
Citation: Zhang, B.; Wang, Y.; Zhou,

X.; Zhang, Z.; Ju, H.; Diao, X.; Wu, J.;

Zhang, J. Construction of a

Prognostic and Early Diagnosis

Model for LUAD Based on

Necroptosis Gene Signature and

Exploration of Immunotherapy

Potential. Cancers 2022, 14, 5153.

https://doi.org/10.3390/

cancers14205153

Academic Editor: J. Chad Brenner

Received: 2 September 2022

Accepted: 17 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Construction of a Prognostic and Early Diagnosis Model for
LUAD Based on Necroptosis Gene Signature and Exploration of
Immunotherapy Potential
Baizhuo Zhang 1,† , Yudong Wang 2,†, Xiaozhu Zhou 1, Zhen Zhang 1, Haoyu Ju 1, Xiaoqi Diao 1, Jiaoqi Wu 1

and Jing Zhang 1,*

1 Department of Pharmacology, College of Pharmacy, China Medical University, Shenyang 110122, China
2 Thoracic Surgery Department, Shengjing Hospital of China Medical University, Shenyang 110004, China
* Correspondence: zhangjing@cmu.edu.cn; Tel.: +86-189-0091-1279
† These authors contributed equally to this work.

Simple Summary: Necroptosis plays an important role in the progression and metastasis of lung
adenocarcinoma (LUAD) and regulates the inflammatory response and tumor microenvironment.
First of all, through NRGs, we determined the LUAD early diagnosis model, which is composed of
four necroptosis-related genes (NRGs) (AUC = 0.994), and the LUAD prognosis evaluation model,
composed of nine NRGs (AUC = 0.826). Secondly, the LUAD prognosis model was found to be closely
related to immune checkpoint inhibitor (ICI) treatment and chemosensitivity. ICI treatment is more
suitable for low-risk patients, while chemotherapy is more effective for high-risk patients. Finally, we
identified the core gene PANX1 for the first time, which is important for prognosis evaluation and
early diagnosis, and analyzed its role in LUAD immunotherapy. This study provides a new target
for the immunotherapy of LUAD and a new theoretical basis for future individualized treatment in
the clinic.

Abstract: Necroptosis is a type of programmed necrosis that is different from apoptosis and necrosis.
Lung cancer has the highest incidence and mortality worldwide, and lung adenocarcinoma is the most
common subtype of lung cancer. However, the role of necroptosis in the occurrence and development
of LUAD remains largely unexplored. In this paper, four NRGs and nine NRGs determined by big
data analysis were used to effectively predict the risk of early LUAD (AUC = 0.994) and evaluate
the prognostic effect on LUAD patients (AUC = 0.826). Meanwhile, ESTIMATE, single-sample gene
set enrichment analysis (ssGSEA), genomic variation analysis (GSVA), gene set enrichment analysis
(GSEA), and immune checkpoint analysis were used to explore the enrichment characteristics and
immune research related to the prognostic model. In deep data mining, we were surprised to find
that prognostic models also regulate the immune microenvironment, cell cycle, and DNA damage
repair mechanisms. Thus, we demonstrated a significant correlation between model evaluation
results, ICI treatment, and chemotherapeutic drug sensitivity. The low-risk population has a stronger
tumor immune response, and the potential for ICI treatment is greater. People at high risk respond
less to immunotherapy but respond well to chemotherapy drugs. In addition, PANX1, a core gene
with important value in immune regulation, prognosis assessment, and early diagnosis, has been
identified for the first time, which provides a new target for the immunotherapy of LUAD as well as a
new theoretical basis for the basic research, clinical diagnosis, and individualized treatment of LUAD.

Keywords: necroptosis; lung adenocarcinoma; biomarker; tumor immunotherapy; immune
microenvironment; drug sensitivity; immune checkpoint; prognostic and diagnostic

1. Introduction

Lung cancer is the most common malignancy and is the leading cause of cancer
deaths worldwide [1,2]. Non-small cell lung cancer (NSCLC) accounts for nearly 80% of
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lung cancers, of which approximately 50% are LUAD. In recent years, with advances in
diagnostic, surgical, radiotherapy, and molecular-targeted therapy techniques, the clinical
outcomes of patients with LUAD have improved significantly. However, cancer statistics
show that the 5-year survival rate of patients with LUAD remains low [3–6]. Therefore,
there is an urgent need to find novel perspectives to screen new targets and construct
predictive models that can be used for LUAD diagnosis, prognosis, immunotherapy, and
chemotherapeutic drug screening.

Since most tumors are inborn and resistant to apoptosis, the process of inducing
cell death pathways, such as necroptosis, has gradually been recognized as a potential
therapeutic approach [7]. Necroptosis is a novel form of programmed cell death distinct
from apoptosis that enhances CD8+ T cell-mediated anti-tumor immunity via a mechanism
involving RIPK3 and RIPK1 activation in the tumor microenvironment (TME) [8]. Necrop-
tosis has been proposed as a potential target for immunotherapy in LUAD. The role of
necroptosis in various diseases has been made increasingly apparent by recent studies. For
example, knocking down RIPK1, RIPK3, and MLKL in colorectal and esophageal cancer
cells inhibits tumor growth by reducing NF-κB activity [9]. Research has demonstrated
that necroptosis is able to overcome resistance to cancer drugs mediated by P-glycoprotein,
Bcl-2, and Bcl-xL in cancer cell lines [10]. When cysteine is inhibited, necroptosis can
resist pathogens and cancer cells escaping from apoptosis, which is also one of the key
mechanisms of several anti-tumor drugs such as 5-FU, etoposide, and cisplatin [11]. In
addition, necroptosis can also change the tumor immune microenvironment by regulating
immune checkpoints [12]. All these results suggest that necroptosis may be an effective
therapeutic target for cancer. Some NRGs have recently been identified as prognostic
markers for cancer and other diseases [13]. Despite this, the exact role of NRGs in LUAD is
unclear. Therefore, understanding the impact of NRGs on the occurrence and development
of LUAD can provide potential biomarkers and therapeutic targets as well as guide the
immunotherapeutic strategy for LUAD.

In this study, we aim to develop a prediction model related to necroptosis genes, which
is of guiding significance in the clinical diagnosis, prognosis evaluation, immunotherapy,
and drug screening of LUAD. First, we screened NRGs and calculated prognostic risk scores
using univariate Cox, Lasso, and multivariate Cox regression. Secondly, we combined
multiple clinical features to construct a nomogram and verified them through calibration
evaluation to quantitatively predict the prognosis of LUAD patients. In addition, we
explored the NRGs closely related to the early development of LUAD in the prognosis
model and constructed a new diagnosis model, which generated new directions for the
clinical research of dual biomarkers with diagnostic and prognostic potential in LUAD.
Finally, we found that PANX1 may become a new target of LUAD immunotherapy through
multiple big data analyses and has good predictive ability for future clinical diagnosis,
prognosis, and immunotherapy.

2. Materials and Methods
2.1. Summary of Necrotizing Apoptosis Genes

The overall design and flowchart for this study are shown in Figure 1. Based on
previous literature reports, 150 NRGs were summarized. A total of 159 and 614 NRGs
were subsequently retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG,
https://www.kegg.jp/) (accessed on 1 June 2022) and the comprehensive database of
human genes (GeneCards, https://www.genecards.org/) (accessed on 1 June 2022). These
three methods were used to aggregate 767 non-duplicate NRGs for further study and
analysis (see Supplementary Material Table S1 NRGs).

https://www.kegg.jp/
https://www.genecards.org/
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2.2. Open Data Sets and Pre-Processing

The genome-related database UCSC Xena (http://xena.ucsc.edu/) (accessed on 4 June
2022) includes the functionality of many oncology research databases and provides visual
analysis for public data centers. To reduce errors in subsequent differential analyses due to
the small number of control samples in The Cancer Genome Atlas (TCGA), we downloaded
gene expression data and relevant clinical information from TCGA and Genotype-Tissue
Expression (GTEx) through UCSC Xena. The TCGA LUAD dataset contained 526 LUAD
and 59 non-cancer control samples, whereas the GTEx dataset contained 288 healthy

http://xena.ucsc.edu/
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human samples. Consequently, this study included 526 cases of LUAD and 327 non-
cancer cases. In recent years, the resulting data from worldwide research studies have
shown that the incidence of lung cancer is relatively low up to the age of 40 years and
increases sharply thereafter, peaking in both male and female populations in the 80 to
84 age group, and that the overall lung cancer incidence rate is higher in men than in
women. Therefore, in addition to survival time and survival status, factors such as age
and gender were included in the clinical information comprising the statistics in our study.
Detailed clinical information is shown in Table 1, including age, sex, pathological stage,
TNM stage, and survival status. Gene expression profiles and the corresponding clinical
information for two microarrays, GSE75037 and GSE19188, were downloaded from the
Gene Expression Omnibus database (GEO, www.ncbi.nlm.nih.gov/geo) (accessed on 4 June
2022). The two microarrays were GPL6884 and GPL570. GSE75037 contained 83 LUAD
tissues and 83 matched non-malignant lung tissues. GSE19188 contained 45 LUAD tissues
and 65 adjacent standard lung tissues. Finally, a dataset of mutations and copy number
variants in LUAD was downloaded from UCSC Xena and included 531 samples. (Since
the grade data in TCGA-LUAD, GEO-GSE75037, and GEO-GSE19188 were missing, we
removed the grade category from the clinical information in Table 1.)

Table 1. Clinical information.

TCGA-LUAD GEO-GSE75037 GEO-GSE19188

Variable Category Numbers

Gender
Male 352 48 66

Female 242 118 22

Diagnostic Age
≤65 265 58 Unknown

>65 310 108 Unknown

Stage

I 174 50 40

II 324 20 Unknown

III 71 11 Unknown

IV 23 2 Unknown

T

T1 23 Unknown Unknown

T2 93 Unknown Unknown

T3 200 Unknown Unknown

T4 119 Unknown Unknown

M
M0 445 Unknown Unknown

M1 16 Unknown Unknown

N

N0 383 Unknown Unknown

N1 127 Unknown Unknown

N2 67 Unknown Unknown

N3 5 Unknown Unknown

Fustat
Alive 354 83 86

Dead 240 83 24

2.3. Identification of Differentially Expressed Genes in NRGs and the Related Enrichment Analysis

We extracted expression data for 767 NRGs from TCGA and evaluated 734 differ-
entially expressed necroptosis genes (DENRGs) based on FDR < 0.05 and |log2FC| ≥ 1.
The R package “pheatmap” was used to generate heat maps representing differential ex-
pressions. DENRG functions were uncovered using the R package “clusterProfiler” for
gene ontology (GO) and for the Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

www.ncbi.nlm.nih.gov/geo
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way functional enrichment analysis in order to assign the biological processes, cellular
components, molecular functions, and pathway clustering of identified marker genes.

2.4. Construction and Validation of Prognostic Models

First, the entire TCGA dataset was randomly divided into a training set and a test
set at a 7:3 ratio through the R package “caret”. Next, a Lasso Cox regression analysis
was performed using the R packages “glmnet” and “survival”. Lastly, we conducted a
multivariate Cox regression analysis of DENRGs derived from lasso regression screening
to determine the following risk score formula for LUAD:

Risk Score = ∑ n t = 1 Coefi × Xi.

Coefi is the correlation coefficient for each DENRG, and X is the gene expression
level. The model’s predictive power was analyzed using the Kaplan-Meier (K-M) method,
receiver operating characteristic (ROC), and principal component analysis (PCA). The
R package “survival” was used to analyze the difference in overall survival time (OS)
between the low- and high-risk groups, and the K-M survival curves were plotted based
on the Wilcoxon test. To assess the sensitivity and specificity of the model, the R packages
“timeROC”, “ROCR”, and “survival” were used to plot the ROC curves at 1, 3, and 5 years.
PCA was performed utilizing the R packages “limma” and “scatterplot3d” to show the
distribution patterns of high-risk and low-risk populations.

2.5. Relationship between Risk Score and Independent Prognosis

Using the R package “survival”, we conducted univariate and multivariate Cox regres-
sion analyses to determine whether risk scores and multiple clinical characteristics could
be considered independently as prognostic factors, and the R packages “survival”, “pec”,
and “rms” were used to construct a concordance index (C-index) to evaluate the predictive
accuracy of the prognostic models. A chi-square test was used to compare the differences
in clinicopathological characteristics between different risk groups, and then a heat map of
the correlation between prognostic risk scores and clinical features was created using the R
package “pheatmap”.

2.6. Nomogram Construction and Verification

Based on the results of the multifactorial Cox proportional risk regression analysis, a
nomogram was constructed using the R package “rms” to predict patient survival at 1, 3,
and 5 years, followed by the annotation of patient risk score information for clinical use. To
assess the accuracy of the nomogram, calibration curves, multi-indicator ROC curves, and
Decision Curve Analysis (DCA) were plotted via the R packages “survivor”, “survminer”,
“timeROC”, and “ggDCA”.

2.7. Relationships between Risk Score, Gene Set Enrichment Analysis (GSEA), and Mutations

In the LUAD prognostic model, we explored the signaling pathways associated with
different risk groups using the GSEA software (GSEA 4.2.3). The multipleGSEA plot
shows the potential activation pathways in both risk groups in the part of the pathway
predominantly enriched by GO and KEGG. To demonstrate the importance of genomic and
pathway correlations, normalized enrichment scores, nominal p values, and false discovery
rate q values were calculated. The “maftool” R package was used to analyze the mutation
patterns and the number of mutations in the two risk groups.

2.8. Risk Score and Immunization Correlation Analysis

The proportion of each component of the TME was determined by applying the
ESTIMATE algorithm to all LUAD samples, resulting in three scores: ImmuneScore, Stro-
malScore, and ESTIMATEScore. The relationship between the three scores and the risk
score was evaluated using the R packages “limma” and “ggpubr”, and a violin plot was
created. Using the R packages “ggplot2”, “ggpubr”, and “ggExtra”, we examined the
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correlations between the risk scores and TME by using Spearman correlation analysis.
Next, the penetration values of the LUAD samples were calculated based on seven al-
gorithms: XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and
CIBERSORT. We then performed Spearman correlation analysis utilizing the R packages
“limma”, “scales”, “ggplot2”, “ggtext”, “reshape2”, “tidyverse”, and “ggpubr” to assess
the relationship between immune cell subpopulations and risk score values and in order
to draw bubble plots. Furthermore, ssGSEA was performed based on the CIBERSORT
and preprocessCore algorithms to investigate the relationships between risk score, LUAD
immune cell infiltration, and immune cells. We used the R packages “limma”, “GSEABase”,
and “GSVA” to analyze the relationship between the infiltration of 16 immune cells and
13 immunity functions and the risk score. Finally, we also compared the activation of
immune checkpoints (ICs) between different risk groups using the R packages “ggpubr”
and “ggplot2” and the plotted box-line plots.

2.9. Relationships between Risk Scores, Immunotherapy, and Drug Sensitivity

The Tumor Immune Dysfunction and Exclusion algorithm (TIDE) (http://tide.dfci.
harvard.edu) (accessed on 8 July 2022) could predict the response of different risk groups to
ICI treatment. TCGA LUAD expression profiles were first normalized using the R package
“scale”. Next, the TIDE online tool was used to calculate the TIDE score, Dysfunction score,
and Exclusion score, and the R packages “limma” and “ggpubr” were used to evaluate their
relationship with the risk scores and to draw violin plots. We assessed their associations
with the risk scores using the R packages “limma” and “ggpubr”, and violin plots were
produced. The Cancer Immunome Atlas (TCIA; https://tcia.at/home) (accessed on 12 July
2022) provided us with the TCGA LUAD expression matrix and ICI (anti-PD1 and anti-
CTLA4) scores. The R packages “limma” and “ggpubr” were applied to estimate the
relationship between the ICI treatment monitoring risk scores and the TCIA scores for
anti-PD1 and anti-CTLA4 inhibitors, alone or in combination, in high- and low-risk groups.
The R package “pRRophetic” was used to build a ridge regression model with tenfold
cross-validation to infer semi-inhibitory concentration (IC50) values for the analysis of
therapeutic biomarkers in the Genomics of Drug Sensitivity in Cancer database (GDSC;
https://www.cancerrxgene.org/) (accessed on 15 July 2022) and in order to draw violin
plots. The DNA and RNA stemness indices were calculated using a one-class logistic
regression (OCLR) machine learning algorithm to examine the relationship between risk
scores and stemness scores.

2.10. Relationship between Risk Score and GSVA

We used the R packages “limma”, “GSEABase”, “GSVA”, “reshape2”, and “ggplot2” to
analyze the GSVA enrichment of DENRGs in the prognostic model as well as the Spearman
correlation test to examine correlations between these genes and the enriched pathways.

2.11. DENRGs Associated with Early Diagnosis of LUAD Was Used to Construct a
Diagnostic Model

Based on their clinical information, pathological stage 1, stage 2, and standard samples
were screened for further analysis on the GSE75037 chip. We used the SangerBox software
(SangerBox 1.0.9) to extract the expression matrices of target genes closely related to
early diagnosis in the prognostic model. Then, a binary logistic regression analysis was
performed using SPSS to construct an early diagnosis model, and the diagnostic efficacy of
the model was analyzed with the use of ROC curves.

2.12. Online Database

To validate the correlation between nine DENRGs and clinicopathological staging,
UALCAN (http://ualcan.path.uab.edu/analysis.html) (accessed on 25 June 2022) was ana-
lyzed. We used the GSCA (http://bioinfo.life.hust.edu.cn/GSCA/#/) (accessed on 28 June
2022) database to explore the relationship between prognostic model-related DENRGs and

http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
https://tcia.at/home
https://www.cancerrxgene.org/
http://ualcan.path.uab.edu/analysis.html
http://bioinfo.life.hust.edu.cn/GSCA/#/
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the drug IC50. The Human Protein Atlas database (HPA; http://www.proteinatlas.org/)
(accessed on 20 June 2022) was used to validate the expression of nine DENRGs in LUAD tis-
sues as compared with normal tissues. The TISIDB (http://cis.hku.hk/TISIDB/index.php)
(accessed on 1 July 2022) was used to examine the expression of PANX1 in its presentation
in different immune isoforms of LUAD.

3. Results
3.1. Identification of DENRGs and Enrichment Analysis Related to DENRGs

The differential expression analysis of 734 NRGs (526 LUAD tissues versus 327 normal
tissues) revealed 208 DENRGs (99 upregulated and 109 downregulated genes) (Figure 2).
The GO enrichment analysis revealed that DENRGs were primarily associated with intracy-
toplasmic translation, oxidative stress response, cellular scorching, and apoptotic signaling
pathways (Figure 3A,C). The KEGG enrichment analysis of DENRGs focused on signaling
pathways, including necroptosis, NOD-like receptors, apoptosis, tumor necrosis factor,
IL-17, and NF-κB (Figure 3B,D).
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Figure 3. (A) Bar graph of GO enrichment analysis. (B) Bar graph of KEGG pathway enrichment
analysis. (C) Circle diagram of GO enrichment analysis. (D) Circle diagram of KEGG pathway
enrichment analysis.

3.2. Construction and Validation of the LUAD Prognostic Model

The whole TCGA LUAD dataset was randomly divided into training and test sets
at the ratio of 7:3. First, a survival analysis was performed on the training set using the
univariate Cox regression analysis and the K-M method for each DENRG, and genes with
p < 0.05 were selected as candidate markers. Thirty-seven DENRGs associated with OS
were screened in the training set (Figure 4A). Secondly, we used the Lasso regression
analysis to screen 19 prognosis-related DENRGs out of 37 DENRGs to avoid overfitting
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the prognostic model (Figure 4B). Finally, a LUAD prognostic model consisting of nine
DENRGs was constructed using multivariate Cox regression analysis, and the following
risk score formula was also derived:

RiskScore = (0.53357 × TMEM44) + (0.38098 × ZNF146) + (0.48044 × FAF2) +
(0.37444 × PANX1) + (0.33212 × MLKL) + (0.38542 × PPIA) + (0.43709 × PMAIP1) +
(0.23428 × TRAF2) + (−0.30466 × PLCG1) (Figure 4C).
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Figure 4. (A) Univariate Cox regression forest plot for the training group. (B) Inclusion of DENRGs
in Lasso regression analysis to screen out prognosis-related DENRGs. (C) Multi-factor Cox regression
forest plot for the training group. (D) K-M plots of OS for patients in the high-risk and low-risk
groups in the training group. (E) ROC curves for the training group with 1-year, 3-year, and 5-year
OS. (F) Risk survival status plots for the training group. (G) PCA distribution plot for the training
group. * p < 0.05, ** p < 0.01.
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Based on whether the hazard ratio (HR) was greater than 1, we determined that PLCG1
was a protective factor (HR < 1), while the remaining eight DENRGs were risk factors
(HR > 1). Each patient in the training set was divided into high- and low-risk groups based
on the median risk score. In the training set, the K–M method was used to determine
the effect of the risk score on the prognosis, and it was found that LUAD patients in the
low-risk group had a longer OS than those in the high-risk group, with AUC values of 0.758,
0.745, and 0.826 at 1, 3, and 5 years, respectively (Figure 4D,E). The distribution of risk
scores and survival status can be seen in Figure 4F. The PCA results of the training set show
that the high-risk and low-risk groups were well-separated in both directions, indicating
that the risk score had an excellent discriminatory ability (Figure 4G). Next, we performed
three validations of the LUAD prognostic model constructed from the training set: the
TCGA internal test set, the TCGA full set, and the GSE19188 dataset. First, according to the
internal test validation, patients in the high-risk group had a poorer prognosis (p < 0.001),
while the low-risk group had a better prognosis, with AUC values of 0.638, 0.704, and 0.772
at 1, 3, and 5 years, respectively (Figure 5A,B). The risk scores, survival status distribution,
and PCA results are shown in Figure 5C,D. Second, in the TCGA full-set validation, the
low-risk group of LUAD patients still had a longer OS than the high-risk group, with AUC
values of 0.719, 0.732, and 0.797 at 1, 3, and 5 years, respectively (Figure 5E,F). Finally, in
the GSE19188 dataset validation, the prognosis for the high-risk group remained worse
(p = 0.0013), with AUC values of 0.6, 0.676, and 0.726 at 1, 3, and 5 years, respectively
(Figure 5G,H). By comparison, we found that all three validation results remained highly
consistent with the predictions of the training set. According to the results of this study, the
LUAD prognostic model has a more stable predictive ability.

3.3. Independent Predictive Value of Risk Scores and Clinical Characteristics

Univariate and multivariate Cox regression analyses were performed to investigate
whether risk scores and multiple clinical characteristics could be used as independent
predictors of OS in patients with LUAD. In the training group, the univariate Cox anal-
ysis revealed that risk score (HR = 1.720, 95% confidence interval (CI) = 1.516–1.951,
p < 0.001), tumor stage (HR = 1.685, 95% CI = 1.389–2.044, p < 0.001), T (HR = 1.541, 95%
CI = 1.185–2.004, p = 0.001), and N (HR = 2.221, 95% CI = 1.718–2.871, p < 0.001) were all
associated with OS in patients with LUAD (Figure 6A). Our multivariate Cox regression
analysis showed that our risk score (HR = 1.622, 95% CI = 1.413–1.861, p < 0.001) was an
independent prognostic indicator (Figure 6B). The receiver operating characteristic (ROC)
and the C-index were used to assess the predictive power of risk scores and multiple clinical
characteristics. It was found that the prognostic model had a predictive accuracy AUC of
0.777, which was better than that for other clinical characteristics (such as age (0.577), sex
(0.577), and TMN (0.666, 0.498, and 0.758, respectively)) (Figure 6C,D). For the training set,
we created a heat map of clinical features (Figure 6E). To provide clinicians with a more
quantitative means of predicting the prognosis of LUAD, we combined the risk score with
other clinical features to construct a clinically useful nomogram. According to the results,
the risk score was the most significant factor among the clinical parameters (Figure 6F).
In this study, most patients with LUAD had a total score of between 340 and 480, which
was calculated by summing the scores of the individual indicators. Figure 6 illustrates the
risk value for one patient as an example. Our calibration curve, ROC, and DCA validation
results indicate that our nomogram accurately predicts total OS (Figure 6G–I).
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Figure 5. (A) In the internal test set, K-M plots of OS for patients in the high-risk and low-risk groups.
(B) ROC curves for the internal test group with 1-year, 3-year, and 5-year OS. (C,D) Risk survival
status maps and PCA distribution maps for the internal test group. (E,F) K-M plots of OS for patients
in the high-risk and low-risk groups when the complete TCGA set was performed as a test set, and
ROC curves for 1-year, 3-year, and 5-year OS. (G,H) K-M plots of OS for patients in the high-risk and
low-risk groups when the GSE19188 chip was used for the test set, and ROC curves of OS at 1, 3, and
5 years.
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Figure 6. (A) Univariate Cox analysis of risk scores and multiple clinicopathological features. (B) Mul-
tivariate Cox analysis of risk scores and numerous clinicopathological features. (C,D) ROC and
C-index were used to determine the independent predictive value of risk scores and clinicopathologic
features. (E) Heat map of clinicopathological characteristics. (F) Construction of the nomogram for
1-year, 3-year, and 5-year OS. (G–I) Calibration curves, ROC, and DCA were used to determine the
accuracy of the nomogram. *** p < 0.001.

3.4. Correlation of Risk Scores with GSEA and Mutations

According to the GSEA, the prognostic models were significantly enriched in regu-
latory immune, cell cycle, and tumor-related pathways, primarily the proteasome, the
P53 pathway, steroid biosynthesis, the pentose phosphate pathway, arachidonic acid
metabolism, and the DNA transcription, replication, and repair processes (Figure 7A,B).
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Then, we compared the risk scores of somatic mutation driver genes between the two
groups by plotting the top 20 most frequently mutated DENRG using waterfall plots. The
findings revealed that the same DENRG were mutated at different frequencies in different
risk groups, and that these genes were mutated more frequently in the high-risk group
(Figure 7C,D). Therefore, we believe the above results may provide a new direction for
therapeutic studies with regard to gene mutations.

Cancers 2022, 14, x FOR PEER REVIEW 14 of 33 
 

 

C-index were used to determine the independent predictive value of risk scores and clinicopatho-
logic features. (E) Heat map of clinicopathological characteristics. (F) Construction of the nomogram 
for 1-year, 3-year, and 5-year OS. (G–I) Calibration curves, ROC, and DCA were used to determine 
the accuracy of the nomogram. *** p < 0.001. 

3.4. Correlation of Risk Scores with GSEA and Mutations 
According to the GSEA, the prognostic models were significantly enriched in regu-

latory immune, cell cycle, and tumor-related pathways, primarily the proteasome, the P53 
pathway, steroid biosynthesis, the pentose phosphate pathway, arachidonic acid metabo-
lism, and the DNA transcription, replication, and repair processes (Figure 7A,B). Then, 
we compared the risk scores of somatic mutation driver genes between the two groups by 
plotting the top 20 most frequently mutated DENRG using waterfall plots. The findings 
revealed that the same DENRG were mutated at different frequencies in different risk 
groups, and that these genes were mutated more frequently in the high-risk group (Figure 
7C,D). Therefore, we believe the above results may provide a new direction for therapeu-
tic studies with regard to gene mutations. 

 
Figure 7. (A,B) Results of the GSEA analysis. (C,D) The top 20 driver genes with the highest muta-
tion frequencies in the low-risk and high-risk groups. 

3.5. Relationship between Risk Scores and TME, Immune Cells, and ICs 
NRGs are associated with immune cell infiltration, which is closely linked to tumor 

development and prognosis; hence, we explored the relationship between risk scores and 
the ratio of immune cells to stromal components. There was a significant difference be-
tween groups in terms of StromalScore, ImmuneScore, and ESTIMATEScore (Figure 8A). 
Interestingly, the three scores were negatively correlated with the risk score, indicating 
that low-risk patients had higher tumor immunoreactivity than high-risk patients (Figure 
8B–D). By assessing the potential relationship between immune cell subsets and risk 
scores, it is possible to determine whether prognostic model-related DENRGs are in-
volved in the tumor immune microenvironment (TIME). Immunoinfiltration analysis 

Figure 7. (A,B) Results of the GSEA analysis. (C,D) The top 20 driver genes with the highest mutation
frequencies in the low-risk and high-risk groups.

3.5. Relationship between Risk Scores and TME, Immune Cells, and ICs

NRGs are associated with immune cell infiltration, which is closely linked to tumor
development and prognosis; hence, we explored the relationship between risk scores and
the ratio of immune cells to stromal components. There was a significant difference be-
tween groups in terms of StromalScore, ImmuneScore, and ESTIMATEScore (Figure 8A).
Interestingly, the three scores were negatively correlated with the risk score, indicating that
low-risk patients had higher tumor immunoreactivity than high-risk patients (Figure 8B–D).
By assessing the potential relationship between immune cell subsets and risk scores, it
is possible to determine whether prognostic model-related DENRGs are involved in the
tumor immune microenvironment (TIME). Immunoinfiltration analysis using seven algo-
rithms, including TIMER, XCELL, QUANTISEQ, MCPCOUNTER, EPIC, Cibersort-ABS,
and CIBERSORT, showed significant correlation between changes in immune cell landscape
and different risk groups (Figure 8E). Following that, we assessed the enrichment fractions
of 16 immune cell types and the activity of 13 immune-related functions in the low-risk
and high-risk groups. The differences in aDCs, B_cells, DCs, iDCs, Mast_cells, Neutrophils,
pDCs, T_helper_cells, and TIL between the two groups were significant (p < 0.05), and the
rate of immune cell infiltration was higher in the low-risk group population (Figure 9A). In
addition, for immune-related functions, HLA, MHC_class_I, and Type_II_IFN_Response
were significant (p < 0.05), particularly in the low-risk group (Figure 9B). Programmed
death receptors and their ligands are referred to as ICs. It is possible to inhibit the binding
of programmed death receptors and their ligands using therapeutic approaches based
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on ICs for ICI. This can enhance the host immune system’s aggressiveness against tumor
cells and inhibit tumor development and progression. The results show that some IC
genes were differentially expressed in different risk groups. Among them, the expression
levels of CD276, TNFSF9, and TNFRSF9 were higher in the high-risk group than in the
low-risk group, suggesting that the poor prognosis of high-risk patients may be partly due
to the immunosuppressive microenvironment (Figure 9C). The findings show a significant
correlation between risk scores and TME, immune cells, and ICs in LUAD, an essential
guideline for future immunotherapy studies.
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correlation with immune cell infiltration based on 7 algorithms. *** p < 0.001.
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3.6. Relationship of Risk Score with Immunotherapy and Drug Sensitivity

The TIDE algorithm was used to predict the effects of immunotherapy from tran-
scriptomic data to determine whether prognostic models could predict the efficacy of im-
munotherapy in patients with LUAD. The higher the TIDE score, the greater the likelihood
of immune escape and the less effective the ICI treatment. Our results showed TIDE scores
that were lower in the low-risk group than those in the high-risk group, indicating that ICI
treatment was more effective in the low-risk group (Figure 10A). Furthermore, there were
significant differences in immune dysfunction scores (Dysfunction) and immune rejection
scores (Exclusion) between the two groups (Figure 10B,C). Thus, the low-risk group may
have tremendous potential for ICI treatment. TCIA is a comprehensive immunogenomic
analysis based on TCGA that correlates risk scores with patients’ immunotherapy outcomes
by immunophenotype scores (IPS). According to our findings, full IPS and CTLA4 inhibitor
IPS were significantly lower in the high-risk group than in the low-risk group, particularly
CTLA4 inhibitor IPS, which strongly predicted an inadequate response to immunotherapy
in patients with higher risk scores. However, the PD-L1 inhibitor IPS and PD1+CTLA4
inhibitor IPS did not differ significantly between the two risk groups (Figure 10D). Next,
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the utility of risk scores for guiding treatment aspects was also explored. Our first step was
to select drugs commonly used in first-line chemotherapy regimens for LUAD, including
vincristine, cisplatin, paclitaxel, docetaxel, and gemcitabine. Then, to assess the response
to chemotherapy in these two risk groups, drugs widely used in LUAD chemotherapy,
including etoposide, cisplatin, erlotinib, vincristine, methotrexate, and bleomycin, were
added. The high-risk group was more sensitive to seven anti-cancer drugs (paclitaxel,
docetaxel, cisplatin, gemcitabine, etoposide, vincristine, and vincristine), and the IC50 of
most chemotherapeutic drugs was significantly lower in the high-risk group than that
in the low-risk group, suggesting that the use of these drugs may be more effective in
high-risk patients (Figure 10E). The expression of stemness-related biomarkers in tumor
cells is highly correlated with drug resistance, cancer recurrence, and tumor proliferation.
Therefore, we evaluated the correlation between the DNA stemness score (DNAss), the
RNA stemness score (RNAss), and the risk score. Both the DNAss and the RNAss were
positively correlated with risk scores, indicating that the group with higher risk scores had
a greater stemness capacity, and that the correlation was stronger for RNAss (R = 0.49,
p < 0.001) than for DNAss (R = 0.093, p = 0.05) (Figure 10F,G). Overall, this risk score was
more effective in predicting chemotherapy drug sensitivity in high-risk patients, whereas
low-risk patients were better treated with immunotherapy.

3.7. Comprehensive Analysis of Nine DENRGs in the Prognostic Model

Since the risk score of LUAD showed a strong correlation with various aspects, such
as immunotherapy, drug sensitivity, and TME, we further explored each gene’s potential
role in the risk score through a comprehensive analysis of multiple aspects. Initially, we
compared the differential expressions of nine DENRGs in LUAD with the histochemical
results (Figure 11). Except for MLKL, the immunohistochemical results for the remaining
eight DENRGs were contained in the HPA database (protein expression of MLKL could
not be retrieved from HPA data) (see Supplementary Material Table S3 HPA). As predicted
by the prognostic model, all DENRGs were deleterious factors (HR > 1), except for PLCG1,
which was protective (HR < 1). We then explored the correlation of nine DENRGs with
immune cells and found that TRAF2, PPIA, and PMAIP1 were all negatively associated with
immune cells, whereas PANX1 and MLKL mostly had a positive association (Figure 12A).
TMB and MSI are predictive markers of cancer immunotherapy efficacy, and to clarify the
critical role of the nine DENRGs in LUAD, we explored their correlation with TMB and MSI
in LUAD. The results show that PANX1 (p < 0.001), PMAIP1 (p = 0.002), PPIA (p < 0.001),
TRAF2 (p < 0.001), and ZNF146 (p < 0.001) were all associated with TMB (Figure 12B),
while MLKL (p = 0.001), PLCG1 (p < 0.001), TMEM44 (p < 0.001), TRAF2 (p < 0.001),
and ZNF146 (p = 0.001) were all associated with MSI (Figure 12C). The expression of all
DENRGs in LUAD increased with increasing TMB scores and MSI scores. Finally, the GSCA
database was used to analyze the expression of nine DENRGs and the drug IC50 for drug
sensitivity analysis, and the top 30 drugs were plotted. The results show that low levels
of PMAIP1, PPIA, and ZNF146 were associated with resistance to most chemotherapeutic
agents in GDSC and CTRP, whereas high levels of MLKL, TMEM44, FAF2, and PANX1
were associated with drug sensitivity (Figure 13A,B). Our findings suggest that these nine
prognosis-related DENRGs could serve as biomarkers for drug screening and as new
therapeutic targets for clinical treatment development.
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Figure 10. (A–C) Relationship between high-risk and low-risk groups and TIDE scores (including
TIDE, Dysfunction, and Exclusion). (D) Differences in IPS between different risk groups. IPS and IPS-
CTLA4 significantly differed between the high-risk and low-risk groups (p < 0.05). (E) Relationship
between high-risk and low-risk groups with multiple chemotherapeutic agents commonly used for
LUAD. (F,G) Relationship between high-risk and low-risk groups with DNAss and RNAss. * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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associated with TMB in the prognostic model. (C) DENRGs associated with MSI in the prognostic
model. * p < 0.05, ** p < 0.01.

3.8. Building LUAD Diagnostic Models

In exploring whether the expression of nine DENRGs in the prognostic model is
significant at different pathological stages in LUAD patients, we found that the expression
of all these genes was significantly associated with the clinicopathological stages 1 and 2 of
LUAD (Figure 14A) (see Supplementary Material Table S2 Stage). Since stages I and II are
typically considered early stages of tumors, exploring the presence of dual biomarkers that
are both diagnostic and prognostic in prognostic models opens up new avenues for the
clinical studies of LUAD. Using the GSE75037 microarray as the training set, we extracted
the expression matrix for nine DENRGs from stage 1, 2, and the normal groups. A binary
logistic regression was conducted on the training set to obtain a diagnostic model for
LUAD, which consisted of four DENRGs (MLKL, PANX1, TRAF2, and PMAIP1).

Y(RiskScore) = −32.825 + (−4.948 × ∆CtMLKL) + (3.4888 × ∆CtPANX1) +
(4.750 × ∆CtTRAF2) + (1.348 × ∆CtPMAIP1), with a combined ROC of 99.4% (Figure 14B).
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Figure 14. (A) Relationship between nine DENRGs and clinicopathological staging in the prognostic
model. (B) ROC curves of the LUAD diagnostic model when GSE75037 was used for the training
set. (C) ROC curves of LUAD when TCGA was used for the test set. * p < 0.05, ** p < 0.01, and
*** p < 0.001.

In the training set, MLKL, PANX1, PMAIP1, and TRAF2 had AUC values of 0.139,
0.781, 0.743, and 0.92, respectively. According to the TCGA LUAD test set validation, the
combined ROC reached 99.0%, and the AUC values for MLKL, PANX1, PMAIP1, and
TRAF2 were 0.080, 0.904, 0.957, and 0.929, respectively (Figure 14C). Finally, we concluded
that the diagnostic model could be used to achieve an excellent early diagnosis of LUAD
and an excellent early independent diagnosis of PANX1 and TRAF2 (see Table 2 for details).
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Table 2. Accuracy of early diagnosis.

Train-GSE75037 Normal LUAD All Accuracy

4-mRNA
negative 70 3 73 95.9

4-mRNA
positive 2 68 70 97.1

All accuracy 70 68 143 96.5

Test-
TCGALUAD Normal LUAD All Accuracy

4-mRNA
negative 321 26 347 92.5

4-mRNA
positive 14 368 382 96.3

All accuracy 321 368 729 94.5

3.9. Hub Genes with Both Diagnosis and Prognosis

According to the GEPIA database, all the genes, except for TRAF2, showed indepen-
dent survival significance in the prognostic model (Figure 15A). GSVA conducted a further
investigation using a non-parametric unsupervised analysis method to determine whether
genomic enrichment was associated with different pathways. The results show that PANX1
was significantly and positively correlated with most pathways, most prominently with the
P53 pathway (Figure 15B). We were also surprised that risk scores were primarily enriched
in the P53 pathway, suggesting that PANX1 may be a representative gene in the prognostic
model. Since TRAF2 (p = 0.26) had no independent survival significance and no indepen-
dent prognostic power in the multifactorial Cox regression (p = 0.137), we concluded that
TRAF2 could be used as a separate diagnosis indicator. At this point, we also found that
PANX1 expression was closely correlated with a prognostic risk score, and that PANX1
expression was stronger in the high-risk group, which is consistent with the previous
analysis (Figure 16A). By combining the above multiple analyses, this study was able to
establish that PANX1 had both independent survival significance (p = 0.017) and excellent
independent diagnostic and prognostic ability (p = 0.023), and that the high expression
of PANX1 was closely associated with high-risk populations. Thus, it is reasonable to
conclude that PANX1 can serve as an independent diagnostic and prognostic biomarker
for LUAD and warrants further investigation.

3.10. Immunocorrelation Analysis of PANX1

We used the TISIDB website to investigate the relationship between PANX1 expression
and LUAD immune subtypes. There are six immune subtypes, including C1 (wound
healing), C2 (IFN-gamma-dominant), C3 (inflammatory), C4 (lymphocyte-depleted), C5
(immunologically quiet), and C6 (TGF-b-dominant). According to the results, PANX1
expression was associated with the immune subtype of LUAD, with a low expression in
C3 and a high expression in C6 (Figure 16B). When the relationship between PANX1 and
TME was investigated, a significant difference in StromalScore and ESTIMATEScore was
found between the groups (Figure 16C). PANX1 was positively correlated with T cell CD4
memory activated, Macrophages M1, Neutrophils, and T cell CD4 memory resting, and it
was negatively associated with Mast cell resting and T cells follicular helper (Figure 16D,E).
Among the frequently tested ICs, PANX1 had a relatively strong positive correlation with
CD276, PDCD1LG2, PD-L1 (CD274), TNFSF4, and TNFRSF9 (Figure 16F), and it had a
negative correlation with TNFRSF14. Finally, the immune efficacy results show that PANX1
was more effective in low-risk patients treated with the CTLA4 inhibitor IPS alone than in
high-risk patients (Figure 16G). These findings suggest that PANX1 is closely associated
with immunity and may be a novel target for immunotherapy in LUAD, with a positive
predictive power for future clinical diagnosis, prognosis, and immunotherapy.
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Figure 15. (A) Survival analysis of nine DENRGs in the LUAD prognostic model. (B) GSVA analysis
of nine DENRGs and prognostic risk scores. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Figure 16. (A) Correlation of PANX1 with prognostic risk score. (B) Immunophenotyping of PANX1.
(C) Relationship between PANX1 and TME. (D,E) Relationship between PANX1 and immune cell
infiltration. (F) PANX1 and immune checkpoints. (G) Relationship between PANX1 and TCIA
immunotherapy. ** p < 0.01, *** p < 0.001.
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4. Discussion

In this study, nine DENRGs were used to construct a prognostic model for LUAD.
Patients with LUAD were categorized into high-risk and low-risk groups using the median
value of their risk scores. Patients in the low-risk group had a significantly better prognosis
than those in the high-risk group, as demonstrated by the results of both the training and
test groups, with AUC values of 0.758, 0.745, and 0.826, respectively, for 1-, 3-, and 5-year OS.
The prognostic risk score was an independent predictor of OS in patients with LUAD, with a
better predictive value for survival than other conventional clinical characteristics. Since no
prognostic model of LUAD consisting of NRGs from other investigators has been identified,
we compared it with a model composed of miRNAs that could indirectly regulate NRGs.
The AUCs for the 3-year and 5-year OS in the LUAD prognostic model of seven miRNAs
were 0.631 and 0.605, respectively [14]. Another study showed that the AUCs of the LUAD
prognostic model composed of seven necroptosis-related lncRNAs were 0.723, 0.679, and
0.715 for 1-year, 3-year, and 5-year OS, respectively [15]. In addition, we compared this
study to a non-NRG-constructed LUAD prognostic model, and the results from the LUAD
prognostic model consisting of six mRNAs based on single-cell RNA-sequencing and bulk
RNA-sequencing data show that the AUCs for 1-year, 3-year, and 5-year OS were 0.669,
0.674, and 0.642, respectively [16]. Through the above comparison, we found that the LUAD
prognosis model constructed by NRGs in this study has a good predictive effect. Therefore,
we believe that this model will provide a new reference for prognostic risk stratification
assessment and treatment strategy selection for LUAD patients.

The molecular mechanisms of necroptosis have been elucidated in many degenerative
and inflammatory diseases. For example, excess reactive oxygen species are produced dur-
ing necroptosis, affecting β-amyloid production in Alzheimer’s disease [17,18]. Since tumor
formation and immune escape are also closely related to the immune microenvironment,
the role of NRGs in tumor formation, especially its role in immune regulation, is gaining
widespread attention [19]. Because necroptosis regulates tumor immunity, we used ssGSEA
to investigate the immune status of different risk populations. Some immune cells (aDCs,
B_cells, DCs, iDCs, Mast_cells, Neutrophils, pDCs, T_helper_cells, and TIL) and immune
functions (HLA, MHC_class_I, and Type_II_IFN_Reponse) were more active in the low-risk
group, and some of them were closely associated with necroptosis. Evidence suggests that
necrotrophic apoptotic cells provide tumor-specific antigens and inflammatory cytokines
to DCs for antigen cross-triggering, which activates cytotoxic CD8+ T lymphocytes. RIPK3
is required to regulate cytokine expression in DCs and is potentially involved in innate and
adaptive immunity [20]. Serine proteases are involved in the neutrophils’ RIPK3-MLKL-
mediated necrotizing death pathway [21]. Based on our findings and on those of previous
research, we further confirmed that necroptosis might be involved in the development of
LUAD by regulating tumor immunity.

Immunotherapy has been a revolution in cancer treatment, improving the situation of
patients with unresectable stages of disease [22]. TMB, PD-L1, PD-L2, and MSI are effective
biomarkers for predicting the efficacy of immunotherapy. However, the relationship
between these biomarkers is complex, and it is unclear whether combining them is superior
to using a single marker [23,24]. Researchers have repeatedly reported that the expression
levels of ICs are highly correlated with immunotherapy efficacy, which paves the way for
future research into LUAD immunotherapy [25–27]. CTLA4 inhibitors have been shown to
benefit patients with NSCLC in clinical trials [28]. Therefore, we examined the expression of
some common ICs in relation to prognostic risk scores. In our study, patients in the low-risk
group had higher levels of IC expression than those in the high-risk group. For example,
CTLA4 expression was significantly higher in the low-risk group than in the high-risk group.
We believe that ICI treatment may be more effective in low-risk patients. Previous studies
have demonstrated that anti-CTLA4 and/or anti-PD-1 ICI therapies can treat clinically
advanced tumors with promising results [29–31]. Therefore, we used the TIDE algorithm
to assess the potential efficacy of ICI therapy in high-risk and low-risk populations. The
higher the TIDE score, the greater the likelihood of immune escape and the lower the
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effectiveness of the ICI therapy. In this study, we found that the low-risk group with a low
TIDE score may benefit more from ICI therapy than the high-risk group with a high TIDE
score. In addition, there were significant differences in the immune rejection (Exclusion)
and immune dysfunction (Dysfunction) scores between the risk groups, confirming the
superior efficacy of ICI therapy in the low-risk group. Since ICI treatment information was
unavailable in the TCGA LUAD dataset, IPS was used as a surrogate for ICI efficacy. IPS
was designed to predict patient responses to anti-PD-1 and anti-CTLA4 treatments, and
it was developed primarily using TCGA RNA-seq data [32]. As with previous findings,
the low-risk group had higher overall IPS and IPS for CTLA4 inhibitors, confirming that
low-risk populations respond more effectively to immunotherapy. In clinical practice,
chemotherapy is another effective strategy for treating LUAD based on the predicted
response to chemotherapy [33]. We found that almost all the first-line chemotherapeutic
agents (vincristine, cisplatin, paclitaxel, docetaxel, and gemcitabine) performed better in
patients with higher risk scores, and most had significantly lower IC50 values than they
did in the low-risk group. As a result, we believe that prognostic risk scores are related
to the response to chemotherapy and are more effective, particularly in high-risk patients.
In conclusion, in terms of the treatment strategies for LUAD, it is reasonable to assume
that patients in the high-risk group are more suitable for chemotherapy regimens, whereas
patients in the low-risk group benefit more from immunotherapy.

P53 is a classical oncogene that is crucial for maintaining genomic integrity [34].
P53 regulates many biological processes such as cell cycle arrest, apoptosis, senescence,
and metabolism. There is growing evidence that P53 also regulates innate and adaptive
immune responses. P53 affects the innate immune system by secreting factors that regulate
macrophage function to suppress tumorigenesis. When P53 is dysfunctional in cancer,
it affects the recruitment and activity of T cells and myeloid cells, resulting in immune
evasion [35]. In this study, the GSVA results revealed that the prognostic model was
most closely linked to P53 signaling, with PANX1 contributing the most to this model.
Meanwhile, the GSEA results showed that the prognostic model was equally enriched in
the P53 pathway. Therefore, we suggest that the P53 pathway is closely linked to the NRGs
pathway, and that the cause of the immune escape of cancer cells may be due to the joint
regulation of the two pathways. However, the upstream and downstream relationships
of the related genes remain to be studied in depth. The primary gene in the prognostic
model, PANX1, was significantly correlated with drug sensitivity, TMB, and immune cell
infiltration. In addition, PANX1 was also positively correlated with many frequently tested
ICs. Recent studies have suggested that PANX1 may have a wide range of biological effects
on cancer development, including the promotion of cell proliferation and tumorigenesis in
melanoma, brain tumors, and hepatocellular carcinoma [36–39]. It has been reported that
PANX1, ABC, CALHM1, VRACs, and MACs can regulate TME via ATP release channel
modulation in order to exert therapeutic effects against cancer [40,41]. However, no results
for PANX1 have been found in LUAD. In the model we constructed, PANX1 had better
efficacy when treated with the CTLA4 inhibitor alone in low-risk patients, a result that is
consistent with previous studies. Lastly, we created an early diagnosis model using the
DENRGs associated with early diagnosis in the LUAD prognostic model. Additionally,
this diagnostic model was highly effective in validating the TCGA LUAD dataset and the
GSE19188 chip. At this point, we were surprised to find that PANX1 was a gene with
highly independent diagnostic efficacy among the four mRNAs in the diagnostic model.
In summary, we suggest that PANX1 is an independent risk factor in the early diagnosis
and prognosis of LUAD, and that it is closely associated with immunotherapy and drug
sensitivity. This novel finding leads us to believe that PANX1 deserves further exploration
as a potential new LUAD target.

Despite the comprehensive data analysis and multiple data validations performed
in our study, there are some limitations and shortcomings. First, it is well-known that
identifying differentially expressed genes is very important to the final performance, which
is similar to feature selection. In this study, we used Cox regression and Lasso to screen
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and combine differentially expressed genes, which proved to have a good predictive
effect. With the continuous development of machine learning, increasing numbers of
advanced technologies are being used to identify and screen differentially expressed genes.
According to recent research, Modified Gray Wolf Optimizer (MGWO), Cross-view Local
Structure Preserved Diversity and Consensus Learning (CVLP-DCL), Unsupervised Linear
Feature Selective Projection (FSP), and other methods show excellent feature selection
capabilities [42–44]. Therefore, these methods will be suitable for identifying and combining
differentially expressed genes. In the future, we will continue combining clinical data and
machine learning methods to explore more advanced prediction methods for clinical
diagnosis, prognosis assessment, and treatment. In addition, all data were obtained from
public databases, and the number of patients was limited. Therefore, this prognostic model
needs to be validated with more clinical data. Finally, the complex mechanism of PANX1
in LUAD development remains unknown and requires further in-depth exploration using
in vivo or in vitro experiments.

5. Conclusions

In this paper, a prognostic model for LUAD was constructed with the use of bioinfor-
matics analysis. This model regulated the immune microenvironment, cell cycle, and DNA
damage repair mechanisms. Risk scores were significantly correlated with ICI treatment
and chemotherapeutic drug sensitivity. In addition, we identified a core gene, PANX1,
that is useful in immune regulation, prognostic assessment, and early diagnosis. Finally,
we believe that this study will provide new immunotherapy targets for LUAD and a new
theoretical foundation for the clinical diagnosis, prognostic assessment, and individualized
treatment of patients with LUAD.
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PCA Principal component analysis
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DCA Decision curve analysis
TME Tumor microenvironment
ssGSEA Single sample gene set enrichment analysis
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