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Simple Summary: Recurrence and metastatic progression always lead to dismal outcomes in prostate
cancer (PCa). There is no reliable biomarker for the prediction of recurrence and metastasis other
than the Prostate Cancer Antigen (PCA). N6-methyladenosine (m6A) is the most common post-
transcriptional mRNA modification and is regulated by m6A regulators dynamically. Since m6A
modification is associated with cancer development and outgrowth, we performed a consensus
clustering on PCa with regard to the gene expression of all m6A regulators. We identified three
subtypes of Pca with distinct m6A expression patterns and enriched biological pathways. We also
established an m6A score for metastasis prediction based on our clustering, which is potentially a
predictive biomarker for Pca metastasis.

Abstract: Prostate cancer (PCa) is one of the most common cancers in men. Usually, most PCas at
initial diagnosis are localized and hormone-dependent, and grow slowly. Patients with localized
PCas have a nearly 100% 5-year survival rate; however, the 5-year survival rate of metastatic or
progressive PCa is still dismal. N6-methyladenosine (m6A) is the most common post-transcriptional
mRNA modification and is dynamically regulated by m6A regulators. A few studies have shown that
the abnormal expression of m6A regulators is significantly associated with cancer progression and
immune cell infiltration, but the roles of these regulators in PCa remain unclear. Here, we examined
the expression profiles and methylation levels of 21 m6A regulators across the Cancer Genome Atlas
(TCGA), 495 PCas by consensus clustering, and correlated the expression of m6A regulators with
PCa progression and immune cell infiltration. Consensus clustering was applied for subtyping Pca
samples into clusters based on the expression profiles of m6A regulators. Each subtype’s signature
genes were obtained by a pairwise differential expression analysis. Featured pathways of m6A
subtypes were predicted by Gene Ontology. The m6A score was developed to predict m6A activation.
The association of the m6A score with patients’ survival, metastasis and immune cell infiltration was
also investigated. We identified three distinct clusters in PCa based on the expression profiles of
21 m6A regulators by consensus clustering. The differential expression and pathway analyses on the
three clusters uncovered the m6A regulators involved in metabolic processes and immune responses
in PCa. Moreover, we developed an m6A score to evaluate the m6A regulator activation for PCa.
The m6A score is significantly associated with Gleason scores and metastasis in PCa. The predictive
capacity of the m6A score on PCa metastasis was also validated in another independent cohort with
an area under the curve of 89.5%. Hence, our study revealed the critical role of m6A regulators in
PCa progression and the m6A score is a promising predictive biomarker for PCa metastasis.
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1. Introduction

Prostate cancer (PCa) is the most common tumor in men. Although PCa is usually
benign and localized in the initial diagnosis, metastasis is still the most frequent cause for
prostate cancer-related mortality [1,2]. Metastatic PCa is responsible for more than 90%
of deaths in patients with PCa. The rapid growth and progression of metastatic PCa is
largely driven by androgen; therefore, androgen-deprivation therapy (ADT) is one of the
first-line treatments for symptomatic metastatic PCa [3]. However, the duration of response
of ADT is variable, and resistance is inevitable in metastatic prostate cancer after ADT.
The outcomes for metastatic castration-resistant prostate cancer (mCRPC) are still dismal,
though a few attempts including new algorithms using MRI and new regimens have been
investigated to improve their efficacy for mCRPC [4–9]. Despite the significant accuracy
of predicting a positive biopsy for PCa, little is known about the biological markers on
PCa. Therefore, a further understanding of the driving force and regulatory molecules in
mCRPC is key to improving the outcomes of patients with mCRPC.

Previous studies have uncovered a few potential mechanisms of resistance in mCRPC,
independent of driver mutation status [10]. ADT impairs androgen receptor (AR) signaling-
dependent cell growth in prostate cancer by the reduction of secretory androgen [11].
However, the AR signaling is likely restored after a few periods of ADT. In addition,
ADT can introduce the bypass of AR signaling by converting adrenal precursors into
testosterone along with alternative activation of other receptor-signaling pathways, such as
the PTEN/PI3K/Akt pathway and DNA damage repair pathway [12]. AR-independent
signaling also highlights the heterogeneity of mCRPC with regard to gene expression and
signaling transduction [13]. Moreover, neuroendocrine differentiation is another critical
phenotype resulting in ADT resistance, which leads to the lack of AR expression on the
surface of PCa cells [14]. Hence, further investigation on the regulatory mechanism beyond
AR signaling and the relationship of heterogeneity and the metastatic phenotype in PCa
will precisely stratify patients according to their metastatic risk.

N6-methyladenosine (m6A) is the most prominent RNA modification regulating
the transcription, stabilization and translocation of RNA without DNA or RNA base
changes [15]. Similar to DNA methylation, m6A is a biologically reversible process that
is elaborately regulated by methyltransferases, demethylases and binding proteins, also
known as “writers”, “erasers” and “readers”, respectively [16]. The methylation marks
of m6A are dynamically catalyzed by methyltransferases, usually consisting of RBM15,
ZC3H13, METTL3, METTL14 and WTAP, and removed by demethylases, such as FTO
and ALKBH5 [17]. The RNA-binding proteins (“readers”) YTHDF1/2/3, YTHDC1/2,
HNRNPA2B1, LRPPRC and FMR1 can recognize the m6A status in RNAs and mediate
the biological functions of these RNAs [18]. Accumulating evidence has demonstrated
that m6A modification is involved in multiple biological processes. Neural-simulated
memory learning is facilitated by m6A regulators [19,20]. A decrease in pluripotency is
also observed in stem cells with a high activation of m6A regulators [21–24]. Inactivation
of m6A regulators is associated with cancer metastasis in the liver, colon, kidney and pan-
creas [17,25–29]. In PCa, high expression of METTL3 elevates the growth and progression
of cancer cells [30]. Moreover, the subtypes of cancer stratified by m6A regulators have
distinct prognoses, indicating that m6A regulators likely contribute to the heterogeneity
of mCRPC [31] and the metastatic risk of Pca could be inferred by the expression levels of
m6A regulators. However, the comprehensive m6A regulators expression pattern, along
with their genetic alterations and DNA methylation patterns, and the predictive capacity of
m6A for Pca metastasis remain unclear in Pca.

Here, we utilized the RNA sequencing data of 454 PCas to establish the comprehensive
expression patterns of m6A regulators. We identified differentially expressed genes between
subtypes with distinct levels of m6A regulators that were enriched in the immune response
and metabolic regulation. Immune cell infiltration was also associated with m6A regulator
expression patterns. For application of metastatic prediction by m6A regulator patterns,
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we constructed an m6A score. This m6A score demonstrated a moderate prediction for
PCa metastasis.

2. Materials and Methods
2.1. Data Pre-Processing

Public gene expression data and full clinical annotations of prostate adenocarcinoma
(PRAD) were downloaded from the Cancer Genome Atlas (TCGA) database. RNA se-
quencing data (FPKM value) of gene expression and DNA methylation profiles by Illu-
mina 450 K were downloaded from the Genomic Data Commons (GDC, https://portal.
gdc.cancer.gov/ (accessed on 20 March 2020)). The mutation information with anno-
tations of corresponding samples from TCGA PRAD were downloaded from Firehose
(https://gdac.broadinstitute.org/ (accessed on 20 March 2020)). The CpG loci were an-
notated by the package “IlluminaHumanMethylation450kanno.ilmn12.hg19”. For gene
expression analysis, batch effects from non-biological technical biases were removed using
the “ComBat” algorithm of the “sva” package.

2.2. Consensus Clustering

An unsupervised consensus clustering according to the expression profiles of 21 m6A
related genes was utilized to investigate the subtypes of PCa. The m6A regulators included
8 writers (METTL3, METTL14, RBM15, RBM15B, WTAP, KIAA1429, CBLL1, ZC3H13), 2
erasers (ALKBH5, FTO) and 11 readers (YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3,
IGF2BP1, HNRNPA2B1, HNRNPC, FMR1, LRPPRC, ELAVL1). First, we performed the
Mann–Whithey U test to select the differentially expressed m6A regulators between PCa
and normal prostate tissue. We only selected the significantly expressed m6A regulators
with a p value of less than 0.05 for downstream analysis. Then, we applied agglomerative
hierarchical clustering with average linkage to detect robust clusters in PCa. The distance
metric was 1 (Pearson’s correlation coefficient) and was run over 1000 iterations. SigClust
was performed to establish the significance of difference between each cluster in a pairwise
matter. Silhouette width is defined as the ratio of each sample’s average distance to samples
in the same cluster to the smallest distance to samples not in the same cluster. The best
number of the cluster group is determined by the Cumulative Distribution Function (CDF)
curve and the delta change of CDF in each subtype number.

2.3. Differentially Expressed Gene (DEG) Analysis

The differentially expressed genes between subtypes were identified by the “limma”
package in a pairwise fashion. The significance was defined as log fold change larger than
2 and FDR less than 0.05. The list of DEGs was determined after removal of the replicated
genes in each comparison.

2.4. Pathway Enrichment and Evaluating Immune Cell Abundance

The enriched functional pathway of DEG was annotated by Metascape (https://
metascape.org/gp/index.html (accessed on 10 April 2020)) in the express module. p-values
were calculated based on the cumulative hypergeometric distribution, while q-values
were calculated using the Benjamini–Hochberg procedure to account for multiple testings.
Pathway terms with p-values < 0.01, minimum counts of 3, and enrichment factors > 1.5
(the enrichment factor is the ratio between the observed counts and the counts expected by
chance) were collected and grouped into clusters based on their membership similarities.
PaGenBase was utilized to evaluate the tissue specificity of DEGs. The Gene Set Enrichment
Analysis (GSEA) was conducted in GSEA 4.0.2 for identification of enriched pathways
in a pairwise fashion. The immune cell infiltration in PCa was predicted by CIBERSORT
(https://cibersort.stanford.edu/ (accessed on 10 April 2020)) with 100 permutation runs.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://gdac.broadinstitute.org/
https://metascape.org/gp/index.html
https://metascape.org/gp/index.html
https://cibersort.stanford.edu/
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2.5. M6A Score

To quantify the m6A regulator patterns of individual samples, we constructed a set of
scoring systems to evaluate the m6A regulator levels of individual patients with PCa. The
m6A score was established according to previous studies with some modifications [32]. In
brief, first, we filtered out m6A regulators that were not differentially expressed between
PCa and normal prostate tissue. Second, we utilized the Student’s t test to identify the m6A
signatures associated with PCa metastasis and only took the differentially expressed m6A
regulators between metastatic PCa and non-metastatic PCa into the establishment of the
m6A score. We then performed principal component analysis (PCA) to construct the m6A
regulator signature patterns. Principal components 1 and 2 were both selected to form the
m6A score (Supplementary Figure S1).

m6A score = ∑ PC1 i + PC2 i (1)

where i is the PCa metastasis-related signature gene.

2.6. Stemness Index

The Stemness Index of each sample predicted by an OCLR algorithm has been de-
scribed before. In brief, Malta et al. established a predictive model on pluripotent stem cell
samples to train a stemness signature [33]. A gene expression profile containing 24 genes
was included in the mRNA expression-based signature. Applying this model based on
24 stemness signatures, the stemness is referred to regardless of the tumor purity. We ap-
plied the stemness index model to score the PCa samples using RNA expression data. The
Stemness Index was subsequently scaled to the [0, 1] range by subtracting the minimum
and dividing by the maximum.

2.7. Statistical Analysis

Correlation coefficients between the m6A score and the expression of m6A regulators,
as well as Stemness, were determined by Spearman correlation analyses. One-way ANOVA
was used to conduct difference comparisons of three or more groups. The overall survival
(OS) and recurrence-free survival (RFS) of each m6A subtype were compared to investigate
the correlation of m6A subtypes and patient outcomes. The survival curves for the survival
analysis were generated via the Kaplan–Meier method, and log-rank tests were utilized to
identify the significance of differences between subtypes. The specificity and sensitivity of
the m6A score and the gene SNPH were assessed through a receiver operating characteristic
(ROC) curve. The area under the curve (AUC) was quantified and plotted using the pROC
R package. The waterfall function of the maftools package was used to present the mutation
landscape of all m6A regulators in patients with PCa from the TCGA cohort. For DNA
methylation levels, the CpG loci located in promoter areas (genomic location: TSS500 or
TSS1500) of m6A regulators were utilized for comparison between m6A subtypes. All
statistical p-values were two-sided, with p < 0.05 being statistically significant. All data
processing was performed in R 3.6.0 software (R Core Team, Vienna, Austria).

3. Results

3.1. Consensus Clustering of PCas Based on the Expression Profiles of m6A Regulators Suggested
Three Biologically Distinct Subtypes in PCa

To investigate the similarity and discrepancy of m6A regulator expression patterns
between PCas, we first performed consensus clustering on 495 PCa samples from the TCGA
PRAD dataset using 21 pre-defined m6A regulators (METTL3, METTL14, RBM15, RBM15B,
WTAP, KIAA1429, CBLL1, ZC3H13, ALKBH5, FTO, YTHDC1, YTHDC2, YTHDF1, YTHDF2,
YTHDF3, IGF2BP1, HNRNPA2B1, HNRNPC, FMR1, LRPPRC, ELAVL1). First, 18 of 21
m6A regulators (METTL3, METTL14, RBM15B, KIAA1429, CBLL1, ZC3H13, ALKBH5,
FTO, YTHDC1, YTHDC2, YTHDF1, YTHDF2, IGF2BP1, HNRNPA2B1, HNRNPC, FMR1,
LRPPRC, ELAVL1) were identified as differentially expressed in PCa compared to normal
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prostate tissue (Supplementary Figure S3B), suggesting that most m6A regulators were
biologically pro-active in PCa. Therefore, we selected these 18 m6A regulators as key m6A
regulators for consensus clustering. Consensus average linkage hierarchical clustering
identified three robust subtypes (k = 3), with a significant increase of clustering stability
from k = 2 to 6 (Figure 1A and Supplementary Figure S2). As we observed a marginal
increase of clustering stability after k = 3 (less than 0.2) (Supplementary Figure S2), we
clustered and defined these three consensus clusters as Subtype 1, Subtype 2 and Subtype
3. Cluster significance was evaluated by SigClust. The boundary between Subtype 1 and
Subtype 2 was statistically significant. However, no significance was observed between
Subtype 1 versus Subtype 3 and Subtype 2 versus Subtype 3, suggesting that partial m6A
regulators are likely activated in Subtype 1 and 2 (Supplementary Figure S2). PCA also
revealed a separation of Subtype 1 and Subtype 2 and an overlap of Subtype 3 (Figure 1B).
Samples in each subtype were identified based on their positive silhouette width, with few
exceptions, suggesting that a higher similarity was observed to their own cluster than to
any other clusters (Figure 1C). We also observed a difference of m6A regulator expression
between subtypes (Figure 1D), where half of the m6A regulators were highly expressed
in Subtype 1 and Subtype 2. Notably, almost all m6A regulators were highly expressed
in Subtype 3, suggesting an extra-active m6A modification likely occurred in Subtype 3
of PCa.
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Figure 1. Consensus clustering of m6A regulators demonstrates three distinct subtypes in prostate
cancer (PCa). (A) Heatmap showing the consensus matrix (k = 3) of m6A regulator expression.
(B) PCA showing the clustering of PCa by m6A regulators. (C) Silhouette plot showing the similarity
of samples clustered in sample subtypes. (D) Heatmap showing the distinct pattern of each m6A
regulator in all 454 PCa samples.
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3.2. Different Immune Responses and the Activation of Metabolic Pathways Were Observed in m6A
Regulator Subtypes of PCa

Since PCa revealed three distinct subtypes in the expression of m6A regulators,
we further explored the differentially expressed genes between subtypes to uncover
the key pathways mediated by m6A regulators. A DEG analysis in pairwise fashion
identified 24 genes that were significantly expressed between the three m6A subtypes
(Supplementary Figure S3A and Table S1), suggesting the mRNAs from these 24 genes
were likely modified or co-regulated by m6A regulators. It is notable that all samples
clustered in Subtype 3 had an intermediate or high risk of Gleason scores, while Subtype
1 and 2 had mixtures of PCa patients with low, intermediate and high Gleason scores
(Supplementary Figure S3A), suggesting that m6A regulation likely occurred in all stages of
PCa but was more pro-active in progressive PCa. Through the Gene Ontology and pathway
analysis in Metascape, we found that these differentially expressed genes were enriched in
metabolic processes and the immune response (Figure 2A). As advanced PCa demonstrated
an overwhelming de novo resistance to immune checkpoint blockade [34], an investigation
on the relationship of m6A regulators and immune cell infiltration was conducted. To
explore the immune cell infiltration patterns in each subtype, we performed a prediction for
immune cell proportions by CIBERSORT. Notably, the levels of CD8+ T cells, CD4 memory
T cells and Follicular helper T cells, and activated dendritic cells were markedly different in
each subtype (ANOVA, p < 0.001, respectively) (Figure 2B), suggesting that m6A expression
levels may contribute to the immune cell (T cell) infiltration in PCa. A relatively low T cell
infiltration was observed in Subtype 2, indicating Subtype 2 was likely an “immune desert”
tumor, and immunotherapy would probably be ineffective in this subtype. To confirm
the enriched key pathways between subtypes, we then performed the GSEA on these 454
primary PCa samples. The GSEA confirmed that the oxidative phosphorylation and fatty
acid metabolism were enriched in the Subtype 1 PCa, while the inflammatory response
pathway was downregulated in Subtype 3 (Supplementary Figure S4). These results reveal
that progressive PCas with a high level of m6A regulators likely have distinct biological
pathway activations.

Cancers 2022, 14, x  7 of 16 
 

 

 
Figure 2. Different responses of immune cells are enriched in the three subtypes of PCa. (A) Path-
ways of DEG between m6A subtypes are enriched in the metabolic process and immune response 
(upper). The subtype-specific DEGs are enriched in PCa (lower). (B) Boxplot showing the different 
immune cell infiltrations between m6A subtypes. ANOVA test; ***, p < 0.0001. 

3.3. Clustering of m6A Regulators Was Associated with Progression in PCa 
To test whether the clustering of m6A regulators was associated with prostate patient 

outcomes, we compared the survivals in each subtype. Interestingly, there were no signif-
icant differences in overall survival across all m6A subtypes (p = 0.7, Log-rank test), but 
patients in Subtype 3 had a worse recurrent-free survival (p = 0.02, Log-rank test) (Figure 
3A), suggesting that PCa recurrence was likely modulated by m6A regulators. Notably, 
the prognostic capacity of m6A regulator clustering was more significant in T3 PCa pa-
tients than in T1 and T2 PCa (Supplementary Figure S5A,B). Considering that a few m6A 
regulators were differentially expressed between 55 normal prostate tissues and 454 pros-
tate cancers (Supplementary Figure S3B) and PCa metastasis was a more critical event 
than recurrence, we then compared the m6A expression in the GSE147493 dataset, which 
included PCas with or without metastasis. Seven of 21 m6A regulators (HNRNPA2B1, 
FMR1, METTL14, KIAA1429, YTHDF1, ALKBH5, HNRNPC) displayed different expres-
sion patterns between 62 metastatic and 37 non-metastatic PCas (Figure 3B), suggesting 
that these seven m6A regulators were associated with PCa metastasis. More importantly, 
we also observed that the subtypes clustered by m6A regulators were associated with 

Figure 2. Different responses of immune cells are enriched in the three subtypes of PCa. (A) Pathways
of DEG between m6A subtypes are enriched in the metabolic process and immune response (upper).
The subtype-specific DEGs are enriched in PCa (lower). (B) Boxplot showing the different immune
cell infiltrations between m6A subtypes. ANOVA test; ***, p < 0.0001.
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3.3. Clustering of m6A Regulators Was Associated with Progression in PCa

To test whether the clustering of m6A regulators was associated with prostate pa-
tient outcomes, we compared the survivals in each subtype. Interestingly, there were
no significant differences in overall survival across all m6A subtypes (p = 0.7, Log-rank
test), but patients in Subtype 3 had a worse recurrent-free survival (p = 0.02, Log-rank
test) (Figure 3A), suggesting that PCa recurrence was likely modulated by m6A regula-
tors. Notably, the prognostic capacity of m6A regulator clustering was more significant in
T3 PCa patients than in T1 and T2 PCa (Supplementary Figure S5A,B). Considering that
a few m6A regulators were differentially expressed between 55 normal prostate tissues
and 454 prostate cancers (Supplementary Figure S3B) and PCa metastasis was a more
critical event than recurrence, we then compared the m6A expression in the GSE147493
dataset, which included PCas with or without metastasis. Seven of 21 m6A regulators
(HNRNPA2B1, FMR1, METTL14, KIAA1429, YTHDF1, ALKBH5, HNRNPC) displayed
different expression patterns between 62 metastatic and 37 non-metastatic PCas (Figure 3B),
suggesting that these seven m6A regulators were associated with PCa metastasis. More
importantly, we also observed that the subtypes clustered by m6A regulators were associ-
ated with Gleason Scores. Notably, no PCa in Subtype 3 had a tumor with a Gleason Score
less than 7 (Supplementary Figure S5C). Considering that cancer stem cells play a critical
role in cancer initiation and the origin of cancer metastasis in PCa, we then further tested
the Stemness Index between subtypes. As we expected, Subtype 3 had the significantly
highest Stemness Index of all three subtypes (Supplementary Figure S5D). These results
suggest that clustering of PCa by the expression of m6A regulators was associated with
PCa progressive phenotypes (including recurrence and metastasis).
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not associated with patients’ overall and recurrent-free survival (Log rank test, p = 0.7 and 0.02,
respectively). (B) m6A regulators are associated with PCa metastasis. Seven m6A regulators are
differentially expressed between metastatic and non-metastatic PCa. Student’s t test. * p < 0.05.
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3.4. m6A Score Could Be a Surrogate Marker for m6A Activation in PCa

To generalize m6A subtyping broadly and directly predict the metastasis of PCa, we
established an m6A score to quantify the activation of m6A in PCa. Notably, seven m6A reg-
ulators were also differentially expressed between 454 PCas and 55 normal prostate tissues
(Supplementary Figure S3B), suggesting these seven m6A regulators likely orchestrated the
metastasis by activation of m6A in PCa. Therefore, we took these seven m6A regulators as
the key signature to investigate their expression in PCa. In brief, the m6A score of each sam-
ple was the sum of the first and second Principal Component in the given sample. To test
that our m6A scores could surrogate the subtypes of PCa, we first compared the m6A scores
between subtypes. As expected, the three m6A subtypes had different expressions of m6A
scores, and Subtype 3 had the lowest level of m6A score among all subtypes (Figure 4A).
The m6A score had an inverse correlation with most m6A regulators (Figure 4B), suggesting
that the m6A score was likely a comprehensive surrogate for m6A inactivation in PCa. In
addition, the m6A score also had a significant correlation with the Gleason score (Figure 4C),
suggesting the m6A score could be a surrogate for PCa progression. A previous study
revealed that the RNA demethylase ALKBH5 was selectively activated in cancer stem cells
and promoted tumorigenesis in leukemia; therefore, we tested whether our m6A score was
associated with cancer stem cells in PCa [35]. To further elucidate the concordance of the
m6A score and stemness in PCa, we also inferred the proportion of cancer stem cells in PCa
using the Stemness Index and found that the m6A score was significantly associated with
the Stemness Index (r = −0.362, p = 9 × 10−7) (Figure 4D) [33]. Taken together, these results
suggest that the m6A score could be a promising predictive biomarker for PCa metastasis.
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Figure 4. The m6A score is related to the Gleason Score and the stemness score. (A) Boxplot showing
the different m6A scores between subtypes of m6A. Subtype 3 has the lowest m6A score. ANOVA,
p = 3.47 × 10−6. (B) Heatmap of the correlation between m6A regulators. The correlation coefficient is
highlighted by color. (C) Boxplot showing that the m6A score is inversely associated with the Gleason
score (ANOVA, p = 8.07 × 10−10). PCa with a higher Gleason Score has a lower m6A score. (D) m6A
score is inversely correlated with the Stemness Index (Pearson Correlation, r = −0.362; p = 9.01 × 10−17).
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To further validate the progression prediction for PCa by m6A score, we compared
the m6A score between PCas with metastasis and non-metastasis. As expected, metastatic
PCas had lower levels of m6A scores than PCas without metastasis (Figure 5A). Hence, we
conducted a ROC to investigate the predictive capacity of the m6A score on PCa metastasis.
The AUC of the m6A score for the prediction of metastatic PCa was 0.633 (Figure 5B).
To further test the predictive effectiveness of them6A score, we then performed the m6A
score for another independent cohort (GSE6919) that contained 25 metastatic PCas and
60 primary PCas. As expected, our m6A score displayed a significant discrimination of
metastatic PCas from primary PCa, and the predictive accuracy in the validation cohort was
89.5% (Figure 5C,D). Our results demonstrate a superior diagnostic capacity of metastatic
PCa to SNPH (which is a biomarker for metastatic PCa [36]) (Supplementary Figure S6),
suggesting that the m6A score is a promising diagnostic biomarker for metastatic PCa.
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Figure 5. The m6A regulators are differentially expressed between metastatic and non-metastatic
PCas. (A) Boxplot showing metastatic PCa has a significantly lower m6A score. Student t test,
p = 0.02512. (B) The m6A score showed a moderate discrimination of metastatic PCa from non-
metastasis. The accuracy of the m6A score is determined by the Area Under the Curve (AUC). The
effectiveness of the m6A score is validated in another independent cohort (GSE6919). The boxplot
(C) showing the metastatic PCa has a significantly lower expression of m6A score than primary PCa.
(D) ROC of the GSE6919 dataset demonstrating the prediction accuracy for metastatic PCa is 89.5%
in the validation cohort.

Lastly, we tested the genetic and epigenetic alterations of all m6A regulators in PCa
because these alterations were considered the common events in other types of cancers.
Within 331 PCa samples that underwent whole-genome sequencing, only 19 (5.74%) pa-
tients had genetic variation, and ZC3H13 was the most common alteration of all m6A
regulators. Half of the m6A regulators (WTAP, ALKBH5, YTHDC1, YTHDF1, YTHDF2,
YTHDF3, RNPA2B1, HNPRNPC, FMR1, ELAVL1) did not have any genetic alteration
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(Supplementary Figure S7). We then explored whether the DNA methylation profiles of
these m6A regulators had changed the expression of m6A regulators. We selected the CpG
loci located in the promoter areas of the m6A regulators to compare their methylation
levels. Similar to the genetic profiles, the DNA methylation levels were consistent across all
PCa in m6A regulators (Supplementary Figure S8). As overexpression of ERG and SPOP
mutation are associated with PCa progression and proliferation, we also investigated the
concordance of our m6A subtyping with TCGA taxology subtypes and SPOP mutation
status. The majority of m6A subtype PCas consisted of the “1-ERG” subtype, confirming
that m6A subtype 3 PCa is likely associated with PCa metastasis because metastatic PCa
is characterized by TMPRSS2-ERG fusion. It also indicated ERG probably coordinated
m6A activation to promote PCa metastasis. We then examined ERG gene expression in
TCGA molecular classification and m6A subtyping and found that m6A subtype 3 had the
highest gene expression of ERG across all subtypes, as “1-ERG” did. In contrast, we did
not conclude the association of SPOP mutation with m6A subtype 3, as all m6A subtype
3 came from SPOP wildtype PCa (Supplementary Figure S9). These results suggest that
m6A regulators likely participate in PCa metastasis via ERG expression rather than SPOP
mutation, though we understand that it requires further experiments to validate. Taken
together, these results suggest that m6A regulators were not altered by genetic alteration or
methylation status in PCa.

4. Discussion

Second to the skin cancer, PCa is the most prevalent type of carcinoma afflicting
men in North America. PCa is also the second leading cause of cancer death worldwide.
Androgens regulate the growth of normal and malignant prostate tissue through the
action of the AR in both epithelial and stromal cells. Hence, ADT is foundational in the
management of metastatic PCa, and this treatment is effective in managing this disease
temporarily for the majority of patients. However, cancer cells become castration-resistant,
eventually leading to disease progression to mCRPC. In disseminated phases, especially
with mCRPC upon ADT failure, these patients have poor survival rates. A few studies
uncovering the heterogeneity of mCRPC beyond the somatic mutation highlights the
importance of transcriptome alteration during ADT resistance [37,38]. In this study, we
demonstrated that the subtypes of PCa according to the clustering of m6A regulators
of expression are significantly associated with PCa metastasis. M6A regulators likely
contribute to the heterogeneity of PCa metastasis through the key genes involved in
immune cell infiltration and metabolism.

Like other types of cancer, m6A regulators are associated with patients’ recurrent-
free survival in primary PCa. We performed a survival analysis of PCa to explore the
correlation of survival with m6A subtypes. Interestingly, there is no statistical significance
between m6A subtypes on overall survival, but there is in recurrence-free survival. This is
likely because most primary PCas are biologically slow-growing and the regulatory effects
mediated by m6A regulators are marginal for primary PCa. Considering the DEGs of m6A
subtypes enriched in the metabolic pathway are important to PCa metastasis, we then
investigated the correlation of m6A regulator expression with metastasis.

The evidence from recent studies has defined that PCa displays dynamic patterns
of evolution in the context of ADT-associated metastasis [39]. There are two common
mechanisms of metastasis-to-metastasis spread. First, in a process named ‘cross-metastatic
seeding’, subclones within a metastasis can come from another metastatic site instead of
the primary neoplasm [40], which was also confirmed in response to therapy in a PCa
patient [41]. Second, in a process called ‘polyclonal seeding’, the same sets of subclones can
seed multiple sites of metastasis [40]. The polyclonal seeds may share multiple subclones for
two or more metastases, which indicates that these subclones might cooperate in function to
promote metastatic progression. The phenomenon that distant metastases could also reseed
the surgical bed provides evidence that makes use of pre-existing supportive niches [41].
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This process of ‘tumor self-seeding’, which has previously been observed with PCa CTCs,
can accelerate tumor growth [42].

Prostate tumors are defined ranging from indolent to highly aggressive in clinical
settings. Most of these tumors are localized and treated based on their stage or Gleason
score, which is likely evaluated via invasive biopsy. At the first diagnosis, the majority
of these tumors are identified as advanced or aggressive and often are accompanied by
micro-metastasis at secondary locations. Among the different sites in the body, PCa has
a high propensity for metastasizing to the bone [43]. Aside from visceral metastasis, the
presence of skeletal metastasis in PCa patients is related to the remarkably lower overall
survival of 14 months [43], signifying the metastatic locations are critical determinants of
disease prognosis.

A few attempts have been made to predict metastatic PCa from non-metastatic primary
PCa but there is no consensus regarding a reliable biomarker yet [44–48]. In addition, other
studies fail to demonstrate the relationship of the expression of the m6A regulator with
PCa metastasis, though they can indicate patients with PCa outcomes [49,50]. Compared
to the overall survival of all PCas, prediction of metastasis would be more helpful in the
clinical practice, as most primary PCa is localized. Therefore, through applying consensus
clustering of gene expression, we can predict the cancer metastasis more accurately than
through conventional histopathology [51]. Combined with other parameters such as clinical
information and MRI, our score could help establish a strategy for PCa to inform clinicians
on whether to escalate or deescalate the current treatment, though it requires validation in
a multi-center prospective clinical trial [8,10]. Our m6A score can differentiate metastatic
PCa from non-metastatic PCa, though highlighting its clinical utility though a large-scale
clinical validation cohort is still required to compare with other biomarkers such as AR-
V7 [52]. Further investigation on the association of m6A regulator expression with multiple
metabolic pathways in the development of PCa metastasis is also needed [53].

As mediators of post-transcriptional modification, m6A regulators participate in a
variety of biological processes, including cancer tumorigenesis and progression. METTL3
is one of the well-characterized m6A regulators in PCa. Cai et al. first reported that
METTL3 promoted cell growth in PCa by modifying the mRNA of GLI1, the key nuclear
mediator in the Hedgehog pathway [54]. High expression of METTL3 is also associated
with bone metastasis in PCa. By transferring the methyl group to the mRNA of ITGB1,
METTL3 enhances PCa cell motility to accommodate bone metastasis [55]. In addition, PCa
progression is significantly associated with METTL3, suggesting that METTL3 is likely a
key regulator in PCa.

More attention has been paid to the fact that m6A mediates immune cell infiltration
during cancer growth and metastasis. More immune cell infiltration into tumors was ob-
served in the reduction of METTL3, which was activated by NF-kB and ERK pathways [56].
Su et al. also found that the FTO inhibitor significantly suppresses cancer stem cell mainte-
nance and immune checkpoint gene expression, highlighting the potential efficiency of the
m6A regulator inhibitor [57]. In PCa, immune cell status could surrogate the treatment effi-
cacy [58]. Our results show the difference of immune cell infiltration in different subtypes,
highlighting the capacity of stratification for patients according to m6A score in the future.

A few existing scores for PCa have demonstrated their clinical utilities [59]. D’Amico
classification is used for predicting the risk of treatment failure in 5 years. Lack of multiple
risk factors limits its accuracy. A nomogram-based scores such as the Kattan nomogram are
also developed for PCa, but it is sometime hard for the clinician to interpret the results [60].
The CAPRAS score is a straightforward scoring tool for predicting PCa patients’ outcomes;
however, it is only built for prediction after a range of treatment strategies [61]. Most
of them are built upon clinical information (including age, clinical stage and Gleason
Score) but none of them include any biological parameters other than the serum PSA level.
Therefore, it is worth investigating the combined prediction effectiveness of these scores
with the m6A score in the future.
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Although we established a comprehensive landscape of m6A expression patterns in
PCa and validated the predictive capacity of our m6A score in PCa metastasis, there are
some limitations that need to be addressed. First, the m6A score we constructed should
be tested in more independent cohorts to verify its clinical utility. We intend to validate
our m6A score in specimen samples in the future. Second, the m6A score is a surrogate
for the comprehensive activation of m6A regulators, but the most critical molecule(s) in
RNA modification have not been fully investigated in PCa. The detailed mechanism of
m6A regulators and the relationship with their target genes have not yet been elucidated.
In addition, the regulatory mechanism of m6A regulators and lncRNA expression has
remained unclear [31]. Lastly, the driving force of the differential expression pattern of
m6A regulators beyond DNA methylation and genomic alteration should also be further
investigated in metastatic PCa.

5. Conclusions

In conclusion, the clustering of m6A regulators in PCa reveals the heterogeneity of
PCa, and one subtype (m6A Subtype 3 PCa) is significantly associated with PCa metastasis.
The gene signatures in this “metastatic” PCa are enriched in the immune cell response and
metabolic response. Our m6A score is potentially a biomarker for metastatic PCa.
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