
cancers

Review

Role of PFKFB3 and PFKFB4 in Cancer: Genetic Basis, Impact
on Disease Development/Progression, and Potential as
Therapeutic Targets

Krzysztof Kotowski 1 , Jakub Rosik 2 , Filip Machaj 2, Stanisław Supplitt 3 , Daniel Wiczew 4,5 ,
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Simple Summary: Recently, our understanding of PFK-2 isozymes, particularly with regards to
their roles in cancer, has developed significantly. This review aims to compile the most crucial
achievements in this field. Due to the prevailing number of recent studies on PFKFB3 and PFKFB4,
we mainly focused on these two isozymes. Here, we comprehensively describe the discoveries and
observations to date related to the genetic basis, regulation of expression, and protein structure of
PFKFB3/4 and discuss the functional involvement in tumor progression, metastasis, angiogenesis,
and autophagy. Furthermore, we highlight crucial studies on targeting PFKFB3 and PFKFB4 for
future cancer therapy. This review offers a cutting-edge condensed outline of the significance of
specific PFK-2 isozymes in malignancies and can be helpful in understanding past discoveries and
planning novel research in this field.

Abstract: Glycolysis is a crucial metabolic process in rapidly proliferating cells such as cancer
cells. Phosphofructokinase-1 (PFK-1) is a key rate-limiting enzyme of glycolysis. Its efficiency is
allosterically regulated by numerous substances occurring in the cytoplasm. However, the most
potent regulator of PFK-1 is fructose-2,6-bisphosphate (F-2,6-BP), the level of which is strongly
associated with 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase activity (PFK-2/FBPase-2,
PFKFB). PFK-2/FBPase-2 is a bifunctional enzyme responsible for F-2,6-BP synthesis and degradation.
Four isozymes of PFKFB (PFKFB1, PFKFB2, PFKFB3, and PFKFB4) have been identified. Alterations
in the levels of all PFK-2/FBPase-2 isozymes have been reported in different diseases. However, most
recent studies have focused on an increased expression of PFKFB3 and PFKFB4 in cancer tissues and
their role in carcinogenesis. In this review, we summarize our current knowledge on all PFKFB genes
and protein structures, and emphasize important differences between the isoenzymes, which likely
affect their kinase/phosphatase activities. The main focus is on the latest reports in this field of cancer
research, and in particular the impact of PFKFB3 and PFKFB4 on tumor progression, metastasis,
angiogenesis, and autophagy. We also present the most recent achievements in the development
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of new drugs targeting these isozymes. Finally, we discuss potential combination therapies using
PFKFB3 inhibitors, which may represent important future cancer treatment options.

Keywords: PFKFB3; PFKFB4; PFK-2; 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase; 3PO;
PFK-158; PFK-15; autophagy; angiogenesis; cancer

1. Introduction

Glycolysis is an essential enzymatic process in human cell metabolism. It participates
in the production of substrates that are required in multiple biochemical pathways, such as
the tricarboxylic (TCA) acid cycle, pentose phosphate pathway (PPP), and fatty acids and
cholesterol synthesis. In normal human cells (with the exception of red blood cells), anaero-
bic reactions predominate in the metabolism under reduced oxygen conditions. However,
in 1927, Otto Warburg reported an essential role of glycolysis in cancer cells regardless
of oxygen concentration in the tumor microenvironment [1–3]. This reprogramming of
cancer cell metabolism is not only responsible for its aggressive growth but may also cause
a beneficial decrease in Reactive Oxygen Species (ROS) generation and key metabolites
for cell growth [4]. It is worth noticing that a similar shift in metabolism is found in
proliferative normal cells such as lymphocytes and endothelial cells in angiogenesis [5]. In
recent years, targeting key regulatory steps of glycolysis has increasingly become an area
of interest among scientists. There are many reports on novel inhibitors affecting distinct
molecular targets in this process [6]. Amino acid sequence alterations leading to changes in
enzyme catalytic activity have been detected in numerous proteins involved in glycolysis
in different types of cancer [7].

Glycolysis intensity is regulated by the activity of three physiologically irreversible
enzymes: hexokinase, phosphofructokinase-1 (PFK-1), and pyruvate kinase. PFK-1 is the
main rate-limiting enzyme of glycolysis and is responsible for the synthesis of fructose-
1,6-bisphosphate from fructose-6-phosphate (F-6-P). Its activity is regulated by cytoplas-
mically localized metabolic products, such as adenosine triphosphate (ATP), adenosine
diphosphate (ADP), F-6-P, and fructose-2,6-bisphosphate (F-2,6-BP) (Figure 1) [8]. Of
these compounds, F-2,6-BP, a product of the reaction catalyzed by 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2, PFKFB), is the most potent positive
allosteric effector of PFK-1 [9]. PFK-2/FBPase-2 is a bifunctional enzyme responsible for
the catalyzation of both the synthesis and degradation of F-2,6-BP mediated through its
N-terminal domain (2-Kase) and C-terminal domain (2-Pase), respectively [10]. Of note,
the active site of the 2-Kase domain has two distinct areas (the F-6-P binding loop and
ATP-binding loop) essential for its function [4].

Cancers 2021, 13, x 3 of 30 
 

 

 
Figure 1. The graphical presentation of PFK-1 regulation by PFKFB3 and PFKFB4 adapted from Yi 
et al. (2019) and Clem et al. (2008) [11,12]. Diverse arrows colors are used to express the differences 
between reactions enhancement: (green) normal, (yellow) moderately enhanced, (orange) strongly 
enhanced, (red) extremely enhanced. Abbreviations: PFK-1 - phosphofructokinase-1; PFKFB3: 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase isozyme 3; PFKFB4: 6-phosphofructo-2-ki-
nase/fructose-2,6-bisphosphatase isozyme 4; ATP: adenosine triphosphate, ADP: adenosine di-
phosphate, DHAP: dihydroxyacetone phosphate; G3P: glyceraldehyde 3-phosphate. Created with 
BioRender.com. 
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PFKFB2 predominates in cardiac muscle, PFKFB3 is ubiquitously expressed, while 
PFKFB4 occurs mainly in testes [11]. The overexpression of two isozymes (PFKFB3 and 
PFKFB4) has been demonstrated in various solid tumors and hematological cancer cells 
[15–17]. 

Furthermore, due to slight differences in amino acid sequences at key sites for enzy-
matic activity, all of the isozymes have a different affinity for the synthesis or degradation 
of F-2,6-BP. Their activity is expressed as the kinase/phosphatase ratio (also termed the 2-
Kase/2-Pase activity ratio) [11]. This ratio is about 4.6/1 for PFKFB4 and 730/1 for PFKFB3, 
while it does not exceed 2.5/1 for PFKFB1 and PFKFB2. Isoforms commonly expressed in 
tumors satisfy increased energetic requirements of neoplastic cells more efficaciously. 
Thus, glycolysis, the hallmark of malignancy, might be vulnerable to the therapy affecting 
only isoforms characterized by a high kinase/phosphatase ratio [10,18]. 

2. PFKFB Genes and Proteins 
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high homology and similarities in the genomic organization, PFK-2/FBPase-2 isozymes 
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Yi et al. (2019) and Clem et al. (2008) [11,12]. Diverse arrows colors are used to express the differences
between reactions enhancement: (green) normal, (yellow) moderately enhanced, (orange) strongly
enhanced, (red) extremely enhanced. Abbreviations: PFK-1 - phosphofructokinase-1; PFKFB3:
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isozyme 3; PFKFB4: 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase isozyme 4; ATP: adenosine triphosphate, ADP: adenosine
diphosphate, DHAP: dihydroxyacetone phosphate; G3P: glyceraldehyde 3-phosphate. Created
with https://biorender.com/.

In humans, PFK-2/FBPase-2 is encoded by four different genes: PFKFB1, PFKFB2,
PFKFB3, and PFKFB4 [13]. Thus far, four different PFK-2/FBPase-2 isozymes (PFKFB1,
PFKFB2, PFKFB3, and PFKFB4) have been identified. Isozymes are characterized by tissue
and functional specificity [14]. PFKFB1 can be found in the liver and skeletal muscle,
PFKFB2 predominates in cardiac muscle, PFKFB3 is ubiquitously expressed, while PFKFB4
occurs mainly in testes [11]. The overexpression of two isozymes (PFKFB3 and PFKFB4)
has been demonstrated in various solid tumors and hematological cancer cells [15–17].

Furthermore, due to slight differences in amino acid sequences at key sites for enzy-
matic activity, all of the isozymes have a different affinity for the synthesis or degradation
of F-2,6-BP. Their activity is expressed as the kinase/phosphatase ratio (also termed the 2-
Kase/2-Pase activity ratio) [11]. This ratio is about 4.6/1 for PFKFB4 and 730/1 for PFKFB3,
while it does not exceed 2.5/1 for PFKFB1 and PFKFB2. Isoforms commonly expressed
in tumors satisfy increased energetic requirements of neoplastic cells more efficaciously.
Thus, glycolysis, the hallmark of malignancy, might be vulnerable to the therapy affecting
only isoforms characterized by a high kinase/phosphatase ratio [10,18].

2. PFKFB Genes and Proteins

The four genes encoding the different isozymes of PFK-2/FBPase-2 are located on
distinct chromosomes, i.e., PFKFB1—Xp11.21, PFKFB2—1q31, PFKFB3—10p14-p15, and
PFKFB4—3p21-p22 [19]. Despite the fact that the core sequences of all four genes exhibit
high homology and similarities in the genomic organization, PFK-2/FBPase-2 isozymes
display diverse catalytic properties (kinase/phosphatase ratio). The level of bifunctionality
is determined by the unique structure of PFK-2/FBPase-2. The molecular weight of both
functional domains ranges from 55 kDa to 90 kDa [20]; one terminus contains the 2-Kase
domain (closer to the N-terminal end) and the other the 2-Pase domain (closer to the
C-terminal end), of which the post-translational activities vary among PFK-2/FBPase-2
isozymes [21,22]. The diversity of PFKB1-4 kinase/phosphatase activity reflects the en-
zymatic capability of adapting to different conditions, as well as the distinct synthesis,
distribution, and function of isozymes in response to physiological or pathological stim-
uli [8,20]. PFKFB1 encodes the isoenzyme identified in fetal tissue and the liver; PFKFB2
encodes a protein expressed mainly in the heart and kidney; the product of PFKFB3 occurs
in adipose tissue, the brain, and frequently in cancer cells; and PFKFB4 is almost exclusively
significantly expressed in testes and tumor cells [11]. The expression of distinct isozymes
and mRNAs by these four genes can be attributed to the presence of various promoters
and 5′ non-coding exons [13]. Finally, mutations in PFK-2 isozymes have been detected
in several cancer tissue samples, especially in endometrial cancer, colorectal cancer, and
melanoma (our preliminary data, not published yet).

For the purpose of this review, the authors discuss the structure and function of
PFKFB1-4 genes and their transcripts in the following section.

2.1. PFKFB1

PFKFB1 contains 17 exons controlled by different promoters. Four splicing variants of
PFKFB1 are known: PFKFB1-201, PFKFB1-202, PFKFB1-203, and PFKFB1-204 [13,23–25].
Their protein products regulate glucose metabolism in non-malignant tissues but are
overexpressed in cancer cells. Of note, liver transcripts contain an additional exon encoding
the N-termini, which can be phosphorylated in response to glucagon, resulting in enhanced

https://biorender.com/
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bisphosphatase and simultaneously reduced kinase activity. Thus, glucagon induces
glucose synthesis in the liver without impact on other tissues [26].

2.2. PFKFB2

The human PFKFB2 gene contains 15 exons, of which 9 transcripts are expressed. Only
four transcripts encode the full-length protein [8,27]. It is mainly expressed in the heart,
brain, lungs, kidneys, and cancer cells [28]. Analysis of heart cDNA revealed that PFKFB2
is composed of 505 amino acids and has a molecular weight of ~ 58 kDa. PFKFB2 can
be phosphorylated by several protein kinases, including 3-phosphoinositide-dependent
kinase-1 (PDPK-1), AMP-activated protein kinase (AMPK), protein kinase A (PKA), protein
kinase B (PKB; also known as Akt), mitogen-activated protein kinase 1 (MAPK-1), and
p90 ribosomal S6 kinase (RSK). Activation of RSK can be observed in BRAF V600E-mutated
melanoma cells where phosphorylation of PFKFB2 promotes glycolytic flux and tumor
growth [29]. Furthermore, studies have indicated that hypoxia and hypoxia-inducible
factor 1-alpha (HIF-1α) can regulate PFKFB2 expression [20,28,30]. In gastric cancer, for
example, enhanced expression of PFKFB2 is associated with increased expression of HIF-
1α-dependent genes, such as VEGF and SLC2A1 [28].

2.3. PFKFB3

PFKFB3 contains at least 19 exons, of which 7 form a variable region and 12 constitute
the constant region of the gene (Figure 2B). Moreover, in the 3’ untranslated region (3’UTR)
of PFKFB3 mRNA, multiple copies of AU-rich elements are observed, which determine its
increased translational activity and instability [31]. The alterations within the exons of the
variable region lead to the production of six different transcripts by alternative splicing [14].

The expression of PFKFB3 is regulated by various compounds; its promotor con-
tains response elements for estrogens, progesterone, and hypoxia-inducible compounds
(Figure 2A) [32]. The PFKFB3 protein, which is the product of the PFKFB3 gene, consists of
two subunits each encompassing two domains (i.e., 2-Kase kinase and 2-Pase phosphatase
domain) with distinct functions. The isoenzyme encoded by the PFKFB3 gene has the high-
est kinase/phosphatase ratio among all PFK-2/FBPase-2 family members and promotes
increased cellular glycolytic flux [33].
2.4. PFKFB4

The PFKFB4 gene contains at least 14 exons and different splice variants of PFKFB4
mRNA have been found in various tissues (Figure 3B) [26,34,35]. However, every PFKFB4
variant has identical catalytic domains. The PFKFB4 protein is a bifunctional enzyme
that increases the cellular level of F-2,6-BP (and thus glycolytic flux) or decreases F-2,6-BP
concentration, which results in the redirection of glucose-6-phosphate (G-6-P) towards
ribose-5-phosphate (R5P) and Nicotinamide adenine dinucleotide phosphate (NADPH)
synthesis in the PPP [11].

2.5. Comparison of PFKFB1-4 Amino Acid Sequence

PFKFB1-4 family members are highly conserved proteins (see Figure 4) with a 67–74%
similar identity. The core sequences are highly homologous, with over 85% of the amino
acids being identical or belonging to the same class according to The International ImMuno-
GeneTics System (IMGT). The 2-Pase domains of all isozymes use histidine phosphatase
to break down F-2,6-BP into F-6-P [36–39]. Although the mechanism has not been investi-
gated for the human PFK-2/FBPase-2 isozyme 4 directly, the sequential similarity to other
isozymes (Figure 4) and the mouse variant (96% shared identity) allow us to hypothesize
that its mechanism is similar to other isozymes [40]. The catalytic mechanism of the 2-Kase
domain is less studied as compared to the 2-Pase domain and is not well characterized.
However, the recent characterizations of PFK-2/FBPase-2 isozyme 3 crystal structures has
revealed that it is mostly based on the stability of ATP/ADP and F-6-P molecules with the
hydrogen bond network [4].
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Figure 3. Schematic structure of the 5′ promoter (A) of the PFKFB4 gene (B). PFKFB4 contains 14 exons. Numbers in (A)
represent: 1—GRE (glucocorticoid response element), 2—AP-2 (activating protein 2), 3—specific protein 1, 4—TATA box,
5—serum response element, 6—hypoxia response element, 7—ETF. The schematic structures are based on Gomez et al.
(2004) [17].
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Figure 4. Multi-sequence alignment (MSA) of human PFKFB1, PFKFB2, PFKFB3, and PFKFB4. The black and green arrows
with the yellow glow indicate the start and end of N-terminal (2-Kase) and C-terminal (2-Pase) domains, respectively. The
yellow glowing circle near amino acid 310 indicates the position where serine 303 of PFKFB3 is located; the blue and red
glowing circles indicate where serine 460 (PFKFB3), serine 466, and serine 486 (PFKFB2) are localized. The coloring shows
the regions with conserved types of amino acids: blue–hydrophobic amino acids, red–amino acids with a positive charge,
magenta–amino acids with a negative charge, green–polar amino acids, pink–cysteine, orange–glycines, yellow–prolines,
cyan–aromatic, and white–lack of conservation. The alignment was obtained using ClustalX [41] and is based on sequences
deposited in the Uniprot database [42]; the accession numbers are as follows: PFKFB1: P16118-1, PFKFB2: O60825-1,
PFKFB3: Q16875-1, PFKFB4: Q16877-1. The figure was prepared using the JalView software [43].

Even though the 2-Kase/2-Pase catalytic core shares high sequence homology among
the four isoenzymes, there are a few differences in the amino acid sequence that strongly
influence the activity of the respective domains. PFKFB3 has serine in position 303 (or
sometimes 302) instead of arginine compared to the other three isozymes ((Figure 4), the cir-
cle with the yellow glow) [33,38,39]. This alteration results in a decrease in the phosphatase
activity, and thus favors the synthesis of F-2,6-P by over 700 times. Furthermore, PFKFB3
has a serine in position 461 (or sometimes 460), and its phosphorylation increases the ratio
of the kinase/phosphatase activity to over 3000 and markedly attenuates the sensitivity of
the enzyme to inhibitors [39,44]. Similar effects of the phosphorylation of serine 466 and
serine 483 in PFKFB2 have also been reported ((Figure 4), the circles with the blue and red
glow, respectively) [45].

2.6. Structural Characteristics of PFKFB 1-4

In addition to having similar amino acid sequences (see Section 2.5), the four isozymes
are highly comparable structurally as well. In Figure 5, the structures of the 2-Kase and
2-Pase domains of PFK-2/FBPase-2 isozymes 1-4 are compared. Using PyMOL software,
an average root mean square deviation (RMSD) was measured between protein backbones
(1.2 Å). The highest RMSD was between pairs of PFKFB2 and other structures (about 1.7 Å
on average between PFKFB2 and the other isozymes) and was significantly lower between
pairs of other isozymes (about 0.7 Å on average between pairwise combinations of PFKFB1
and PFKFB3, PFKFB4) [46]. Since the RMSD is a measure for the overlap in structure at the
level of X-ray resolution (except for PFKFB4, which is a homology model), we can safely
assume that the four isozymes are structurally very similar.
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Figure 5. Superimposed structures of human PFKFB1 (yellow), PFKFB2 (orange), PFKFB3 (pink), and PFKFB4 (turquoise);
the structures correspond to the sequences shown in Figure 3 and feature the 2-Kase domain (on the left) and 2-Pase domain
(on the right). The structures were obtained from the Protein Data Bank (PDB) database [47] with the following codes: 1K6M
(PFKFB1), 5HTK (PFKFB2), 6HVI (PFKFB3). The structure for human PFKFB4 was obtained using homology modeling with
the Swiss-model [48]; the structure of rat (Rattus norvegicus) PFKFB4 (PDB Code 2BIF) shares the vast majority of the human
sequence (>96%). The proteins were aligned using PyMol software [46] and the resulting structures were generated using
visual molecular dynamics (VMD) software [49].

In these proteins, three distinct pockets could be identified (see Figure 6): two in the
2-Kase domains (for ATP and F-6-P) and one in the 2-Pase domains (for F-2,6-P). Pockets
of ATP are also often occupied by ADP in crystallographic structures [4]. Furthermore,
PFK-2/FBPase-2 inhibitors bind to the ATP/ADP pocket or to the F-6-P pocket, decreasing
the glucose flux through the inhibition of F-2,6-P formation. Therefore, the ATP pocket is
considered a relevant drug design target.

In the case of PFKFB2, it was found that citrate (Figure 6B), a TCA cycle byproduct,
can bind to the ATP pocket in the 2-Kase domain and inhibit kinase activity [37].

PFKFB3 is distinguished by a unique β-hairpin element formed by amino acids (4-15
residues) close to the N-terminal end. This structure exclusively occurs in this isozyme
and interacts with the 2-Pase domain, leading to conformational rotation and reduced
phosphatase activity. This could be another possible explanation for the relatively high
2-Kase/2-Pase activity ratio of PFKFB3 [4].

2.7. Regulation of PFKFB Expression

PFKFB3 and PFKFB4 expression levels (and, as a result, glucose-related intracellular
processes) are regulated by several molecular pathways, including those closely linked to
oncogenic signaling.
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Different colors indicate where various substrates/products bind to the crystal structure: the blue-
marked pocket is where fructose-6-phosphate (F-6-P) binds (in the case of B, also citrate ion), the
orange-marked pocket is where ATP/ADP binds, and the magenta-marked pocket is where F-2,6-P
binds. The substrates/products are shown in the pockets if they were present in the crystallographic
structure. Furthermore, histidines in the 2-Pase domain, which are responsible for the phosphatase
activity, are shown as a thick stick model. The coloring and marking of the pockets are based on
the substrates found in the crystal structures and ligand-binding amino acids obtained from the
UniProt database [42]; the accession numbers are as follows: PFKFB1: P16118-1, PFKFB2: O60825-1,
PFKFB3: Q16875-1, PFKFB4: Q16877-1. The structures were obtained from the PDB database [47]
with the following codes: 1K6M (PFKFB1), 5HTK (PFKFB2), and 6HVI (PFKFB3). The structure for
human PFKFB4 was obtained using homology modeling with the Swiss-model [48]; the structure
of rat (Rattus norvegicus) PFKFB4 (PDB Code 2BIF) shares the vast majority of the human sequence
(>96%). The positions of the substrates were also derived from the 2BIF crystallographic structure.
The protein structures were generated using VMD software [49].

2.7.1. Ras-Dependent Regulation of PFKFB Expression

PFKFB3 is involved in the Ras signaling pathway, which is considered a regulator
of glucose metabolism in cancer [50]. Ras-transformed cells are characterized by an in-
creased glycolytic flux into lactate [51]. Moreover, it has been shown that the increased
levels of PFKFB isozymes is highly related to hypoxic microenvironmental conditions in a
HIF-1α-dependent manner, which is responsible for their expression regulation [28]; this
mechanism has been observed in various cancers [52]. Interestingly, in a study by Blum
et al. (2005), inhibition of Ras signaling in glioblastoma caused a reduction in HIF-1α
expression and, consequently, down-regulation of PFKFB3 and glycolysis, resulting in cell
death [53]. In contrast, genomic deletion and siRNA silencing of PFKFB3 suppressed the
growth of Ras-activated fibroblasts in athymic mice [50].

2.7.2. mTOR-Dependent Regulation of PFKFB Expression

In addition to Ras-associated signaling, activation of other oncogenic pathways con-
tributes to the stimulation of glycolysis through PFKFB3 and PFKFB4. For example,
hyperactivation of mammalian target of rapamycin (mTOR) has frequently been observed
in numerous cancers [54]. Aberrant mTOR signaling promotes cell proliferation and down-
regulates autophagy [55]. Activation of the mTOR signaling pathway upregulates PFKFB3
expression [56], which suggests a close connection between increased glycolytic flux and
cancer development.

2.7.3. Steroid-Dependent Regulation of PFKFB Expression

Activation of estrogen receptor (ER) signaling [57,58], human epidermal growth factor
receptor 2 (HER2) overexpression [59], and loss of p53 and PTEN [60,61] further stimulate
glycolysis in a PFK-2-dependent manner. Overexpression of oncogenes, such as Myc and
Src, enhances PFKFB-mediated glycolysis and purine metabolism [13,62]. In a recent study
by Dasgupta et al. (2018), PFKFB4 was found to increase the activity of the oncogenic
transcription factor SRC-3 (steroid receptor coactivator 3) through its phosphorylation.
SRC-3 activation led to redirection of glucose metabolism to PPP and enabled purine
synthesis. Blocking PFKFB4 and SRC-3 suppressed cellular growth, prevented metastasis,
and reduced the concentration of nucleotides in breast cancer cells [63].

3. PFKFB3 and PFKFB4 in Cancer

PFK-2/FBPase-2 family members, PFKFB3 and PFKFB4 in particular, are overex-
pressed in numerous malignancies (Table 1). PFKFB3 is frequently found in breast can-
cer [35,59,64,65], colon cancer [35], nasopharyngeal carcinoma [66], pancreatic cancer [67],
gastric cancer [67], and many other neoplasms. Similarly, increased transcription of PFKFB4
is observed in pancreatic cancer [67], gastric cancer [67], ovarian cancer [68], breast can-
cer [35,69], colon cancer [35,70] and glioblastoma [71]. The significance of PFKFB3 level
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has been reported in cancer cells but also in tumor-related cells such as cancer stem cells.
Furthermore, lower PFKFB3 and PFK-I expression levels have been demonstrated in in-
duced pluripotent stem (iPS) cells compared to cancer and cancer stem cells (CSCs). This
distinct expression pattern of PFKFB3 may improve the timely detection of CSCs [64].

Table 1. Expression of PFKFB3 and PFKFB4 in various cancer types.

Isoenzyme Cancer Type Research Environment and the Study Material
and/or Cell Line Reference

PFKFB3

Breast cancer

HMEC, MCF-10A,
SKBR3, BT-474 In vitro O’Neal et al. [59]

HER2+ patient samples In vitro Novellasdemunt et al. [72]
MCF-7, T-47D In vitro Imbert-Fernandez et al. [58]

MCF-7, T-47D, SUM159 In vitro Ge et al. [73]
Breast cancer patient

samples, MDA-MB-231,
MDA-MB-438, HUVEC

In vitro Peng et al. [65]

Melanoma
451LU, WM983 In vitro Warrier et al. [74]

A375 In vitro/in vivo Telang et al. [75]
DB-1, SK-MEL-5 In vitro Mendoza et al. [76]

Gastric cancer

MKN45, AGS, BCG823,
GES-1 In vivo/in vitro Zhu et al. [77]

MKN45, NUGC3 In vitro Bobarykina et al. [28]
MKN45, NUGC3 In vitro Minchenko et al. [67]

Pancreatic cancer
Panc1 In vitro Minchenko et al. [67]
Panc1 In vitro Bobarykina et al. [28]
Panc1 In vitro Yalcin et al. [78]

Colon adenocarcinoma

Colorectal cancer
patient samples,
SW480, SW1116

In vivo/in vitro Han et al. [79]

HCT-116 In vitro Klarer et al. [80]
FFPE tissue samples,

SW620 In vitro Atsumi et al. [81]

Ovarian cancer HeyA8, HeyA8MDR,
OVCAR5, OV90 In vitro Mondal et al. [82]

Lung cancer LLC1, H522 In vitro Clem et al. [83]
H522, H1437, PC9,

HCC827 In vitro Lypova et al. [84]
Bladder cancer T24, HUVEC In vitro Hu et al. [85]

Glioblastoma

U87 In vitro Mendoza et al. [76]
Glioblastoma patient

samples In vitro Kessler et al. [86]

Glioblastoma patient
samples In vitro Fleischer et al. [87]

Glioblastoma patient
samples, U87 In vitro Zscharnack et al. [88]

Head and neck
carcinoma

Cal27, FaDu, HNSCC
patient samples In vitro Li et al. [89]

Astrocytoma
Astrocytoma patient

samples In vitro Kessler et al. [86]

Astrocytoma patient
samples In vitro Zscharnack et al. [88]

Neuroblastoma - Statistical analysis Trojan et al. [90]
Cervical cancer OV2008, C13 In vitro Mondal et al. [82]

Renal cancer ACHN In vitro Lu et al. [91]
Thyroid cancer FFPE tissue samples In vitro Atsumi et al. [81]

Osteosarcoma U20S In vitro Du et al. [92]
Osteosarcoma patient

samples,
Saos-2

In vitro Zheng et al. [93]

Acute myeloid
leukemia THP-1, OCI-AML3 In vitro Feng et al. [56]

Esophageal carcinoma KYSE30, KYSE150 In vitro/statistical
analysis Liu et al. [94]
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Table 1. Cont.

Isoenzyme Cancer Type Research Environment and the Study Material
and/or Cell Line Reference

PFKFB4

Breast cancer

MDA-MB-231, T47D,
breast cancer patient

samples
In vitro Gao et al. [69]

Breast cancer patient
samples In vitro Yao et al. [95]

MDA-MB-231, MCF7,
SUM159,

MDA-MB-468, breast
cancer patient samples

In vitro Gao et al. [96]

MDA-MB-231, MCF-7,
MCF-7-ERE-MAR-Luc,

MCF-10A
In vitro/in vivo Dasgupta et al. [63]

Ovarian cancer
SKOV3, UPN-251,
OC316, OVCAR-3,

A2780
In vitro Taylor et al. [68]

Gastric cancer MKN45, NUGC3 In vitro Bobarykina et al. [28]
Pancreatic cancer Panc1 In vitro Bobarykina et al. [28]
Neuroblastoma - Statistical analysis Trojan et al. [90]

Prostate cancer PC-3, LNCaP In vitro Li et al. [97]
DU145, PC-3, LNCaP In vitro Ros et al. [98]

Glioblastoma NCH421k, NCH441,
NCH644 In vitro Goidts et al. [99]

Bladder cancer Bladder cancer patient
samples In vitro Yun et al. [100]

Lung adenocarcinoma Lung adenocarcinoma
patient samples, H460 In vitro Chesney et al. [101]

Influence of PFKFB3 and PFKFB4 on Carcinogenesis

PFKFB3 and PFKFB4 affect carcinogenesis and cancer metabolism in a multidirec-
tional manner. Both isozymes participate in the regulation of glucose metabolism through
enhancing glycolysis and PPP. These enzymatic reactions are crucial for cancer devel-
opment [11]. Increased glucose metabolism through glycolysis enables cancer cells to
survive in a microenvironment with limited oxygen supply and produce lactate which
acidifies the adherent tissues and thus accelerates metastatic development. On the other
hand, redirection of glucose to PPP allows for the synthesis of lipids and nucleic acids
essential for the growth of cancer cells. The expression of both enzymes is induced by
hypoxia, thereby facilitating nonoxidative glucose-dependent energetic metabolism of the
cell. PFKFB3 and PFKFB4 stimulate glucose uptake and boost glycolytic flux to cancer cells
by increasing F-2,6-BP, which is a compound promoting glucose utilization by glycolysis [8].
Both proteins are directly engaged in the production of ATP and Nicotinamide adenine
dinucleotide (NADH), the synthesis of nucleic acids, and thus cancer cell growth.

4. Proliferation, Invasiveness and Migration

In many types of cancer, higher expression of PFKFB3 or PFKFB4 correlates with
shorter overall survival (OS) or a more frequent presence of metastases. As tumorigenesis
depends on several alterations in the cellular metabolism which enable survival in an
unfavorable environment, a high rate of glycolytic flux is observed [18]. Increase in the
intracellular F-2,6-BP concentration, a marker of glycolysis [101], is detected in neoplastic
cells [102].

The first indication for a role of PFKFB3 in cancer cell proliferation was reported by
Atsumi et al. in 2002, who demonstrated that PFKFB3 mRNA was induced during the G1/S
transition and particularly during the S cell cycle phase [81]. In line with these findings,
Calvo et al. described a significant growth rate reduction after silencing PFKFB3 using
siRNA in HeLa adenocarcinoma cervical cancer cells [103]. In the following years, several
studies confirmed the pro-proliferative effect of PFKFB3 [14].

The majority of recent evidence points to an impact of PFKFB3 on the expression
levels of cyclin-dependent kinases (Cdks) and thus cell cycle arrest (Figure 7). Yalcin
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et al. (2009) reported that ectopic expression of PFKFB3 led to the upregulation of some
Cdks, including Cdk-1, Cdc25C, and cyclin D3, while downregulating p27 protein [104].
In 2014, the same group reached the conclusion that F-2,6-BP mediated the activation
of Cdk-1, which regulates p27 ubiquitination, while PFKFB3 silencing inhibited Cdk-1
activity, thereby stabilizing p27 responsible for the G1/S transition (Figure 7). Moreover,
they showed that PFKFB3 knockdown induced cell cycle arrest in G1/S in HeLa cells [105].
Similar findings were observed using PFK15 (a small molecule inhibitor of PFKFB3) in
gastric cancer cells [77].
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In 2018, Shi et al. revealed another possible signaling pathway in which PFKFB3 had
an effect on the proliferation of cancer cells. In their study, PFKFB3 knockdown inhibited
hepatocellular carcinoma cell proliferation by impairing DNA repair functions, which
resulted in G2/M phase cell cycle arrest. It was suggested that this phenomenon might be
the outcome of downregulation of ERCC1 expression, which is a protein essential for DNA
repair. Downregulation is caused by decreased Akt expression under conditions of PFKFB3
silencing (Figure 7) [106]. The presented duality may explain why some PFKFB3 inhibitors
may induce cell cycle arrest in different cell cycle phases. For example, 3PO (first-in-class
PFKFB3 inhibitor) is able to induce G2/M phase arrest in Jurkat cells (an immortalized
line of human T lymphocyte cells) [12], whereas Kotowski et al. (2020) revealed that the
3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) could also induce G0/1 phase cell
cycle arrest in A375 human melanoma cells [107].

https://biorender.com/
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PFKFB3 expression also negatively correlates with many proteins involved in epithelial–
mesenchymal transition (EMT). Gu et al. (2017) showed that PFKFB3 knockdown not
only inhibited the invasiveness of CNE2 human nasopharyngeal carcinoma cells, but also
upregulated E-cadherin while downregulating vimentin and N-cadherin levels on the cell
surface [66]. Furthermore, it was demonstrated that PFKFB3 siRNA transfection reduced
Snail expression and simultaneously upregulated E-cadherin levels in pancreatic cancer
cells [78]. These reports underline the important role of PFKFB3 in the proliferation and
invasiveness of cancer cells.

Despite fewer studies on the involvement of PFKFB4, this isozyme also seems to
contribute to tumor growth. It has been reported that inhibition of its activity reduced
cell proliferation and induced cell cycle arrest in the G1/0 phase. In 2017, Li et al. dis-
covered that PFKFB4 mediated the CD44-driven proliferation increase in prostate cancer
cells [97]. Furthermore, it was shown in breast cancer cells that PFKFB4 phosphorylated
the oncogenic steroid receptor SRC-3, which increased its transcriptional activity and
resultant pro-proliferative action [63,108]. Moreover, a negative correlation between the
expression of PFKFB4 and histone acetyltransferase GCN5 was demonstrated in thyroid
cancer. Knockdown of PFKFB4 inhibited proliferation and invasiveness in IHH-4 thyroid
cancer cells, which suggests that the observed effect was mediated by upregulation of
GCN5 [109].

Overall, these studies strongly indicate a role of PFKFB3 and PFKFB4 in the invasive-
ness of cancer cells. However, further (mechanistic) studies are warranted to improve our
knowledge regarding this topic, especially in terms of understanding the exact molecular
pathways involved.

5. Autophagy

Autophagy is a process based on the degradation of cellular molecules and organelles
with the aim to produce intracellular energy. It is required for metabolic adaptation in
response to various stress stimuli, including oxidative stress, hypoxia, nutrient depriva-
tion, or blockade of glycolysis, to meet energy demands [110,111]. A short insight into
autophagy-inducing pathways is depicted in Figure 8.

There are three types of autophagy that lead to cargo degradation: macroautophagy,
microautophagy, and chaperone-mediated autophagy. Macroautophagy can be induced
under stress conditions to degrade cytoplasmic material and provide metabolites that
can be used as an energy source or as substrates for biosynthesis. It relies on de novo
formation of cytosolic double-membrane structures (autophagosomes) to transport cargo
to lysosomes [112–114].

Autophagy induction in tumor cells is related to many factors, including the occur-
rence of ROS and the unfolded protein response [115]. Its occurrence correlates with
diverse genetic polymorphisms and levels of specific proteins such as S100A8/A9, of
which the involvement in the induction of autophagy was described by Ghavami et al. in
2010 [116,117].

Recent evidence suggests that autophagy is a potential double-edged sword in cancer,
being a tumor suppression mechanism on the one hand and an enabler of tumor cell
survival in neoplastic microenvironments on the other. The associations of PFKFB3 and
PFKFB4 with autophagy remain unclear. It is very likely that the role of PFKFB3 in inducing
autophagy involves ROS through PPP and increased NADPH production. However, some
papers present an opposite relationship, where insufficient PFKFB3 activity results in lower
ROS availability and reduced autophagy [118].
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Figure 8. A brief overview of the autophagy pathway, which is a catabolic process that includes a specific intracellular
cargo, such as organelles or endosomal contents that are intended for degradation. The autophagy process is initiated by an
extracellular stimulus or cargo recognition that prompts the formation of the phagophore. The cargo is then engulfed within
a double-membrane vesicle (an autophagosome). Increased initiation to engage phagophores for autophagy involves the
activation of the ULK1 complex that further induces the nucleation complex, which includes PtdIns3K, PIK3, and BECN1.
Later, LC3 is conjugated to the phagophores and is responsible for their maturation and elongation. Upon maturation, the
autophagosome fuses with a lysosome, with its content being released and degraded by lysosomal enzymes. Recent evidence
suggests that PFKFB3 induces autophagy through increased Nicotinamide adenine dinucleotide phosphate (NADPH)
production. However, some dissertations suggest an opposite relationship—insufficient PFKFB3 activity results in lower
Reactive Oxygen Species (ROS) availability and reduced autophagy. Mitochondrial damage increases ROS and decreases
cellular ATP levels. ROS may activate AMP-activated protein kinase (AMPK), which positively regulates autophagy
through phosphorylation of BECN1. Abbreviations: ULK1 complex—unc-51 like autophagy activating kinase 1 complex,
PIK3C3—phosphatidylinositol 3-kinase catalytic subunit type 3, PIK3R4—phosphatidylinositol 3-kinase regulatory subunit
4, BECN1—Beclin 1, PtdIns 3K—phosphatidylinositol 3-kinase, LC3—Microtubule-associated proteins 1A/1B light chain
3B, LC3-I—cytosolic form of LC3, LC3-II—lipid modified form of LC3, ATG—autophagy-related protein. Created with
https://biorender.com/.

Initial research in patients with rheumatoid arthritis (RA) showed that lower expres-
sion levels of PFKFB3 were associated with a G6P shunt towards PPP, leading to NADPH
production and ROS depletion, and, as a result, autophagy inhibition. Forced PFKFB3
overexpression resulted in enhanced autophagic activity (Figure 8) [119].

In HeLa and SK-BR3 cells subjected to nutrient deprivation, ROS production induces
phosphorylation of mitogen-activated protein kinase MAPK14 (an essential autophagy
mediator), which induces PFKFB3 degradation, shifting metabolism towards PPP, resulting
in autophagy inhibition. Therefore, inhibition of MAPK14 results in PFKFB3 upregulation
and autophagy activation [120].

Another hypothesis assumes that PFKFB3 inhibition hinders autophagy and cell
proliferation by downregulating the 5′ AMP-activated protein kinase (AMPK) signaling
pathway [121]. Furthermore, an additional relationship was found, i.e., AMPK became
activated during prolonged mitotic arrest. A decrease in AMPK resulted in PFKFB3
phosphorylation, thus increasing PFKFB3 production. Inhibition of AMPK or PFKFB3 led
to cell death of breast cancer cells [105].

https://biorender.com/
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Additionally, PFKFB3 activity seems to depend on its localization (cellular or nuclear)
and is related to redox homeostasis. In both these localizations, these processes were
mediated by the AMPK signaling pathway, which appears to play a dual role in the
autophagy [122]. Cytoplasmic PFKFB3 was found to strongly promote ATP generation,
thereby inhibiting autophagy in renal cell carcinoma (RCC) cells, while nuclear PFKFB3
was associated with autophagy-promoting properties of the same cell line [122].

Resistance to oxaliplatin (used to treat colorectal cancer) often involves the upregula-
tion of autophagy that correlates with increased levels of PFKFB3. The addition of PFK-15
(PFKFB3 inhibitor) to colon cancer cells results in attenuation of autophagy and induc-
tion of cytotoxicity. It was hypothesized that the inhibition of PFKFB3 affected biological
processes contributing to apoptosis and triggered a glucose shunt towards PPP, further
increasing cell susceptibility to apoptosis [70,91,119,123]. It is therefore suggested that
combining glycolysis inhibitors with selective inhibitors of autophagy might be a viable
therapeutic approach to combat a pro-survival response of cancer cells.

In further studies, dormant breast cancer stem cells (BCSCs) exhibited strong au-
tophagic flux, which resulted in downregulation of PFKFB3. Inactivation of autophagy
led to increased PFKFB3 expression, driving the proliferation and outgrowth of BCSCs,
thus resulting in reduced self-renewal [124]. As standard chemotherapy inevitably leads
to the development of chemoresistance, the observation that PFKFB3 inhibition therapy
synergizes with carboplatin and paclitaxel in resistant cell lines of gynecological cancers to
reduce tumor weight presents an intriguing therapeutic avenue [82].

The relationship between PFKFB4 and autophagy remains unclear and studies to date
show that PFKFB4 induction either up- or downregulates autophagy. Some studies suggest
that PFKFB4 depletion decreased the glucose shunt into PPP, which impaired NADPH
generation and increased ROS levels, ultimately inducing autophagy [125]. PFKFB4 seems
to be positively regulated by endothelial tyrosine kinase, where depletion of either protein
decreases autophagy in small cell lung cancer. However, upregulation of PFKFB4 resulted
in a poor chemotherapy response [126]. Further studies are warranted to determine the
exact molecular pathways involved in the regulation of autophagy by both isozymes.

6. Angiogenesis

Angiogenesis is the process of new blood vessel formation from pre-existing vascula-
ture and is characteristic of most solid tumors [127]. It is initiated by local pro-angiogenic
factors (e.g., vascular endothelial growth factor; VEGF) which stimulate endothelial cells
(ECs) [128]. The blood vessels generated in this process are irregular with gaps between
cells, which results in leaking; induction of angiogenesis in the tumor is described in detail
in Figure 8. These properties not only accelerate tumor metastasis but also reduce the
effective delivery of chemotherapy drugs [129]. While traditional anti-vascular therapies
are designed to limit tumor growth by reducing angiogenesis, they might further contribute
to hindering the delivery of chemotherapeutics and create a more favorable environment
for tumor growth and invasion [130–134]. Moreover, tumors are often able to counteract
these targeted therapies through metabolic adaptations; this emphasizes the need for al-
ternative approaches. Angiogenesis requires a considerable amount of ATP as the source
of energy (e.g., for the growth of new endothelial tip cells from pre-existing vessels). ATP
is mainly provided by glycolysis and mitochondrial respiration; disruption of either of
these processes could markedly hamper ATP supply [135]. Tumor endothelial cells (TECs)
exhibit a relatively high proliferative activity and rely mainly on glycolysis rather than
oxidative phosphorylation as their energy source [136]. Under normal conditions, PFKFB3
expression is already higher in TECs than ECs; further overexpression promotes vessel
branching via inhibition of the pro-stalk activity of Notch signaling, which suggests a key
role of glycolysis regulation by PFKFB3 in vessel branching (Figure 9) [136].
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In cancer, VEGF stimulates PFKFB3 expression and promotes directional migration
and filopodia/lamellipodia formation in ECs [137]. PFKFB3 inhibition resulted in suppres-
sion of VEGFα protein expression and reduced angiogenic activity [65], whereas PFKFB3
upregulation promoted human umbilical vein endothelial cell (HUVEC) proliferation,
migration, and angiogenesis [66].

Targeted inhibition of PFKFB3 by 3PO suppressed vascular hyperbranching and
augmented the anti-angiogenic effects of VEGF blockade [138]. As far as mechanistic
considerations are concerned, a low-dose administration of 3PO resulted in tightening the
vascular barrier by reducing VE-cadherin endocytosis and a reduction in the expression of
cancer cell adhesion molecules by downregulating NF-κB signaling. Overall, 3PO reduced
cancer cell invasion, intravasation, and metastasis, but failed to affect tumor growth [139].

The effects of different doses of 3PO should be considered when evaluating the thera-
peutic potential of PFKFB3 inhibitors. While a low dose (25 mg/kg) induced tumor vessel
normalization (reducing intravasation and metastasis), a higher dose (70 mg/kg) inhibited
cancer cell proliferation and tumor growth. However, it did provoke tumor hypoxia, which
resulted in vascular barrier destabilization and promoted tumor dissemination [140].

According to another hypothesis, PFKFB3 may facilitate angiogenesis in oral squa-
mous cell carcinoma by regulating the infiltration of CD163+ tumor-associated macrophages
(TAMs), as the expression of PFKFB3 was correlated with CD163 and CD31 [141].

https://biorender.com/
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7. Targeting PFK-2 Isozymes in Malignancies
7.1. Outline of the Development of Inhibitors

Reports on the importance of PFKFB3 and PFKFB4 in cancer development and pro-
gression strongly suggest that these isozymes may represent promising targets for new
potent personalized therapies in cancer treatment. This prompted research groups to
investigate the efficacy of selective inhibitors.

In 1984, Sakakibara et al. identified a binding site of 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase for Fru-6-P using N-bromoacetylethanolamine phosphate (BrAcN-
HEtOP) and 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate [142]. The inhibitory
properties of these compounds were later confirmed in both in vitro and in vivo mod-
els. However, these inhibitors were not specific and therefore scientists continued to
develop novel compounds [32,143]. The first-in-class small molecule PFKFB3 inhibitor,
3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one, also known as 3PO was synthesized by
Clem et al. in 2008 [12]. This compound was computationally identified by screening and
docking using ChemNavigator software with a homologous model of the PFKFB3 isozyme,
previously generated based on a PFKFB4 crystal structure from rat testes [4,144]. To date,
3PO has been the best-known inhibitor of PFKFB3, chemically belonging to the chalcone
group. Its anticancer properties have been demonstrated in experimental models of sev-
eral types of cancer, including breast cancer [145], ovarian cancer [52], melanoma [107],
and bladder cancer [146]. The main factors limiting the potential use of 3PO in clinical
trials include poor solubility and difficulty in obtaining sufficiently high concentrations
to achieve potency [4]. In 2011, Akter et al. successfully attempted to use a nanocarrier
to improve its efficacy in cancer treatment. They conjugated 3PO to micelles prepared
from poly(ethylene glycol)-poly(aspartate) [PEG-p(ASP)], which resulted in achieving 2%
wt. drug-loading in the nanocarrier polymer. Its favorable properties were observed in
Jurkat, HeLa, and LLC cells [147]. In addition, it was shown that cancer cells became more
sensitive to microtubule poisons, chemical compounds with the ability to bind to tubulin,
thus preventing the formation of microtubules after 3PO treatment [11,105]. Since 3PO is
not selective enough, more specific and selective novel PFKFB3 inhibitors were developed
in the following years.

In 2011, Seo et al. determined the crystal structure of PFKFB3 and identified new
inhibitors such as N4A and YN1. This study not only revealed two inhibitors with increased
selectivity for PFKFB3, but was also essential for future targeted drug design due to the
extension of knowledge regarding PFKFB3 structure [148].

PFK15, a derivative of 3PO, was another chalcone compound developed to inhibit
PFKFB3. The first report of screening, selection, and its impact on cancer cells was published
by Clem et al. in 2013 [83]. An increase in binding potency of PFK15 was later achieved
by the substitution of the pyridinyl ring with a quinoline ring in 3PO (Figure 9) [4]. This
structural modification resulted in an increased selectivity and inhibitory effectiveness
(~100-fold), which led to an enhancement of proapoptotic activity compared to 3PO [83].
Due to its modification, PFK15 shows better pharmacokinetic properties, e.g., reduced
clearance, higher T1/2, and longer microsomal stability [83]. It was also reported that
PFK15 did not inhibit other glycolysis-related enzymes such as phosphoglucose isomerase,
PFK-1, PFKFB4, or hexokinase [83].

PFK158, another novel PFKFB3 inhibitor, was proven effective in gynecological can-
cers [82] and mesothelioma [149]. Moreover, this compound was enrolled in a Phase I
clinical trial in patients with advanced solid malignancies [150]. Clinical trials assessing
the safety of PFK158 (NCT02044861) were initiated in 2014 and no serious adverse events
were reported during the ~one-year follow-up [10]. Once the maximum tolerated dose has
been established, Phase II trials of this optimized PFKFB3 inhibitor will also be introduced
in leukemia therapy [83].

Since 2014, three novel inhibitors have been developed: compound 26 [151] and
PQP [152] and KAN0438757 [153]. The anticancer efficacy was only proven in vitro.
KAN0438757 is the most recently (2019) developed PFKFB3 inhibitor and may induce
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nucleotide incorporation during DNA repair and selectively sensitize transformed cells to
the impact of radiation [153].

The recent progress in identifying new drugs targeting PFK-2 isozymes is dominated
by compounds inhibiting PFKFB3. This is probably due to a better understanding of
this isozyme and its role in cancer cell biology. To date, there has only been one study
focusing on PFKFB4 inhibitor design, which reported an anti-proliferative effect of 5-(n-(8-
methoxy-4-quinolyl)amino)pentyl nitrate (5MPN) on H460 adenocarcinoma cells. Clearly,
these results were promising and justify further investigation of the effects of specific
PFKFB4 inhibitors.

The compounds described in this section have a diverse impact on cancer cell metabolism,
which is the result of differences in their structures that determine the activity of each com-
pound (IC50 or Ki) and translate into pharmacokinetic properties such as bioavailability
and water solubility (Figure 10).
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(A–D) and PFKFB4 (E) inhibitors to date. The models were obtained from PubChem: (A)—N-Bromoacetylethanolamine
phosphate [154], (B)—3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) [155], (C)—PFK15 [156], (D)—PFK158 [157],
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7.2. Chemosensitivity, Chemoresistance, and Potential Combined Therapies for Malignancies

Current chemotherapeutic and irradiation protocols target rapidly dividing cells.
Targeting glycolysis, a process that is regulated by PFKFB and is crucial for ATP gen-
eration in proliferating cancer cells seems to be a promising therapeutic approach with
anticancer properties. Combining currently used chemotherapeutics (conventional or
tumor pathway-specific agents) with PFKFB3 or PFKFB4 inhibitors is expected to enrich
the range of treatment options (Table 2). Despite the exponential development of new
drugs, the occurrence of resistance simultaneously increases as well; this emphasizes the
importance of implementing drug combinations or adding novel therapeutic agents in an
attempt to overcome this hurdle [160]. PFKFB inhibition might prevent disease progression
and drug resistance, and even improve progression-free survival (PFS) and/or response
rates [10,32]. Another argument in favor of combination therapy with these inhibitors is
the association between drug resistance, mitochondrial respiratory defects, and increased
glycolysis in cancer cells [11,32,161]. Multiple trials verifying currently approved agents,
such as inhibitors of angiogenesis or autophagy, and substances interfering with the elec-
tron transport chain or glutamine metabolism, in combination with PFKFB inhibitors are
expected to be initiated in cohorts with distinct types of cancers [83]. Liu et al. (2001)
suggested that the inhibition of glycolysis markedly sensitizes slow-growing cancers to
chemotherapy and irradiation [162].

Table 2. Summary of the most relevant studies on the use of PFKFB3 inhibitors in combined therapy.

Inhibitor Combined Therapy Type of Neoplasm Study

3PO imatinib chronic myeloid leukemia Zhu Y, et al. [15]
PFK15 imatinib chronic myeloid leukemia Zhu Y, et al. [15]
PFK15 rapamycin acute myeloid leukemia Feng Y & Wu L [56]
PFK158 vemurafenib melanoma Lu L et al. [10]
PFK158 erlotinib non-small cell lung cancer cell Lypova N, et al. [84]
PFK158 antiestrogen breast cancer Imbert-Fernandez Y, et al. [58]
PFK15 cisplatin cervical cancer Li FL, et al. [163]
PFK158 carboplatin ovarian cancer Mondal S, et al. [82]

3PO paclitaxel breast cancer Domenech E, et al. [105]
PFK15/siRNA oxaliplatin colon cancer Yan S, et al. [70]

3PO VEGF inhibitors endothelial cells Schoors S, et al. [138]

7.2.1. Influence on Hematological Malignancies

The JAK2V617F mutation is characteristic of myeloproliferative neoplasms [10,102,164].
STAT5, a transcriptional activator associated with JAK2, induces PFKFB3 expression. The
mechanisms underlying this process are still unknown but it has been speculated that
downstream effectors of STAT5 play a significant role. Targeted treatment of hematologic
diseases with JAK inhibitors leads to the downregulation of PFKFB3 [10]. This reveals
the potential benefits of treatment of myeloproliferative neoplasms with PFKFB3 antag-
onists [10,165]. Combined therapy with glycolysis inhibitors or other currently applied
agents has not been introduced to clinical trials yet.

Genetic alterations resulting in BCR-ABL fusion, characteristic of hematologic malig-
nancies, lead to the constitutive activation of tyrosine kinase. Imatinib, an inhibitor of this
tyrosine kinase, downregulates glucose uptake in cells with a fusion gene [166]. Despite
clinical success, chronic myeloid leukemia resistance to tyrosine kinase inhibitors is still
a challenge for clinical hematologists. Interestingly, PFKFB3 was found to be associated
with this type of resistance [15]. Therefore, PFKFB3 inhibitors or localized targeted genetic
PFKFB3 knockdown might represent a strategy to prevent the development of drug re-
sistance by downregulating glycolysis [10,15,32]. Supporting this notion, treatment with
3PO and PFK15 combined with imatinib and bone marrow transplantation prolonged the
survival of mice with chronic myelogenous leukemia (CML) [11,15].
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mTOR-mediated upregulation of the PFKFB3 pathway is vital for acute myelogenous
leukemia (AML). Accordingly, combined therapy with rapamycin and PFK15 was found
highly effective in the inhibition of AML cell proliferation [10,32,56].

7.2.2. Gynecological and Breast Cancers

HER2 expression, which is characteristic of many breast cancers, is associated with
increased glucose metabolism mainly via the PFKFB3 pathway [59], suggesting it could
represent a potential target of therapy. Indeed, breast cancer cells resistant to anti-HER2
therapy were re-sensitized after inhibition of PFKFB3 and 3PO selectively suppressed the
growth of HER2 positive cells through interfering with glycolysis [59]. Additionally, a
decrease in glucose uptake after 3PO administration was found in HER2-positive breast
tumors [59]. Furthermore, PFKFB3 expression was markedly lower after treatment with
the HER2 inhibitor lapatinib [32]. Similar results are expected for combined therapy with
HER2 and PFKFB3 inhibitors in trastuzumab-resistant cancer [10].

Cisplatin is a nonspecific chemotherapeutic that interferes with DNA replication
through DNA strand crosslinking. However, cancer cells acquire many different mecha-
nisms of drug resistance, such as decreased cellular uptake or increased efflux of drug(s),
which require energy. Cisplatin induces PFKFB3 acetylation, which leads to protein overex-
pression and activation, and markedly enhanced glycolysis [163]; this pathway contributed
to cisplatin resistance [163]. Conceivably, glycolysis inhibitors might enhance the efficacy
of cisplatin by restoring chemosensitivity [11,139]. PFK15 sensitized cells to platins in
a xenograft cancer model, which suggests the possibility of combined therapy [32,163].
PFKFB3 might inhibit resistance to another platin (i.e., oxaliplatin) as well through its
influence on autophagy (apart from inhibiting proliferation and migration, oxaliplatin
induces autophagy). Following platin administration, cancer cell viability is significantly
reduced when autophagy is inhibited, an effect that can be potentiated by the inhibition of
PFKFB3 as this restricts autophagy through interfering with its initiation. Other results of
the administration of the PFKFB3 inhibitor include reductions in cell viability, proliferation,
and migration [70].

Gynecologic malignancies are another potential target for PFKFB3 inhibition. PFK158
caused a reduction in glucose uptake and induction of apoptosis. When combined with
carboplatin or paclitaxel, PFK158 acted synergistically but only in chemoresistant human
ovarian cancer cell lines (C13, HeyA8MDR). The combination of PFK158 and carboplatin
was also efficacious in a mouse model of ovarian cancer, as evidenced by tumor reduc-
tion [82]. These preclinical results might soon be followed by clinical trials focusing on
chemoresistant gynecological cancers.

7.2.3. Influence on Lung Cancer (NSCLC and SCLC)

Chemoresistance of non-small cell carcinoma (NSCLC) is one of the most important
health issues in developed countries as this neoplasm is one of the leading causes of
death [167,168]. PFKFB3 expression is a prognostic marker in lung adenocarcinoma [169].
Delivery of shRNA against PFKFB3 enhanced docetaxel activity and significant effects
were observed on cell cycle, cell stress, and the balance between survival and apoptosis.
The reduction in tumor volume observed in an A549 xenograft model was markedly higher
than for docetaxel monotherapy [170]. Antagonism of PFKFB3 and subsequent lower
glycolytic activity led to a decrease in cell viability. In addition, tumor cells were less likely
to migrate and invade, and cell cycle arrest and apoptosis were observed in these cell
lines [169]. The first results are promising, and the next stages of research are expected to
verify the usefulness of PFK15 in lung adenocarcinoma therapy.

Epithelial and endothelial tyrosine kinases are crucial for the modulation of small-
cell lung cancer (SCLC) chemoresistance through a poorly understood mechanism. A
role of PFKFB4 is proposed, as this enzyme is a downstream target of epithelial and
endothelial tyrosine kinases. The most important regulatory function of this pathway is the
modulation of autophagy and chemoresistance [126]. The potential of combining specific
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tyrosine kinase inhibitors with PFKFB4 remains to be verified. Nevertheless, PFKFB4
expression can be considered one of the predictive factors for SCLC chemoresistance [126].

7.2.4. Influence on Other Solid Tumors

Overexpression of PFKFB3 followed by glycolysis is responsible for Hepatocellular
carcinoma (HCC) resistance to sorafenib. One of the proposed approaches to overcome
this resistance is the administration of aspirin. Combined therapy including sorafenib
and aspirin induced apoptosis in vitro and in vivo, without causing significant adverse
effects [171].

High levels of estradiol, BRAFV600E, or epidermal growth factor (EGF), which are as-
sociated with breast cancer, melanoma, and non-small cell carcinoma (NSCLC), respectively,
were found to regulate PFKFB3 expression [10,58,172]. Targeted treatment of alterations
characteristic of these neoplasms combined with the inhibition of PFKFB3 enhanced the
apoptotic pathway and induced cytotoxicity [10]. Combining vemurafenib and PFK158
proved the aptness of this hypothesis in a mouse model, significantly decreasing the tumor
size [10]. This combination might improve progression-free survival (PFS) [172]. Several
other studies highlighted the therapeutic usefulness of PFK158 combined with estrogen or
EGF inhibitors (fulvestrant or erlotinib, respectively) [32,58,84].

CTLA-4 is a glycoprotein expressed on T lymphocytes which regulates initial stages
of the immune reaction, thus preventing cell activation. Blocking this process enhances
the activity of lymphocytes [173]. Combining anti-CTLA4 agents, such as ipilimumab, and
PFKFB3 might simultaneously reinforce the immune reaction to cancer and attenuate cancer
cell metabolism. This promising combination is currently being investigated [32,173].

Multidrug-resistant retinoblastoma is another model of chemoresistance in which the
participation of PFKFB can be considered. Even though a connection between PFKFB4
expression and resistance to carboplatin, etoposide, or vincristine could not be observed in
a study on Y79/EDR cells [174], excluding a role of enhanced glycolysis in acquiring this
resistance is premature.

High expression and cellular relocation of PFKFB3 are associated with resistance to
radiotherapy, whereas the loss of PFKFB3 enhances radiosensitivity [175]. It is therefore
conceivable that the efficacy of radiation treatment can be improved by combining it with
PFKFB3 inhibition [32].

Thus far, the emerging results of preclinical studies are promising; the administration
of PFK15, 3PO, and other PFKFB3 inhibitors has shown synergy with currently used
antineoplastic agents in disrupting glycolysis and eliminating resistance mechanisms.
It remains to be evaluated whether the success of preclinical studies will translate into
clinical trials.

8. Future Perspectives

Reports describing a synergistic or sensitizing effect of PFKFB inhibitors with other
chemotherapeutics suggest that these compounds could represent an important adjuvant
or additive reagent in future cancer management strategies. However, despite numerous
recent discoveries, there is still a strong need to improve our understanding of PFK-2
isozymes, particularly in terms of designing new drugs targeting specific isozymes and
associated molecular mechanisms.

9. Conclusions

6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase isozymes play a crucial role
in cancer biology. Recent discoveries related to PFK-2 isozymes, especially PFKFB3 and
PFKFB4, in cancer progression and development, have identified their inhibitors as potent
therapeutic agents that could play an important role in future cancer treatment. The large
body of relevant research summarized in this review highlights the importance of these
isozymes, particularly in cellular processes such as proliferation, migration, apoptosis,
and autophagy. The increased efforts made in the research and development of new,
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more specific drugs interfering with PFKFB activity will provide further insight into the
mechanisms that drive cancer pathology in general and ultimately render additional
options for effective treatment of different types of cancer.
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