on their prognosis: patients with negative PD-L1
expression in tumors and higher numbers of CD8+ iTILs have the longest median OS, while
those with positive PD-L1 expression in tumors and lower numbers of CD8+ iTILs have the
shortest median OS [124]. The high density of sTILs-PD-L1+ is associated with a favorable
prognostic effect on OS [125]. Exhausted status of CD8+ TILs can be assessed by the co-
expression of PD-1 and Tim3 and has been linked to poor prognosis [126]. The localization
of the studied tissues seems to have an impact on the prognostic value: TILs expressing
PD-1 in carcinomatosis tissue are associated with a better OS and PD-L1 expression in
peritoneal tissue is negatively correlated with OS [127]. The expressions of other TIL
immune checkpoints in OC, such as T cell immunoglobulin, mucin domain-containing
protein 3 (Tim-3), lymphocyte activating gene 3 (LAG-3), and cytotoxic T-lymphocyte-
associated protein 4 (CTLA4), have also been evaluated [123]. These checkpoints are also
the different targets for other ICIs. Blocking CTLA4, for example, activates CD8+ and
CD4+ T cells and enhances the anti-tumor effect of drugs [116]. Targeting Tim-3 is tested in
association with anti PD-1 [128]. LAG3 expression has been found to be associated with
PD-L1 expression (intra-tumor PD-L1 and CPS score > 1) in 48 HGSOC patients [114],
which could lead to combination therapy targeting PD-L1 and LAG3 together.

The contrast in the IC study results can be explained by sampling variation, differ-
ences in staining protocols, variability in cut-off values, and variability in the localization
of tumors or TILs. TPS and CPS for PD-L1 scoring are approved by the Food and Drug
Administration. Immune-checkpoint analysis, particularly TILs, is very likely to be inte-
grated in the future to screen OC patients who might benefit from targeted therapy. A
precise description of the immune checkpoints presents in the TILs and on the tumor cells is
certainly useful in future trials of ICIs in EOC aiming to appropriately stratify the patients.
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Table 3. TILs and immune checkpoints in the reviewed studies.

Study Author Number of Definition of . .
(Publication Year) Cases n= PD-1 PD-L1 Positive TILs Scoring PD-1 Scoring PD-L1 Method
PD-1+ cells: positive
factor DFS in . CD3 and CD8 >5 and  absolute numbers of . immunohistochemistry,
Webb (2015) [120] 489 HGSOC, and not in Not studied <5 PD-1+ and CD103+ Not studied flow cytometry
other EOCs
PD_.L.l CXpTessIon: o PD-L1 scored as positive
positive factor OSin  CD8 quantitative or negative, using a immunohistochemistry,
Webb (2016) [121] 490 Not studied ?ESEEC, :?:Or;ﬁer Saglgnlogy imaging Not studied threshold of >1 positive  TCGA
EOCs 4 cells
Darb Esfahni (2016) PD-1 on cance.r'cells PD-L1on cancer cells iand sCD3 cut-off: >  cancer cells PD-1+ >  cancer cells PD-L1+ > Tissue microarrays +
[122] 215 and TILs: positive and TILs: positive 65/mm> 11/mm? 20/mm> MRNA expression +
factor OS factor DFS and OS MA
PD-L1 staining in tumor
sTILs: score 1 cells scored: 0, negative;
:;r;l'zz;c?rfrllega tive (<5/HPF), 2 1, weak expression; 2,
Wang (2017) [124] 107 Not studied factor for OS; E6>_22(§)// PI_IIIE)IE))', ie"lfr}is?? Not studied $§jlfsléiiaezpl‘lzscsérol:;?ut immunohistochemistry
TILs-PD-L1+: no score 1 (<5 } HPF). and 3, e uivalient or '
difference for OS = -eq .
and 2 (>5/HPF) stronger expression than
placenta.
::k]z iijgﬁﬁilzgzo ¢ PD-L1 intratumoral and
PD-1 high: positive PD-L1 (positive vs ositive cells/mm2; PD-1, CTLA4, LAG-3: stromal, categorized as1  immunohistochemistry
Fucikova (2019) [123] 80 factor OgS P negative): positive }C)ZDZO' cell ! stroma and tumor of  (0%), 2 (1-4%), 4 (5-9%), + flow cytometry +
factor OS sur fac.e /tumor whole tumor and 4 (>10%); cut-off 5% TCGA
section surface to survival analysis
stromal sTILs, and
iTILs: graded on a . o .
. . sTILs-PD-L1+: semiquantitative . }ntens1t.1 ©s O.f PD_L.l’. . . .
Kim (2019) [125] 248 Not studied Not studied intraepithelial (staining immunohistochemistry

positive factor OS

scale of 0 (none), 1+
(mild), 2+ (moderate),
and 3+ (marked)

in tumor cells)
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Table 3. Cont.

Study Author Number of Definition of . .
(Publication Year) Cases n= PD-1 PD-11 Positive TILs Scoring PD-1 Scoring PD-L1 Method
grading CD3: 0%, < PD-1 . . .
Y o o -1 expression > . g Tissue microarray
Martin de la Fuente 130 high PD-1 expression: high PD-L1 }__)0//0 ! &ﬁ/o’hZ —ei /Or,ea;ziccl)r? 1% in <50% cores %lgil?_gol;l) <Lllo/an1d 49, construction
(2020) [84] better OS expression: better OS ~ °> 50% 9 cofe,zs with considered high =50 i.TILos, PD01’ % and immunohisto-
-~ o . = o, - .
> 2% lymphocyte) expression chemistry
TPS and CPS; TPS and
CPS ranged from 0 to
100; cutoff score >1%
in HGSOC TPS: for TPS and >1 for CPS
Chen (2020) [104] 189 Not studied better DFS and OS Not studied used to define PD-L1 immunohistochemistry
(CPS: no difference) positivity; for CPS
intratumoral and
peritumoral, stromal
immune cells excluded
PD-1in TILs in PD-L1 in TILs in o o PD-L1 % in TILs: ovarian
Bekos (2021) [127] 111 peritoneal metastases: peritoneal metastases: ﬁ);;—) Yo (cut-off Fc]z’;—lof/; ir(;o;r %LS tissue and peritoneal immunohistochemistry
positive factor OS negative factor OS = ¢ samples (cut-off 15%)
sTILs and iTILs:
quantified in 5
CPS or TCS PD-L1: different (400 x) HPF
Bansal (2021) [69] 100 Not studied no correlation with on 3 sections/ cases, Not studied CPS immunohistochemistry

DFS

0: no lymphoid cells,
1: mild, 2: moderate,
and 3: numerous
numbers

This review brings together the articles about PD-1 and PD-L1, two preferential ICI targets in EOC. The cut-off, the way of estimating the markers’ expression, and the method used are
identified for each study. TPS: tumor proportion score: % tumor cells with membranous PD-L1 expression; CPS: combined positive score: (tumor cell, lymphocyte, and macrophage
PD-L1 staining cells)/(total number of viable tumor cells) x 100; EOC: epithelial ovarian cancer; HGSOC high-grade serous ovarian cancer; MA: multi analyze; HPF: high power fields;
DFS: disease free survival; and OS: overall survival.
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3.7. Influence of First-Line Chemotherapy on TIL Landscape

We reviewed above the prognostic significance of TILs reported by several studies,
most of which were performed on patients undergoing pCRS, as shown in Table 2. Yet,
most patients receive platinum-based neoadjuvant chemotherapy (NACT) before iCRS.
Depending on the studies, the proportion of CD3+ cells before and after NACT could
either be identical [129,130], decreased [131], or increased [69,85]. One explanation for these
results is the high inter-patient and intra-patient variability [27]. A way to highlight this
heterogeneity is to compare site-matched metastases before and after NACT. A transcrip-
tomic study of 38 matched samples showed an oncogenic expression profile before NACT
that evolved to an immune expression profile during chemotherapy. The results showed an
increase in the proportion of NK cells and cytotoxic gene set expression after NACT, with
no difference in the other subpopulations of TILs. T-cell receptor (TCR) sequencing showed
expansion of oligoclonal TCR after NACT in site-matched samples. Other studies showed
an increase in CD8+/CD4+ and CD8+ /FoxP3+ ratios after NACT [85,132]. These results
suggest an anti-tumoral response to chemotherapy with recruitment of NK cells, a decrease
in regulatory cells, activation of cytotoxic response, and clonal expansion of T cells.

The prognostic significance of TIL evolution with NACT was explored in 54 patients
with advanced ovarian cancer [131]: TIL subpopulations were studied before and after
NACT in patients with a good Chemotherapy Response Score (CRS) compared to patients
with a poor CRS [133]. Their results showed no differences in immune infiltration density
between good and poor responders before NACT. After NACT, there was a decrease in
sFoxP3+ cells in good responders, but no difference was seen in poor responders. Good
responders showed an increase in IFN-y expression and a gene expression profile of Thl
activation. There was also an increase in PDL1 expression after NACT in both groups, as
reported elsewhere [134]. The results also showed an anti-tumoral response to chemother-
apy and a reaction of tumoral cells by expressing PDL1. Therefore, immunotherapy could
be more efficient after the first line of chemotherapy.

Most studies involved sample analysis during pCRS. TILs variation that is compared
between pre- and post-chemotherapy differs among the studies. It has already been shown
that chemotherapy has the potential to alter immunotherapy response [135,136]. The pro-
portion of CD3 TILs does not change after NACT [129,130], whereas NACT induces a
decrease in the density of sCD3 TILs in HGSOC patients [131], or an increase in the propor-
tions of sCD3, sCD8, and iCD8 TILs [69,137]. sTILs are associated with platinum sensitivity
in 70 patients with advanced-stage SOC [58]. Chemotherapy induces an upregulation of
PD-L1 [69,130]. In recurrent HGSOC, a higher density of TILs and a higher expression of
MHC have been reported when compared to paired primary tumors, suggesting a higher
immunogenicity [85]. The repertoire of neo-epitope recognizing T-cells and their avidity
are also different between blood and tumor samples in recurrent disease [138]. The study
of TIL evolution, from state of activation to neo-epitope repertoire, under chemotherapy
pressure could be key to the development of new personalized immunotherapy.

4. Conclusions

Even though immunotherapy is less efficient in EOC compared to other solid tu-
mors, ongoing trials are evaluating the efficacy of combining standard treatments with
immunotherapy to improve patients’ prognosis [139,140]. Treatment options that are be-
ing evaluated include associating TILs with chemotherapy, antiangiogenic drugs, PARP
inhibitors, vaccines, cytokine injections, CAR-T cells, checkpoint inhibitors [141], and even
radiotherapy [139,142]. Indeed, combinations of anti-PARP treatment and reactivation of
the immune system via anti-PD-L1, PD-L2, or CTLA4 are among the therapeutic options
tested in EOC. Standardizing TIL evaluation methods, techniques, and cut-offs is manda-
tory and is being evaluated in ongoing studies. The biggest challenge now is to harmonize
TIL count and immune checkpoint scoring to help develop care strategy. Future person-
alized medicine will most certainly use the description of the tumor microenvironment,
including TILs.
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