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Simple Summary: The segmentation of breast tumors is an important step in identifying and
classifying benign and malignant tumors in X-ray images. Mammography screening has proven to
be an effective tool for breast cancer diagnosis. However, the inspection of breast mammograms
for early-stage cancer can be a challenging task due to the complicated structure of dense breasts.
Several deep learning models have been proposed to overcome this particular issue; however, the
false positive and false negative rates are still high. Hence, this study introduced a deep learning
model, called Connected-SegNets, that combines two SegNet architectures with skip connections to
provide a robust model to reduce false positive and false negative rates for breast tumor segmentation
from mammograms.

Abstract: Inspired by Connected-UNets, this study proposes a deep learning model, called Connected-
SegNets, for breast tumor segmentation from X-ray images. In the proposed model, two SegNet
architectures are connected with skip connections between their layers. Moreover, the cross-entropy
loss function of the original SegNet has been replaced by the intersection over union (IoU) loss func-
tion in order to make the proposed model more robust against noise during the training process. As
part of data preprocessing, a histogram equalization technique, called contrast limit adapt histogram
equalization (CLAHE), is applied to all datasets to enhance the compressed regions and smooth
the distribution of the pixels. Additionally, two image augmentation methods, namely rotation and
flipping, are used to increase the amount of training data and to prevent overfitting. The proposed
model has been evaluated on two publicly available datasets, specifically INbreast and the curated
breast imaging subset of digital database for screening mammography (CBIS-DDSM). The proposed
model has also been evaluated using a private dataset obtained from Cheng Hsin General Hospital in
Taiwan. The experimental results show that the proposed Connected-SegNets model outperforms
the state-of-the-art methods in terms of Dice score and IoU score. The proposed Connected-SegNets
produces a maximum Dice score of 96.34% on the INbreast dataset, 92.86% on the CBIS-DDSM dataset,
and 92.25% on the private dataset. Furthermore, the experimental results show that the proposed
model achieves the highest IoU score of 91.21%, 87.34%, and 83.71% on INbreast, CBIS-DDSM, and
the private dataset, respectively.

Keywords: breast tumor segmentation; convolutional neural network; deep learning; X-ray images

1. Introduction

The United States of America reported a total of 43,250 female deaths and 530 male
deaths due to breast cancer in 2022 [1]. Researchers are motivated by these statistics to
develop accurate tools for early breast cancer diagnosis, which will offer physicians more
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options for treatment. Mammograms are still being widely used to detect the presence of
any abnormalities in breasts [2–4]. Mammogram images show different types of breast
tissues as pixel clusters with different intensities [5]. These tissues include fiber-glandular,
fatty, and pectoral muscle tissues [6]. On mammography, abnormal tissues such as le-
sions, tumors, lumps, masses, or calcifications may be indicators of breast cancer [7,8].
However, there is always the possibility of human error when analyzing and diagnosing
breast cancer due to dense breasts and the high variability between patients [9–11]. Addi-
tionally, mammography screening sensitivity is affected by image quality and radiologist
experience [12,13].

Automated techniques are being developed to analyze and diagnose breast mam-
mograms with the goal of counteracting this variability and standardizing diagnostic
procedures [14,15]. The rapid emergence of artificial intelligence (AI) and deep learning
(DL) has significant implications for breast cancer diagnosis [16–18]. The advancements in
image segmentation using convolutional neural networks (CNNs) have been applied to
segment breast cancer from X-ray images [19–23]. The earlier works on mass segmentation
faced some challenges, such as low signal to noise ratio, indiscernible mass boundaries,
high false positives, and high false negative rates. To address these challenges, one study
proposed a deeply supervised UNet model (DS U-Net) coupled with dense conditional
random fields (CRFs) for lesion segmentation from whole mammograms [19]. The DS
U-Net model has produced a Dice score of 79% on the INbreast dataset and 83% on the
CBIS-DDSM dataset, whereas its IoU score is 83% and 86% on the INbreast and CBIS-
DDSM datasets, respectively. Another study [20] proposed an attention-guided dense
up-sampling network (AU-Net) for accurate breast mass segmentation from mammograms.
An asymmetrical encoder–decoder structure is employed in this AU-Net and it uses an
effective up-sampling block and attention-guided dense up-sampling block (AU block).
The AU block is designed to have three merits. First, dense upsampling compensates for the
information loss experienced during bilinear up-sampling. Second, it integrates high- and
low-level features more effectively. Third, it highlights channels with rich information via
the channel attention function. Compared to the state-of-the-art FCNs, AU-Net achieved
the best performance, with a Dice score of 90% on the INbreast dataset and 89% on the
CBIS-DDSM dataset.

However, such models do not capture the features of different scales of masses effec-
tively, and therefore they suffer from low segmentation accuracy. Hence, a new model,
called UNet, was presented to mitigate the limitations of the previous models [21]. UNet
integrates the high-level features of the encoder with the low-level features of the decoder.
Through skip connections, the UNet architecture was able to maintain this form of fusion
for a variety of medical applications. The UNet architecture achieves better performance
on different biomedical segmentation applications. Asma Baccouche et al. [22] introduced
Connected-UNets to segment breast masses. This method integrated atrous spatial pyramid
pooling (ASPP) in the two standard UNets. The architecture of Connected-UNets was
built on the attention network (AUNet) and residual network (ResUNet). To augment and
enhance the images, cycle-consistent generative adversarial networks (CycleGANs) were
used between two unpaired datasets. Additionally, a regional deep learning approach
called you-only-look-once (YOLO) has been used to detect breast lesions from mammo-
grams. Finally, a full-resolution convolutional network (FrCN) has been implemented to
segment breast lesions. The Connected-UNets model has produced a Dice score of 94%
and 92% on the INbreast and CBIS-DDSM datasets, respectively. Moreover, it has achieved
an IoU score of 90% and 86% on INbreast and CBIS-DDSM, respectively. Badrinarayanan
et al. [23] proposed a practical deep fully convolutional neural network architecture for
semantic pixel-wise segmentation, termed SegNet. Its segmentation architecture consists of
an encoder network and a decoder network followed by a pixel-wise classification layer.
Topologically, the architecture of the encoder network matches that of the 13 convolutional
layers in the VGG16 network. The role of the decoder network is to map the low-resolution
encoder feature maps to full-input-resolution feature maps for pixel-wise classification.
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The SegNet model has achieved satisfactory segmentation performance. However, since
the SegNet architecture does not consist of skip connections, incorporating fine multiscale
information during the training process is challenging.

This study combines the characteristics of the Connected-UNets and SegNet models
to form Connected-SegNets from two standard SegNets with skip connections for breast
tumor segmentation from breast mammograms. The flow chart of the proposed system is
illustrated in Figure 1. The major contributions of this study include the following.

1. This study proposes a deep learning model called Connected-SegNets for breast
tumor segmentation from X-ray images.

2. The proposed model, Connected-SegNets, is designed using skip connections, which
helps to recover the spatial information lost during the pooling operations.

3. The original SegNet cross-entropy loss function has been replaced by the IoU loss
function to overcome any noisy features and enhance the detection of the false negative
and false positive cases.

4. The histogram equalization method of the contrast limit adapt histogram equalization
(CLAHE) is applied to all datasets to enhance the compressed areas and smooth the
pixel distribution.

5. Image augmentation methods including rotation and flipping have been used to
increase the number of training data and to reduce the impact of overfitting.

The rest of this paper is organized as follows. Section 2 describes the datasets and
architectural details of the proposed method. Section 3 presents the experimental results.
Section 4 discusses the merits of this study. Finally, the article is concluded with its primary
findings in Section 5.

Public dataset Private dataset

CBIS-DDSM INbreast
Cheng Hsin

General Hospital

Dataset labelling

Histogram equalization

Training 

(70%)

Validation

(15%)

Testing 

(15%)

Data augmentation

Model training

Model evaluation

Dice Score IOU Score

Connected-SegNets

Dataset preparation

Dataset splitting

Figure 1. Flow chart of the proposed tumor segmentation system.
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2. Materials and Methods

This research uses the two publicly available datasets of INbreast and CBIS-DDSM,
and one private dataset obtained from Cheng Hsin General Hospital in Taiwan. Initially, a
histogram equalization, CLAHE, is applied to all datasets to enhance the compressed areas
and smooth the pixel distribution. Then, each X-ray dataset is randomly divided into 70%,
15%, and 15% for training, validation, and testing, respectively. Finally, the training and
validation samples are augmented to increase the amount of data before feeding them to
the proposed Connected-SegNets model.

2.1. Datasets

The proposed model, Connected-SegNets, has been evaluated on the following datasets.

2.1.1. INbreast Dataset

The INbreast dataset is a collection of mammograms from Centro de Mama Hospital
de S. João, Breast Centres Network, Porto, Portugal. A total of 410 images with 115 cases
were collected from August 2008 to July 2010 [24,25], and 95 of 115 cancer cases involved
both breasts in women. Four different types of breast diseases are recorded in the database,
including calcification, mass, distortions, and asymmetries. This database includes images
from craniocaudal (CC) and mediolateral oblique (MLO) perspectives. Moreover, the breast
density is divided into four categories according to the breast imaging reporting and data
system (BI-RADS) assessment categories, which are: entirely fat (BI-RADS 1), scattered
fibroglandular (BI-RADS 2), heterogeneously dense (BI-RADS 3), and extremely dense
(BI-RADS 4). All the images were saved in two sizes: 3328× 4084 or 2560× 3328 pixels.
Among the 410 mammograms, 107 images contain breast tumors. Hence, these 107 images
were selected for this study. The 107 images were randomly split into 90 images for
training and 17 images for testing, as shown in Table 1. The image augmentation methods,
including rotation and flipping, were applied to the training data. The augmentation
methods increased the number of breast tumor mammography images to 720 images. The
720 images were randomly split into 576 images for training data and 174 images for
validation data, as shown in Table 2.

2.1.2. CBIS-DDSM Dataset

The DDSM is a public dataset provided by the University of South Florida Computer
Science and Engineering Department, Sandia National Laboratories, and Massachusetts
General Hospital [26]. The CBIS-DDSM is an updated and standardized version of the
DDSM [27]. It contains a variety of pathologically verified cases, including malignant,
benign, and normal cases. DDSM is an extremely useful database for the development
and testing of computer-aided diagnosis (CAD) systems due to its scale and the ground
truth validation it offers. The CBIS-DDSM collection includes a subset of the DDSM data
organized by expert radiologists. It also comprises pathological diagnosis, bounding boxes,
and region of interest (ROI) segmentation for training data. Among all mammography
images with tumors in the CBIS-DDSM dataset, 838 images were selected for this study.
The 838 images were randomly split into 728 images for training data and 110 images for
testing data, as shown in Table 1. The image augmentation methods, including rotation
and flipping, were applied to the training samples. Through image augmentation, the
number of breast tumor mammography images was increased to 5824. The 5824 images
were randomly split into 4659 images for training data and 1165 images for validation data,
as shown in Table 2.

2.1.3. Private Dataset

The private dataset comprised mammography images from the Cheng Hsin General
Hospital, Taipei City, Taiwan. Initially, VGG image annotator (VIA) software was used
by an expert radiologist from the department of medical imaging to mark the tumor
location based on the pathological data [28]. Then, all the labeled images were verified
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and confirmed by the department of hematology and oncology. Finally, the dataset was
de-identified for patient privacy. A total of 196 mammography images were collected from
January 2019 to December 2019. All the mammograms consist of tumors with a grade of
breast imaging reporting and data system assessment category 4 (BIRADS 4) or higher. A
total of 196 mammography images were randomly split into 148 images for training and
48 images for testing, as shown in Table 1. The image augmentation methods, including
rotation and flipping, were applied to the training samples. Through image augmentation
methods, the number of breast tumor mammography images was increased to 1184. The
1184 images were randomly split into 947 images for training and 237 images for validation,
as shown in Table 2.

Table 1. Distribution of the mammography datasets.

Dataset Raw ROIs Training Samples Testing Samples

INbreast dataset 107 90 17
CBIS-DDSM dataset 838 728 110
Private dataset 196 148 48
Total 1141 966 175

Table 2. The number of training and validation samples before and after data augmentation.

Dataset Raw Images Augmented Images Training Validation

INbreast Dataset 90 720 576 144
CBIS-DDSM dataset 728 5824 4659 1165
Private dataset 148 1184 947 237
Total 966 7728 6182 1546

2.2. Data Preprocessing

This research study only focused on the segmentation step. Initially, the ROI of the
tumor was cropped manually. The ROI of the tumor was resized into 256× 256. In order to
eliminate additional noise and degradation caused by the scanning process of digital X-ray
mammography, all images were preprocessed [29,30].

2.2.1. Histogram Equalization

Histogram equalization is a well-known technique widely used for contrast enhance-
ment [31]. It is used in a variety of applications, including medical image processing and
radar signal processing, due to its simple function and effectiveness [32–35]. Histogram
equalization well distributes the pixels over the full dynamic intensity range. One drawback
of histogram equalization is that the background noise can be increased when the image is
too bright or too dark in the local area after the histogram equalization, which is mainly
due to the flattening property of the histogram equalization. This study applied the local
histogram equalization method called CLAHE to address the above challenges. CLAHE is
an adaptive extension of histogram equalization. It helps in the dynamic preservation of
the local contrast features of an image. CLAHE has been applied to all datasets of this study.
The sample results on the datasets after applying the CLAHE are shown in Figure 2. From
Figure 2, it is noted that the edges of the tumors became clearer after applying the CLAHE
technique. A total of 107, 838, and 196 ROIs were obtained from the INbreast, CBIS-DDSM,
and the private datasets, respectively. The complete details of the mammography datasets
are listed in Table 1.
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Original ROI CLAHE

Figure 2. Sample results after applying the histogram equalization (CLAHE) to random ROI images
from the datasets.

2.2.2. Image Augmentation

The most common problem that DL models might face is the overfitting problem
due to the limited amount of training samples [36–38]. As a result of overfitting, a model
might detect or classify features derived from the training samples, but the same model
will not be able to detect or classify features derived from unseen samples. To address
the issue of overfitting, this study has used two image augmentation methods, namely
rotation and flipping. First, bi-linear interpolation has been used to rotate each image
around its center point by a value of 90◦ degrees counter-clockwise up to 360◦. By using the
bi-linear interpolation method, the rotated image has the same aspect ratio as the original
image, without losing any part of the image. Second, mirroring or flipping is the simplest
augmentation approach. It results in a dataset with twice as many images. The flipping
technique is basically the same as the rotation technique; however, it transforms rotation in
the reverse direction. The sample results on the datasets after applying the augmentation
methods are shown in Figure 3.

Rotation (𝜽 = 𝟗𝟎° ) Horizontal FlippingOriginal ROI

Figure 3. Random sample results after applying the rotation and flipping augmentation methods on
the original ROIs. Arrows refer to the direction of the image.

The raw ROIs of the training data were augmented by rotating at an angle of 90◦ and
horizontal flipping. Hence, a total of 720, 5824, and 1184 ROIs were generated from the
INbreast, CBIS-DDSM, and private datasets, respectively. Then, the data were randomly
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split into training and validation. Detailed information of the mammography datasets in
terms of the training data is provided in Table 2.

2.3. Proposed Model

SegNet can record pooling indices when applying Max pooling. These pooling indices
are used to up-sample the images to the original size. Hence, the required graphics
processing unit (GPU) memory for training the model can be lower. Inspired by the
success of SegNet and Connected-UNets, this research proposed a model, called Connected-
SegNets, which connects two standard SegNets using additional adapted skip connections.
The overall architecture of the proposed Connected-SegNets model is shown in Figure 4.

C Concatenation layer Max Pooling indices
Convolution layer 11 +  

Activation layer (Advanced ReLU)

Convolution layer 33 + 

Batch Normalization + 

Activation layer (ReLU)
Down-sampling

Dilated convolution layer 

(dilation rate = 3)
Up-sampling

Skip connection

Input Image

Output Result

CCCC

Figure 4. Architecture of the proposed Connected-SegNets model.

The proposed model consists of two encoder and two decoder networks. The first
decoder network and the second encoder network are connected with additional skip
connections after cascading a second SegNet. This helps to recover the fine-grained features
that are lost in the encoding of the SegNet and apply them to encode the high-resolution
features by connecting them to the previously decoded features. The proposed Connected-
SegNets architecture is deepened by stacking two SegNets. The upper half of the proposed
architecture is similar to SegNet, which uses the first 13 convolutional layers in the VGG16
network as the encoder network [39]. In the decoder network, the last convolutional layer
is removed. Each encoder network comprises two convolutional kernels, which includes
3× 3 convolutional layers followed by an activation rectified linear unit (ReLU) and a batch
normalization (BN) layer. Then, a maximum pooling indices operation is applied to the
output of each encoder network before passing the information to the next encoder. Each
decoder network consists of a 2× 2 transposed convolution unit that is concatenated with
the previous encoder output, and then the result is fed into two convolution blocks, which
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consist of 3× 3 convolutions followed by an activation ReLU and a BN layer. Additionally,
a second SegNet is attached to the first SegNet through new skip connections that use
information from the first up-sampling pathway. The result of the last decoder block is
concatenated with the same result after being fed into a 3× 3 convolution layer followed
by an activation ReLU and a BN layer. This serves as the input of the first encoder network
to the second SegNet. The output of the maximum pooling indices operations of each of
the three encoder networks is fed into 3× 3 convolution layers and then concatenated with
the output of the last previous decoder network. The result is next down-sampled to the
next encoder network. Finally, the last output is given to a dilation layer with a dilation
rate of 3, followed by an advanced ReLU activation layer to generate the predicted mask.
In order to obtain more features, a dilation layer with a dilation rate of 3 is used in the last
layer. Moreover, an activation ReLU limits the maximum value to 1, which is called an
advanced ReLU. The details of the Connected-SegNets layers are listed in Table 3.

Table 3. The detailed architecture of the proposed Connected-SegNet.

SegNet1

No. Layer Name Output Filter Size No. of Filters No. of Layers

1 Input 256 × 256 × 1 1
2 Conv1 256 × 256 × 64 3 × 3 64 2
3 Maxpool 1 128 × 128 × 64 1
4 Conv2 128 × 128 × 128 3 × 3 128 2
5 Maxpool 1 64 × 64 × 128 1
6 Conv3 64 × 64 × 256 3 × 3 256 3
7 Maxpool 1 32 × 32 × 256 1
8 Conv4 32 × 32 × 512 3 × 3 512 3
9 Maxpool 1 16 × 16 × 512 1
10 Conv5 16 × 16 × 512 3 × 3 512 3
11 Maxpool 1 8× 8 × 512 1
12 Upsampling 2 16 × 16 × 512 1
13 Conv6 16 × 16 × 512 3 × 3 512 3
14 Upsampling 2 32 × 32 × 512 1
15 Conv7 32 × 32 × 512 3 × 3 512 2
16 Conv8 32 × 32 × 256 3 × 3 256 1
17 Upsampling 2 64 × 64 × 256 1
18 Conv9 64 × 64 × 256 3 × 3 256 2
19 Conv10 64 × 64 × 128 3 × 3 128 1
20 Upsampling 2 128 × 128 × 128 1
21 Conv11 128 × 128 × 128 3 × 3 128 2
22 Conv12 128 × 128 × 64 3 × 3 64 1
23 Upsampling 2 256 × 256 × 64 1
24 Conv13 256 × 256 × 64 3 × 3 64 1
25 Conv13 256× 256× 64
26 Conv14 256× 256× 64 3× 3 64 2
27 Maxpool 1 128× 128× 64 1
28 Concatenate 128× 128× 128 1
29 Conv15 128× 128× 128 3× 3 128 2
30 Maxpool 1 64× 64× 128 1
31 Concatenate 64× 64× 256 1
32 Conv16 64× 64× 256 3× 3 256 3
33 Maxpool 1 32× 32× 256 1
34 Concatenate 16× 16× 512 1
35 Conv17 32× 32× 512 3 × 3 512 3
36 Maxpool 1 16× 16× 512 1
37 Concatenate 16× 16× 1024 1
38 Conv18 16× 16× 512 3 × 3 512 3
39 Maxpool 1 8× 8× 512 1
40 Upsampling 2 16× 16× 512 1
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Table 3. Cont.

SegNet2

No. Layer Name Output Filter Size No. of Filters No. of Layers

41 Conv19 16× 16× 512 3× 3 512 3
42 Upsampling 2 32× 32× 512 1
43 Conv20 32× 32× 512 3× 3 512 2
44 Conv21 32× 32× 256 3× 3 256 1
45 Upsampling 2 64× 64× 256 1
46 Conv22 64× 64× 256 3× 3 256 2
47 Conv23 64× 64× 128 3× 3 128 1
48 Upsampling 2 128× 128× 128 1
49 Conv24 128× 128× 128 3× 3 128 2
50 Conv25 128× 128× 64 3× 3 64 1
51 Upsampling 2 256× 256× 64 1
52 Conv26 256× 256× 64 3× 3 64 1
53 Conv27 256× 256× 64 3 × 3 (D 3 = 3) 64 1
54 Output 256× 256× 1 1× 1 1 1

1 Maxpooling: Maxpooling and recording of the indices. 2 Upsampling: Upsampling with the recorded indices.
3 D: Dilation rate.

2.4. Experimental Environment and Parameter Settings

All experiments were performed using a PC with an Intel i7-9700K CPU, 55 GB of
DDR4 RAM, and an NVIDIA GeForce RTX 2080Ti GPU with 11 GB of memory. The
software environment used a Windows 10 64-bit operating system, python 3.8.12, CUDA
10.1, cuDNN 7.6.5, and TensorFlow 2.8.0. The learning rate was set to 0.0001 using the
Adam optimizer [40] and the batch size was 4. The loss function was the IoU loss function.

2.5. Evaluation Metrics

In this research, precision, recall, IoU score, and Dice score evaluation metrics have
been used to evaluate the proposed model based on the confusion matrix. The confusion
matrix is an evaluation metric often used to evaluate classification, detection, and segmen-
tation algorithms. The confusion matrix shows information about the true classes and
the predicted classes. The true class and the predicted class can be positive or negative.
The true negative (TN) case is when both the true case and the predicted case are tumors.
False negatives (FN) occur when the true case is not a tumor, but the predicted case is.
The false positive (FP) case occurs when the true case is a tumor while the prediction is a
non-tumor. True positives (TP) occur when the actual case is non-tumor and the predicted
case is tumor. The Dice score is also known as the F1-score, which represents the harmonic
mean of precision and recall, as expressed in Equation (3). Additionally, the IoU evaluation
metric represents the percentage of overlap between the predicted classes and the true
classes, as represented in Equation (4).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Dice score = 2× Precision× Recall
Precision + Recall

(3)

IoU score =
TP

TP + FP + FN
(4)
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3. Results
3.1. Results on INbreast Dataset

The confusion matrix results of Connected-SegNets on the INbreast dataset are listed
in Table 4. From the Table 4, it is observed that the proportion of actual tumors that was
correctly identified as tumors (TP) by Connected-SegNets is 96%. This is the highest TP
rate compared to the other datasets. In addition, the proportion of non-tumors that was
correctly identified as non-tumors (TN) by Connected-SegNets is 88%.

Table 4. Confusion matrix results of the proposed Connected-SegNets on INbreast dataset.

Connected-SegNets

Ground Truth
Tumor Non-Tumor

Prediction
Tumor 96% (TP) 4% (FN)

Non-Tumor 12% (FP) 88% (TN)

3.2. Results on CBIS-DDSM Dataset

The identification results of Connected-SegNets on the CBIS-DDSM dataset are listed
in Table 5. From the Table 5, it can be seen that the proportion of true tumors that was
correctly identified as tumors (TP) by Connected-SegNets is 93%. Moreover, the proportion
of non-tumors that was correctly identified as non-tumors (TN) by Connected-SegNets
is 87%.

Table 5. Confusion matrix results of the proposed Connected-SegNets on CBIS-DDSM dataset.

Connected-SegNets

Ground Truth
Tumor Non-Tumor

Prediction
Tumor 93% (TP) 7% (FN)

Non-Tumor 13% (FP) 87% (TN)

3.3. Results on Private Dataset

The results of the Connected-SegNets model on the private dataset are listed in Table 6.
It is observed that the proportion of actual tumors that was correctly identified as tumors
(TP) by Connected-SegNets is 92%. On the other hand, the proportion of tumors that were
not tumors and were correctly identified as non-tumors (TN) by Connected-SegNets is 89%.
This TN rate is considered to be the highest compared to other datasets.

Table 6. Confusion matrix results of the proposed Connected-SegNets on the private dataset.

Connected-SegNets

Ground Truth
Tumor Non-Tumor

Prediction
Tumor 92% (TP) 8% (FN)

Non-Tumor 11% (FP) 89% (TN)

The accuracy and loss curves of the training and validation for Connected-SegNets
are shown in Figures 5 and 6, respectively. It can be noted from Figures 5 and 6 that the
training and validation curves behave similarly, which is an indication that the proposed
Connected-SegNets can be generalized and does not suffer from overfitting.
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Figure 5. The training and validation accuracy curves of Connected-SegNets.
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Figure 6. The training and validation loss curves of Connected-SegNets.

A large number of epochs might cause a deep learning model to overfit the data,
whereas a small number of epochs can lead to smooth convergence. Therefore, the early
stop technique has been utilized during the model training to avoid overfitting. The
validation dataset is used to track the model training performance. The early stop method
can help to set a suitable training epoch by tracking the best performance on the validation
dataset. Therefore, when the validation performance stops improving, an early stop mode
of the training process will be activated. Moreover, using the early stop algorithm not
only can avoid the overfitting problem, but it also can help with choosing the optimal
hyperparameter configurations for training the model. The early stop algorithm steps are
shown in Algorithm 1. In this research, the validation tracking, ActStepSetting, was set to
20 iterations. Hence, if the validation performance did not improve after 20 iterations, the
training was stopped automatically.
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Algorithm 1 Validation Loss Tracking for Early Stop

Input: LatestValLoss, ActStepSetting
Output: BestValLossScore

1: EarlyStop← False;
2: if BestValidationRepeatNum <= ActStepSetting then
3: if LatestValLoss < BestValLossScore then
4: BestValidationRepeatNum← 0;
5: BestValLossScore← LatestValLoss;
6: else
7: BestValidationRepeatNum← BestValidationRepeatNum + 1;
8: end if
9: else

10: EarlyStop← True;
11: end if
12: return (BestValLossScore)

3.4. Comparison of Segmentation Results

As shown in Table 7, the segmentation results of each testing datum were evaluated by
the two evaluation metrics, Dice score and IoU score, for the segmented maps per pixel, and
compared with the original ground truth. It is noted that the proposed Connected-SegNets
model produced the highest Dice score of 96.34%, 92.86%, and 92.25% on the INbreast,
CBIS-DDSM, and private datasets, respectively. Moreover, the proposed model achieved
the highest IoU Score of 91.21%, 87.34%, and 83.71% on the INbreast, CBIS-DDSM, and
private datasets, respectively. Finally, the comparative results show that the proposed
model, Connected-SegNets, outperformed the related models in terms of Dice score and
IoU score on the three datasets.

Table 7. Comparison results between the proposed Connected-SegNets and the related segmentation
models on the testing datasets of INbreast, CBIS-DDSM, and the private dataset, respectively.

Model INbreast Dataset CBIS-DDSM Dataset Private Dataset
Dice Score (%) IoU Score (%) Dice Score (%) IoU Score (%) Dice Score (%) IoU Score (%)

DS U-Net [19] 79.00 83.40 82.70 85.70 NA NA
AUNet [20] 90.12 86.51 89.03 82.65 89.44 80.87
UNet [21] 92.14 88.23 90.47 84.79 89.11 80.21
Connected-UNets [22] 94.45 89.72 90.66 85.81 90.41 81.33
SegNet [23] 92.01 88.77 90.52 85.30 88.49 81.97
Connected-SegNets 96.34 91.21 92.86 87.34 92.25 83.71

Figure 7 shows some examples of the segmented ROI results generated by different
models against their ground truth images. It is clearly observed that the quality of the
segmentation maps of the Connected-SegNets model contain less error and produce more
precise segmentation compared to other methods.
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Dataset Original Ground truth AUNet UNet SegNet

INbreast

CBIS-DDSM

Private

Connected-UNets Connected-SegNets

Figure 7. Example of the breast tumor segmentation results using AUNet, UNet, Connected-UNets,
SegNet, and the proposed Connected-SegNets on the testing data of INbreast, CBIS-DDSM, and the
private dataset.

4. Discussion

In recent years, several DL models have been developed and applied for breast
tumor segmentation. These DL models have achieved remarkable success in segmenting
breast tumors in mammograms. Nevertheless, many of these DL models produce high
false positive and false negative rates [41]. The SegNet model is considered to be one of
the deep learning models that is easy to modify and further optimize to provide better
segmentation performance in different fields. Therefore, this study proposed a DL model,
called Connected-SegNets, based on SegNet, for better breast tumor segmentation. The
main goal of the proposed Connected-SegNets model is to improve the overall performance
of breast tumor segmentation. Hence, several techniques have been implemented and
incorporated into the proposed method in order to achieve this goal. These techniques
include deepening the architecture with two SegNets, replacing the cross-entropy loss
function of the standard SegNet with the IoU loss function, applying histogram equalization
(CLAHE), and performing image augmentation. Figure 7 illustrates the segmentation
results of AUNet, Standard UNet, Connected-UNets, Standard SegNet, and the proposed
Connected-SegNets on the testing data of the INbreast, CBIS-DDSM, and private datasets.
The segmentation results of the proposed Connected-SegNets are the closest to the ground
truth compared to those of the AUNet, UNet, Connected-UNets, and SegNet models. The
proposed model fully connects two single SegNets using additional skip connections. These
are helpful to recover the spatial information that is lost during the pooling operations.
Moreover, the IoU loss function leads to a more robust model. Furthermore, the histogram
equalization (CLAHE) has been applied to smoothen the distribution of the image pixels
for better pixel segmentation. Additionally, image augmentation methods, including
rotation and flipping, have been applied to increase the number of training samples and
reduce the impact of overfitting. This has led to more accurate segmentation performance
compared to the other models. The significant improvement is shown in Tables 4–6,
where the Connected-SegNets model has the TP value of 96%, 93%, and 92%, on the
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INbreast, CBIS-DDSM, and private datasets, respectively. Similarly, the TN value is of
88%, 87%, and 89%, on INbreast, CBIS-DDSM, and the private dataset, respectively. The
results of the proposed model, Connected-SegNets, showed a significant segmentation
improvement compared to the other models, with a maximum Dice score of 96.34% on the
INbreast dataset, 92.86% on the CBIS-DDSM dataset, and 92.25% on the private dataset.
Similarly, the Connected-SegNets model has achieved the highest IoU score of 91.21% on
the INbreast dataset, 87.34% on the CBIS-DDSM dataset, and 83.71% on the private dataset.
Overall, the proposed Connected-SegNets model has outperformed DS U-Net, AUNet,
UNet, Connected-UNets, and SegNet in terms of Dice score and IoU score. This shows the
power of the proposed model to learn complex features through the connections added
between the two SegNets in the proposed Connected-SegNets, which take advantage of
the decoded features as another input in the encoder pathway.

5. Conclusions

This research proposed a deep learning model, namely Connected-SegNets, for breast
tumor segmentation from X-ray images. Two SegNets were used in the proposed model,
both of which were fully connected via additional skip connections. The cross-entropy loss
function of the original SegNet was replaced by the IoU loss function to make the proposed
model more robust against sparse data. Additionally, the contrast limit adapt histogram
equalization (CLAHE) was applied to enhance the compressed areas and smooth the pixel
distribution. Moreover, two augmentation methods including rotation and flipping were
used to increase the number of training samples and prevent overfitting. The experimental
results showed that Connected-SegNets outperformed the existing models, with the highest
Dice scores of 96.34%, 92.86%, and 92.25%, and the highest IoU scores of 91.21%, 87.34%, and
83.71% on the INbreast, CBIS-DDSM, and private datasets, respectively. Future work will
focus on implementing new deep learning algorithms for tumor detection and classification
for automatic breast cancer diagnosis.
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