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Simple Summary: Side effects caused by the concomitant irradiation of normal tissue during radio-
therapy for cancer treatment can negatively affect the patient’s quality of life and limit the radiation
dose that can safely be administered to the tumor. Recently, considerable developments have been
achieved in radiotherapy and imaging technologies, allowing the selective sparing of the regions
within organs that contribute most to the development of these side effects. This review discusses
regional variation in the response to radiation in several organs, including the brain, salivary glands,
cardiopulmonary system, pancreas, and bladder. Regional responses are shown to originate from
general principles, such as the localization of target cells or function. We conclude that regional
responses are a general phenomenon that should be studied in other organs. This will facilitate
further optimization of the use of modern radiotherapy technologies.

Abstract: Normal tissue side effects remain a major concern in radiotherapy. The improved precision
of radiation dose delivery of recent technological developments in radiotherapy has the potential
to reduce the radiation dose to organ regions that contribute the most to the development of side
effects. This review discusses the contribution of regional variation in radiation responses in several
organs. In the brain, various regions were found to contribute to radiation-induced neurocognitive
dysfunction. In the parotid gland, the region containing the major ducts was found to be critical
in hyposalivation. The heart and lung were each found to exhibit regional responses while also
mutually affecting each other’s response to radiation. Sub-structures critical for the development of
side effects were identified in the pancreas and bladder. The presence of these regional responses
is based on a non-uniform distribution of target cells or sub-structures critical for organ function.
These characteristics are common to most organs in the body and we therefore hypothesize that
regional responses in radiation-induced normal tissue damage may be a shared occurrence. Further
investigations will offer new opportunities to reduce normal tissue side effects of radiotherapy using
modern and high-precision technologies.

Keywords: radiotherapy; normal tissue; regional effects; side effects; brain; salivary gland; lung
heart; pancreas; bladder

1. Introduction

Radiotherapy remains a mainstay in cancer treatment. Over 50% of cancer patients
receive radiotherapy [1,2], accounting for over 3 million people every year in Europe [3].
Improvements in treatments for cancer have considerably increased the life expectancy of
patients. However, this leaves more patients at risk of developing side effects from their
treatment. These side effects impact the patient’s future quality of life. This frequently
limits the radiation dose that can be administered to the tumor, potentially reducing local
tumor control. As such, reducing side effects is crucial.
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To achieve this, radiotherapy technology is continuously being developed to im-
prove precision. Examples of such developments are transitions from early photon-based
techniques, like 3D conformal radiotherapy, to more recent techniques such as intensity
modulated radiotherapy, volumetric modulated arc therapy, and the use of image-guidance.
In addition, the use of particle-based therapies is increasing. Due to their physical prop-
erties, particles often allow a large reduction in dose to the normal tissues. In contrast to
photons, most of the energy of charged particles is released in the Bragg peak, which can
be positioned to the target volume [4]. Each of these developments aims at improving
the conformality of the dose distribution to the targeted volume, reducing dose to the
surrounding normal tissue.

The increased precision of modern radiotherapy technologies can be used to spare
radiosensitive tissues. The term radiosensitivity is broadly used in radiation oncology as
the susceptibility to develop radiation-induced side effects [5,6]. Radiosensitivity can be
used to describe the response of different cell types, tissues or organs. Until the middle
of the 1990s, radiosensitivity within a tissue or organ was thought to intrinsically relate
to the response and loss of specific cells. This target cell hypothesis was appropriately
reviewed by Bentzen et al. [7]. Early biological responses are largely an outcome of the
DNA damage response encompassing DNA repair pathways, cell cycle checkpoints, and
ultimately cell death, and can be cell-type-specific. For example, fast proliferating tissues,
such as those in the intestine and skin, can undergo apoptosis or mitotic catastrophe
within days after irradiation, in contrast to nervous or glandular tissue characterized
by a slower turnover [8]. Irradiation of these fast proliferating tissues can cause early
side effects, which are temporary and usually manifest during or within weeks after the
completion of radiotherapy treatment. Examples are skin rash, mucositis, nausea and
diarrhea. Late side effects are often chronic, appearing months or years after treatment. The
extent of late side effects generally depends on the organ and the substructure within the
organ that has received radiation. Examples range from dry mouth, hormonal dysfunction,
neurocognitive impairment, gastro-intestinal problems, metabolic disorders, cardiac failure,
and infertility, to secondary cancers [2,7]. These late responses are generally more complex;
they include multiple cell types and biological pathways involved in processes such as
inflammation, fibrogenesis, and vascular damage [7]. The target cells for these late effects
may be distributed non-uniformly, such as the Islets of Langerhans in the pancreas [9].
Similarly, local sub-structures, such as well-perfused regions of the lung, can be critical for
organ function [10]. Therefore, the field of radiobiology has investigated the existence of
target regions and structures within a tissue/organ that contribute most to the pathogenesis
of late side effects. The identification of regional responses can improve the understanding
of mechanisms leading to late side effects. This will allow the optimal use of the increased
precision offered by modern radiotherapy technologies by using region- and substructure-
based objectives for radiotherapy treatment planning to achieve better sparing of identified
critical regions and structures.

A number of preclinical and clinical studies have tried to identify such regions/structures
within tissues and organs. In this review, we discuss regional variation in radiation-induced
normal tissue damage in several organs, addressing whether they play a significant role
in their functional response. We discuss if these regional responses are rare or if their
occurrence in organs can be considered a general phenomenon.

2. Data by Organ
2.1. The Brain

The radiation-induced side effects of the brain include neurocognitive dysfunction,
endocrine dysfunction, and neurosensory impairment [11–13]. Based on its composition of
highly specialized interdependent sub-structures, regional responses have been hypothe-
sized for brain function, and significant effort has been made to identify regions of the brain
that might be particularly important for the development of radiation-induced side effects
(Figure 1a,b). These regions are not mutually exclusive. Specifically, the white matter (WM)
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tracts are spread throughout the brain and are an important component of other regions
described in this review, such as the cortex and cerebellum.
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dysfunction. Irradiation of the optic chiasm and optic nerve—connecting to the anterior side of the 
optic chiasm—can result in radiation-induced optic neuropathy. (b) For comparison location of 
several of these regions in the mouse brain. (c) Location of different regions and structures in the 
spinal cord. Radiosensitivity of these regions differs between species and between the lumbar and 
cervical regions of the spinal cord. (d) Location of the major ducts, the putative stem cell-contain-
ing region, of the parotid gland. 
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tion, focal irradiation of the hippocampus induced a decline in learning and (spatial) 
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Figure 1. Organ regions associated with side effects of radiotherapy. (a) Locations of several brain regions showing
regional responses to irradiation. Dose to the hippocampus, subventricular zone, corpus callosum, temporal lobe and
cerebellum are associated with radiation-induced neurocognitive decline. The anterior cerebellum is indicated in a lighter
color, the posterior cerebellum is indicated in a darker color. Irradiation of the hypothalamus and pituitary gland can
lead to endocrine dysfunction. Irradiation of the optic chiasm and optic nerve—connecting to the anterior side of the
optic chiasm—can result in radiation-induced optic neuropathy. (b) For comparison location of several of these regions
in the mouse brain. (c) Location of different regions and structures in the spinal cord. Radiosensitivity of these regions
differs between species and between the lumbar and cervical regions of the spinal cord. (d) Location of the major ducts, the
putative stem cell-containing region, of the parotid gland.

2.1.1. Hippocampus

The hippocampus is a bilateral structure located in the brain temporal lobe. The
hippocampus consists of several sub-structures, including the dentate gyrus (DG) con-
taining the subgranular zone (SGZ). Together with the subventricular zone (SVZ) of the
lateral ventricles, the SGZ is considered the primary region of neurogenesis in the adult
mammalian brain [14]. The main cognitive functions of the hippocampus are learning,
consolidation and retrieval of information. Additionally, hippocampal neurogenesis plays
a key role in memory formation [14], as impairment of adult neurogenesis is thought to be
linked to neurocognitive dysfunction like observed in Alzheimer’s disease [15,16].

Irradiation of the hippocampus leads to early loss of proliferating progenitor cells and
immature neurons in the SGZ [17]. Whole-brain irradiation in both young and adult mice
can lead to a persistent decline in neurogenesis [18–20]. In terms of cognitive function,
focal irradiation of the hippocampus induced a decline in learning and (spatial) memory as
measured by contextual fear conditioning in adult mice [21] and rats [22], and the Barnes
maze test in adult mice [19]. In line with this, in adult mice, hippocampal sparing resulted
in improved neurogenesis in the DG and rescued hippocampal-dependent spatial memory
compared to whole-brain irradiation [23]. In these focal irradiation and sparing studies,
some brain regions surrounding the hippocampus were also partly irradiated or spared
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respectively due to the collimator design, which could have partially affected the results.
However, the strong hippocampal dependency of the behavioral tests used in these studies
strengthens these findings.

In patients, a reduction in hippocampal volume has also been reported after radio-
therapy [24–26] and a small study showed a decrease in neurogenesis in patients after
treatment for central nervous system malignancies [27]. The radiation dose to the hip-
pocampus has been associated with neurocognitive decline in several studies in pediatric
patients. Acharya et al. found that increased hippocampal dose was associated with a
stronger decline in delayed verbal recall scores in survivors of pediatric or adolescent low-
grade glioma with a follow-up of 10 years [28]. In other studies, left hippocampal dose was
specifically correlated to cognitive decline, indicating further regional variability [29–31].
This could be related to the mapping of specific brain functions in the two hemispheres of
the brain. For example, language is primarily mapped to the left hemisphere [29]. Addi-
tionally, increased hippocampal dose has been associated with decreased motor speed and
dexterity [32].

A correlation between dose to the hippocampus and verbal recall was found in adult
patients in 6- to 18-month follow-up studies [33–35]. Based on this, several clinical trials
in adult patients involving hippocampal sparing have started in recent years. In phase II
and III clinical trials with 42 patients and 518 patients, respectively, hippocampal-sparing
whole-brain radiotherapy (WBRT) showed better cognitive outcomes over time than WBRT
without hippocampal sparing [36,37]. In conclusion, irradiation of the hippocampus con-
tributes to cognitive decline in both pediatric and adult patients, likely due to neurogenesis
and cognitive functions of the hippocampus.

2.1.2. Subventricular Zone of the Lateral Ventricles

Similar to the SGZ, irradiation of the SVZ leads to apoptosis of neural progenitor
cells [20,38]. However, in contrast to the SGZ region, proliferation in the SVZ recovers over
time [20]. Proliferation in the SVZ is upregulated after injury, such as demyelination or
stroke, and is thought to contribute to repair [39,40]. Focal irradiation of the SVZ in mice
with 10 Gy only slightly impaired the ability of the SVZ to produce oligodendrocytes in
response to a demyelinating lesion [41].

The risk of contrast-enhancing brain changes on magnetic resonance imaging (MRI) is
increased in the periventricular region after irradiation [42,43]. These contrast-enhancing
brain changes indicate increased blood–brain barrier permeability and can progress to
radiation-induced brain lesions [43].

To what extent irradiation of the SVZ contributes to radiation-induced neurocognitive
decline is still unclear. Studies in pediatric patients have not found a correlation between
dose to the SVZ and cognitive decline [32,44]. In contrast, a retrospective study [45] and
a prospective [46] study in adult patients found a correlation between SVZ dose and a
decline in global cognition and delayed recall, respectively. Notably, glioblastoma stem
cells have been hypothesized to originate in the SVZ [47,48] and increased dose to the
SVZ has been associated with improved survival in glioblastoma patients in some, but not
all, studies [48]. Altogether, although an association exists between SVZ irradiation and
cognitive decline in adults, sparing the SVZ might impact cancer recurrence.

2.1.3. Cerebral Cortex

The cortex is important for several higher-order cognitive processes. It consists of
four major lobes: the frontal, occipital, parietal, and temporal lobes. Radiotherapy can
cause dose-dependent cortical thinning, which is associated with cognitive decline [49].
Dose-dependent cortical thinning was found to occur in regions of the frontal, parietal, and
temporal lobes, which are involved in higher-order cognitive functions, such as memory,
attention, and executive function [50,51]. In contrast, no dose-dependent differences were
found in primary cortical regions, such as the primary visual cortex belonging to the
occipital lobe [50], suggesting that cortical thinning is a region-specific response.
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Radiation dose to the temporal lobe has been associated with memory impairment in
both pediatric [31,32,52–54] and adult patients [45,55]. This effect might be partly caused
by the concomitant irradiation of the hippocampus, which is embedded in the temporal
cortex. Dose to the orbitofrontal region in the frontal lobe has been associated with working
memory decline [53]. In contrast, radiation dose to either the occipital or parietal regions
has not been related to cognitive decline in pediatric patients [53,56].

2.1.4. White Matter

Oligodendrocytes are glial cells whose main function is the insulation of axons with
myelin sheets, thereby protecting the neurons and facilitating fast conduction of signals
along the axons. In the brain, outside of the SVZ and the SGZ, the majority of cycling cells
are oligodendrocyte precursor cells (OPCs). OPCs can undergo apoptosis within days after
irradiation, followed by progressive demyelination months later [57]. Remyelination using
grafted OPCs after irradiation has been shown to rescue memory and motor deficits in rats,
indicating a contribution of WM injury to radiation-induced cognitive decline [58].

Radiation-induced WM changes can be monitored longitudinally using MRI-based
imaging techniques, such as diffusion tensor imaging [59,60]. WM volume decreases pro-
gressively after radiation exposure. In pediatric patients, post-irradiation WM volume has
been associated with declined motor and neurocognitive function, such as memory, atten-
tion, and learning deficits [61–67]. Radiation dose to the corpus callosum and left frontal
WM was associated with cognitive decline in adults [45]. Additionally, pre-treatment
WM injury was found to predict neurocognitive decline after radiotherapy treatment in a
hippocampal-sparing study in adult patients. This implies a hippocampal-independent
mechanism through which radiation-induced neurocognitive decline can occur [68].

Little is known about subregional differences in WM sensitivity. A small clinical study
with 22 patients showed increased WM damage in the frontal lobe compared to the parietal
lobe in pediatric medulloblastoma survivors who received the same radiation dose to
both regions [69]. The frontal lobe is the last brain region to complete myelination during
early adulthood, which could explain the higher sensitivity [70]. Regional differences in
radiotherapy-induced WM changes in pediatric patients are frequently reported for the
corpus callosum [71–74]. The effect of sparing of the genu, the anterior region of the corpus
callosum, on cognitive function is currently being investigated in a clinical trial [75].

These effects might not all be due to direct irradiation of the WM. Beera et al. reported
that focal irradiation of the WM region anterior commissure in young mice did not lead
to a volume reduction in this region. In contrast, irradiation of two non-WM regions, the
olfactory bulb and the SVZ, resulted in a volume reduction in the anterior commissure and
other WM regions [76]. This indicates that WM volume differences might be partly due to
off-target effects, instead of the radiosensitivity of the WM itself.

2.1.5. Cerebellum

Posterior fossa tumors, located near the brainstem and the cerebellum, account for
more than half of all pediatric brain tumors and 20% of all adult brain tumors. Progressive
neurocognitive decline is frequently seen in these patients; however, the effect of radiation
on the normal tissue of the cerebellum is not well understood [77]. The cerebellum might
be more sensitive to irradiation-induced vascular damage. Irradiated mice and rats showed
increased short-term blood–brain barrier permeability in the cerebellum compared to other
regions [78,79] as well as decreased blood flow [79].

In addition to motor function, the cerebellum contributes to neurocognitive tasks
such as language, processing speed, and working memory. Specifically, the posterior
cerebellum is engaged during cognitive processing [80]. Radiation dose to the cerebellum
has been associated with cognitive decline in pediatric and adult patients [45,81]. In
pediatric patients, dose to the posterior cerebellum was also associated with lower scores in
academic tests [81]. These studies suggest that the cerebellum can develop local radiation
responses that may translate into functional deficits.
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2.1.6. Hypothalamus and Pituitary Gland

Irradiation of the hypothalamus and anterior pituitary gland can lead to endocrine
dysfunctions, which are common in both pediatric and adult patients [13,82].

The hypothalamus and pituitary gland are localized close together and interact via
the hypothalamic–pituitary–adrenal and –gonadal axis. Several studies showed primary
function loss of the hypothalamus [83]. Growth hormone (GH) deficiency is the most
prevalent endocrine dysfunction after hypothalamus-pituitary gland irradiation, occurring
at relatively low doses [83]. Specifically, the GH regulation by the hypothalamus was found
to be impaired in pediatric patients with GH deficiency, while the pituitary gland was still
able to produce GH when stimulated, primarily showing damage to the hypothalamus [84].
In addition, in other clinical studies on radiation-induced GH deficiency, GH regulation
was found to be intact [85].

2.1.7. Optic Nerve and Optic Chiasm

The optic nerve—which is the structure connecting the retina to the brain—, and the
optic chiasm—the region of the brain where the optic nerves cross, which is important for
the transmission of the visual information from the optic nerve to the occipital lobe of the
brain—are both seen as organs at risk in brain and head and neck tumors [11]. Irradiation
of these structures can cause radiation-induced optic neuropathy. This constitutes loss of vi-
sion to one or both eyes after damage to the optic nerve or optic chiasm, respectively [11,86].
Together with the hypothalamus and the pituitary gland, the optic nerve and chiasm are
sub-structures that are critical for non-cognitive functions. When aiming to reduce the side
effects of brain irradiation, the brain is not only important for cognition, but also contains
structures with functions and impact outside of this domain.

2.2. The Spinal Cord

The spinal cord is an organ at risk in the treatment of many tumors as well as metas-
tases [87]. Depending on the affected nerves and the severity of their damage, spinal cord
side effects can range from sensory deficits and pain to loss of motor function and paralysis.
Regional variations in the response of the spinal cord to radiation have been investigated
in various animal models.

White Matter

In rats and swine, neurological symptoms following irradiation of the cervical spinal
cord were primarily related to WM necrosis, without clear damage to the grey matter
(Figure 1c) [88–91]. In contrast, irradiation of the rat thoracolumbar spinal cord led to
more damage in the dorsal nerve roots than to the WM. This suggests relative variations in
sensitivity for the necrosis of the nerve roots and WM between the lumbar and cervical
regions [92]. In addition to differences in response between white and grey matter, dif-
ferences in radiosensitivity between the centrally- and laterally-located WM have been
observed [89]. Although the exact mechanism has not been resolved, the lateral localization
of OPCs has been suggested to be responsible for the higher radiosensitivity of the lateral
edge as compared with the centrally-located WM. In this hypothesis, the repopulation of
oligodendrocytes lost after irradiation is possible after irradiation of the central but not
the lateral region [89]. Interestingly, although irradiating the lateral half of the rat spinal
cord increased the tolerance dose compared to irradiating the whole cross-section [89], this
volume-effect was not observed in a Yucatan swine model, where stereotactic irradiation
of the lateral edge of the spinal cord did not lead to function sparing [90,91]. A possible
explanation for the difference with the rat model may be found in the migration distance
of OPCs. In rats this is limited to about 2 mm [93,94]. The size of the cross-section of
the swine spinal cord varies from 8 to 11 mm, limiting the potential of repopulation by
migrating OPCs [90]. Since the dimensions of the human spinal cord are similar, the role of
regional responses and volume effects is expected to be limited in patients. However, due
to the severity of spinal cord complications and consequent strict dose limits used, clinical
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data on spinal cord complications are and will remain rare. As such, conclusive studies on
regional sensitivity of the human spinal cord will not likely be performed.

2.3. Salivary Glands

The use of radiotherapy in head and neck cancer patients inevitably comes with
exposure to radiation of normal tissues such as the salivary glands. Dysfunction of salivary
glands can lead to secondary complications such as xerostomia, loss of teeth, and problems
with eating, speaking, and sleeping, which all strongly impact the patient’s quality of
life [95–97]. The occurrence of xerostomia has been shown to relate to the radiation dose to
the parotid glands, submandibular glands, and oral cavity, which contains a large number
of minor glands [98–101].

Parotid Gland Major Ducts

Morphologically, the parotid gland consists of a ductal system that branches from the
excretory duct toward their secretory units, the acini, both supported by stromal tissue.
The acinar cells are capable of transporting water from the adjacent vasculature into the
ductal system [102]. In rats, parotid gland irradiation can reduce saliva production without
significant loss of acinar cells during the first 30 days after irradiation [103]. In this phase,
loss of saliva production is related to impairment of the transport function by inducing
acute membrane damage [104]. However, subsequently, tissue degeneration secondary
to loss of proliferating cells and consequent disturbance of tissue homeostasis occur. In
salivary glands, tissue homeostasis is supported by proliferation of acinar cells and ductal
tissue-specific stem cells [105–107]. However, in rats, mainly ducts remained one year
after irradiation [108,109]. In this setting, ductal cells are capable of generating acinar cells,
contributing to the recovery of this tissue compartment [105,107].

The localization of these two cell populations may lead to regional variations in
radiation response. Loss of saliva production was more pronounced after irradiation of
the cranial half of the rat parotid gland compared to the caudal half [108]. This enhanced
response corresponded with a global degeneration in salivary glandular tissue, including
the shielded half [109]. Irradiation of even smaller parts of the gland revealed that this
global degenerative response depends on the radiation dose to the major ducts [110]
(Figure 1d). Within the same study, post-radiotherapy parotid gland saliva production in
patients was found to be best predicted by the dose to the region near the dorsal edge of
the mandible [110]. This region contains the major ducts of the gland, and tissue samples
obtained from this region contained the highest number of tissue-specific stem/progenitor
cells, leading to the highest regenerative capacity in an organoid culture system [110].

The current clinical approach to minimizing the risk of xerostomia is preservation of
salivary function by minimizing the dose to the parotid glands in treatment planning. Sev-
eral studies have indicated that post-radiotherapy parotid gland function and xerostomia
are better predicted by dose to regions or spatial features of the dose distribution [110–115].
As mentioned above, a region adjacent to the dorsal edge of the mandible was identified
as the best predictor of post-treatment function [110]. The influence of voxel dose in the
parotid and submandibular glands on the occurrence of xerostomia was also evaluated in
a larger retrospective study. This revealed that the apparent influential regions may vary
between the ipsilateral and contralateral parotid glands [112]. Although in both glands the
influential region includes the major ducts, the region appeared larger in the contralateral
parotid gland. As indicated by the authors, such differences might have resulted from
collinearity with dose elsewhere. However, in this cohort the extended region received
a relatively low dose. A role for such low doses in the development of xerostomia is
supported by the analysis of a larger patient cohort of 684 patients [116]. Together, these
studies indicate that low radiation doses have a strong impact on the response of salivary
glands. In line with this, in rats, low radiation doses combined with significant doses
elsewhere were shown to strongly reduce post-irradiation function [117,118].
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As frequently noted by authors of studies reporting regional or voxel-wise analyses,
strong correlations between doses in different regions or even organs complicate the
interpretation of the results. However, the combination with independent development and
testing of the hypothesis in preclinical models provides confidence in the interpretations
described above [119].

The saliva production and composition of the different glands varies with time of
the day. For example, the parotid gland produces almost no saliva at night [120–122].
Consequently, the temporal manifestation of symptoms related to salivary gland damage
and the specific glands involved may vary similarly [123,124]. To allow more specific
assessment of the role of specific glands in xerostomia, a questionnaire was developed to
measure day- and night-time xerostomia and sticky saliva [123]. However, an initial study
using this questionnaire did not find differential roles of the different salivary glands in the
development of xerostomia or sticky saliva [125]. A potential reason for this is that more
detailed assessment of complications on multiple sub-scales inevitably leads to a reduced
number of events per type of complication, thus reducing the power of the study to detect
associations with dose to specific glands.

2.4. Cardiopulmonary System

In the treatment of thoracic tumors, coincidental dose to heart and lungs frequently
leads to side effects such as pericarditis, cardiomyopathy, or myocardial fibrosis in the heart
occurring months to years after radiotherapy, and early pneumonitis and late pulmonary
fibrosis in the lungs. To address this, current practice is to minimize mean lung dose
(MLD), mean heart dose (MHD), and/or volumes of these organs receiving a specified
minimum dose [126]. However, these dose metrics do not contain information on the
spatial dose distribution. Consequently, these approaches consider the lung as a single,
paired and functionally uniform organ. Nevertheless, clinical studies have recognized
that radiation-induced dyspnea occurs more frequently in patients with tumors in the
lower lung lobe [127,128], suggesting that the use of spatial information might improve the
prediction of radiation-induced side effects of the lung [126].

2.4.1. Alveolar and Microvascular Dense Regions of the Lung

In several preclinical studies in mice and rats, more pronounced effects in terms of
survival and respiratory rate enhancement were observed after irradiation of the basal
parts of the lung compared to the apical parts [129–132]. A hypothesis explaining these
differences was a non-uniform distribution of functional subunits within the lung [129,133].
In the lung, the alveoli are responsible for gas exchange and therefore essential for organ
function. These are mainly located in the basal and lateral regions of the lungs [130]
(Figure 2a). Using a mouse model, Travis et al. showed that these regional responses are
related to the location of alveoli-rich regions [130]. In a rat model, more severe changes
in function and histology also occurred after irradiation of the lateral parts of the lung
compared to the mediastinal parts [134].

The effect of lung irradiation is not limited to the irradiated part, but also occurs
in surrounding shielded tissue [131,132,135,136]. For instance, micronuclei formation in
non-irradiated areas has been suggested to relate to the release of cytokines or reactive
oxygen species (ROS) formation in irradiated areas [131,132].

In addition to the alveoli, the pulmonary vasculature was found to be a target for
radiation-induced loss of function [135]. Damage to endothelial cells of small- and medium-
sized vessels leads to disruption of the endothelial lining and to non-functional vascu-
lature. Secondary to reduced vascular capacity in the irradiated region, vasculature in
non-irradiated lung regions can be damaged due to enhanced pressure and overload [135].
Since small- and medium-sized vessels colocalize with the alveolar tissue [137] (Figure 2a),
their respective roles in the development of the loss of pulmonary function cannot be
clearly distinguished. However, most likely, both contribute to the radiation effects on lung
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function after irradiation of lateral parts of the lung, whereas mediastinal areas, containing
more primary and secondary bronchi and bigger vessels, are more resistant.
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A relation between the irradiation of different lung regions and the occurrence of
radiation-induced lung injury was also reported in patients. Dose to patient-specific regions
exhibiting a higher density before radiotherapy was predictive of post-treatment damage.
These regions were mainly found in the base of the lung, likely indicating functionally
important areas [138]. Interestingly, hypo-fractionated stereotactic radiotherapy of tumors
close to the proximal bronchial tree (PBT), a defined area containing the main bronchi,
is associated with a 3-fold increased risk of non-cancer death compared to patients with
peripheral tumors. Although the endpoint is not specific for pulmonary side effects, this
finding may suggest a role for the major bronchi or associated large pulmonary vessels in
the development of severe toxicity when small volumes of lung are irradiated with high
doses [139].

2.4.2. Basal Region of the Heart

As the heart is an organ which consists of several different structures important for
organ function, like valves and big vessels, it is likely that there are differences in the
radiation response of these structures. Since precise irradiation of specific structures of the
heart is challenging in small animal models, only few preclinical studies on the sensitivity
of cardiac substructures are available [140]. A recent study by Ghita et al. showed that
the basal parts of the heart are more sensitive to irradiation [141] (Figure 2b). Mean heart
dose was not found to be a reliable predictor of functional changes after irradiation of
cardiac sub-volumes in a mouse model. The observation of more pronounced effects after
irradiation of the base of the heart indicated the presence of sensitive substructures in this
part. These could potentially be related to the presence of the aortic and mitral valves, the
pulmonary and coronary arteries, and the superior vena cava [141].
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These findings are in line with several studies in patients reporting associations
between dose to structures at the base of the heart and outcome. In studies in non-small
cell lung cancer (NSCLC) patients, non-cancer mortality was associated with irradiation
of upper regions of the heart, including big vessels (e.g., the vena cava and coronary
arteries, AV-node, and sinus) and the right atrium [142–144]. Dose to the superior vena
cava can especially be related to non-specific electrocardiogram abnormalities in NSCLC
patients [145].

2.4.3. Heart and Lung Interaction

Clinically, both lung and heart frequently receive a non-negligible radiation dose that
can lead to radiation-induced side effects. In rats, an enhancement of radiation damage was
found when irradiating both heart and lung [146]. In this preclinical model, damage and
remodeling of pulmonary vasculature led to higher right ventricle (RV) systolic pressure
and RV hypertrophy. In turn, these effects contributed to reduced left ventricle (LV)
diastolic function [147]. In addition, irradiation of the heart can cause myocardial damage,
reducing diastolic function. The consequential congestion in the pulmonary vasculature
causes interstitial edema, parenchymal inflammation, and fibrosis in lung tissue [147].
Irradiation of both the heart and parts of the lung can thus directly and indirectly impair
LV function via the aforementioned mechanisms, leading to aggravated cardiopulmonary
dysfunction [147].

Clinical studies regarding the impact of heart irradiation on lung function had varying
outcomes and conclusions. A large retrospective study including around 600 patients
did not find an impact of heart irradiation on lung function [148], whereas another study
with more than 200 patients reported a relation [149]. However, both studies tried to
correlate heart dose with the occurrence of radiation pneumonitis, which is, according to
the mentioned animal studies, not the only endpoint to be considered. Increased pulmonary
artery pressure and a reduction in diastolic function should be considered as endpoints as
well. However, these are currently not part of standard assessments of the side effects of
radiotherapy.

2.5. The Pancreas

The pancreas has both endocrine and exocrine functions. Radiation-induced injury of
the endocrine pancreas is known to increase the risk of diabetes mellitus [150,151].

The concentration of islets of Langerhans is higher in the pancreatic tail than in the
rest of the pancreas [9] (Figure 2c). Retrospective studies have shown that irradiation of
this region is associated with a higher risk of developing diabetes in both childhood cancer
survivors [151,152] and adult patients [153].

2.6. The Bladder

Radiotherapy remains a mainstay in the management of cancers in the pelvic region,
including cancers to the rectum, urinary bladder, uterus, ovary, and prostate. Bladder
irradiation is associated with acute and late genitourinary (GU) side effects such as cystitis.
This affects the quality of life of a significant portion of patients [154]. A review by Zuppone
et al. [155] of the current status of research on radiation-induced bladder complications
highlighted the lack of pre-clinical studies on the identification of critical sub-structures
within the bladder. The investigations of possible bladder sub-regions predictive of late
GU complications have been mostly based on a limited number of clinical studies and have
found a spatial effect of the trigone region [155] (Figure 2d). In a recent study, the urethra
and posterior regions above the trigone have also been identified as more predictive for
urinary toxicity than the dose to the whole bladder [156].

Bladder Trigone

The trigone is a triangular region located at the bladder base just above the bladder
neck. Its functions include preventing urine reflux and signaling the need for voiding [157].
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A number of studies in prostate cancer patients have reported that mean dose or dose
hotspots to the trigone are associated with late GU side effects [158–161]. Although the
trigone region has been reported to influence the function of the bladder neck by causing
obstruction that can prevent normal function [160], the underlying mechanism of this
association is not yet clear.

3. Discussion

As the life expectancy of cancer patients increases, reducing radiotherapy-induced side
effects is becoming more important to preserve post-treatment quality of life. Continuous
improvements in radiotherapy technologies allow further reduction in radiation dose to
normal tissues as well as specific sparing of regions and sub-structures of organs. As
indicated by the reviewed literature, a considerable reduction in side effects may be
achieved by selective sparing of specific regions within organs. In various organs regional
responses have been identified. Examples include critical roles of the hippocampus in
cognitive dysfunction, the ductal region of the parotid gland in hyposalivation, and the
tail of the pancreas in diabetes in patients [36,110,151]. These regional responses are based
on general principles like non-uniform distribution of target cells or the existence of sub-
structures critical for function. Other organs that have not yet been studied in similar
detail possess similar characteristics. This suggests that regional responses are a common
phenomenon that can potentially offer opportunities to further optimize radiotherapy.

Several approaches to obtain insight into regional effects have been used and were
described in the above organ-specific sections. Clinical studies benefit from directly in-
vestigating radiation-induced side effects and their impacts in patients. However, the
multidisciplinary nature of oncological treatments creates challenges for specifying the con-
tribution of radiotherapy to side effects. For example, recent studies using immunotherapy
and radiotherapy have highlighted an increased risk of developing MRI-based imaging
changes [162] and side effects [163]. This demonstrates that combined treatments may
modify the response of normal tissues to radiation. In addition, most clinical studies are
based on retrospective analyses. Regardless of whether these data were collected retro-
spectively or in the context of prospective studies performed for other purposes, testing
hypotheses regarding the role of target regions and structures was not usually consid-
ered in the initial study design. General challenges encountered in such studies are the
occurrence of confounding factors and correlations between doses to different regions.
Both complicate identifying the factor responsible for the observed regional response. For
instance, the observation that rectal bleeding is predominantly associated with dose to
the anterior rectum wall in prostate cancer patients, reflecting the location of the prostate
and the consistent inclusion of this part of the rectum in the target volume [164]. Similarly,
parotid gland dose strongly correlates with dose to its sub-volume containing the puta-
tive tissue stem cells. To some extent, these limitations can be overcome by performing
prospective studies with a design optimized for elucidating the role of confounding factors
and/or reduce collinearity by randomizing patients between different treatment planning
strategies [113,114]. However, patients need to be treated adequately. This poses limits on
acceptable modifications to the radiotherapy treatment plan for investigating side effects.
In addition, such studies usually still rely on associations and often lack proof for the
hypothesized mechanisms leading to the regional variation. Hence, quality evidence for
regional responses including their mechanistic basis can only be obtained by combining
clinical and preclinical studies. The latter allow detailed investigation of mechanisms
and the use of dose distributions optimized for hypothesis testing. For example, dose
distributions used in studies of cardiopulmonary side effects differed strongly from clinical
practice to allow critical testing of the role of heart and lung [134,146,147].

Nevertheless, preclinical studies are also subject to limitations that are not always
recognized. Biological responses are often strongly species-dependent [165]. Examples
of these include dose-limiting complications varying between radiation pneumonitis and
pleural effusions depending on which mouse strain is used, as well as tolerance doses
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varying by a factor of two between mouse strains [166]. Similarly, radiation-induced
alterations in macrophages have been shown to be mouse-strain-specific, indicating that
choosing the right strain is critical for a meaningful clinical translation [167]. As such,
investigating hypothesized mechanisms underlying regional responses observed in patients
requires choosing an animal model in which this mechanism plays a role in the response to
radiation. Although there are anatomical differences between rodents and humans in for
example the brain (Figure 1a,b) and quantitative translation cannot be made, the function
and overall cognitive domains are maintained between these species. Therefore, animal
models can be used for hypothesis-generating and proof-of-concept studies. Translating
results into clinical studies often requires an intermediate translational step to confirm
the role of a mechanism in patients. This can be achieved in small clinical studies. For
example, in a proof-of-concept study, cardiac MRI was used to directly assess changes
in cardiopulmonary blood flow as a mechanism-specific endpoint [168]. In the brain,
conventional MRI is used to track white and grey matter changes. The integrity of WM
can further be studied using diffusion tensor imaging [60]. Functional MRI can be used
to check the activation of cortical areas during specific tasks and, importantly, investigate
the effect of radiotherapy on neural networks [169]. The brain is a highly complex organ
with both intra- and interregional circuits. Damage to a component of these circuits can be
compensated by another component or lead to function decline, and research into the effect
of radiation on neural networks can help us to further understand regional responses. Being
non-invasive and often providing mechanism-specific information, the use of imaging is
attractive in this type of study. However, endpoints can sometimes also be made more
mechanism-specific without the need for imaging. Xerostomia is usually registered as a
general phenomenon. However, due to the parotid gland’s specific role in eating and its
inactivity during the night, this is not an optimal endpoint when investigating strategies to
reduce parotid gland-related side effects. Using a questionnaire distinguishing between
day- and night-time complaints could help specify the affected glands [123,124].

A common challenge in clinical and preclinical work is that more detailed regional
responses can only be investigated when technology is available. Clinically, association
studies aiming at detecting regional variations require that the technology used can deliver
radiation dose distributions with sufficient spatial variation to induce a detectable impact
of regional responses on the clinical side effect. This implies that available clinical data
usually lack information on the potential impact of the use of new, improved-precision
radiotherapy when the latter becomes available. In this setting, the hypotheses generated
in preclinical research can contribute to the optimal use of unique features of this new
technology. The role of preclinical research for this purpose may increase with the recent
availability of dedicated small animal irradiators in combination with the availability of
histological information at the cellular level that can potentially be overlaid with the given
radiation dose [170].

As indicated, regional responses may be a common phenomenon. Several organs
would be of particular interest to study. The kidney consists of structurally separated
tissues with several potential stem and progenitor cell niches [171]. Radiotherapy treat-
ment in the kidney can result in late complications, such as nephropathy [172]. Studies
including functional and imaging follow-up together with radiation dose distribution,
like the RAPRASI study [173], are needed to clarify if any regional variation occurs in the
radiation response that might be exploited to reduce side effects. Another interesting organ
is the uterus. Irradiation of the uterus, specifically during childhood, increases the risk
of infertility and adverse obstetrical outcomes later in life, such as miscarriage, neonatal
death, and reduced birthweight [174–176]. Fulfilling its full function from conception to
delivery, the uterus has to perform a large number of functions, each relying on one or more
specific anatomical sub-structures. This might also lead to different regional responses to
radiotherapy. The rectum and anal canal may be interesting candidates for further studies.
Fecal incontinence correlates with the dose to the lower rectum and, more specifically,
to the anal canal [177]. It has been hypothesized that this regional response may relate



Cancers 2021, 13, 367 13 of 21

to the spatial distribution of the enteric nervous system [178,179]. Nevertheless, due to
the paucity of preclinical studies on this subject, the pathophysiology and underlying
biological mechanisms for such regional variation still need to be clarified [178].

4. Conclusions

This review discussed current pre-clinical and clinical evidence of regional responses
in radiation-induced normal tissue damage in a number of organs at risk for development
of side effects after radiotherapy. These regional responses were shown to originate from
rather general principles, which are present in most organs. Taken together, we conclude
that regional responses are a general phenomenon that needs to be studied in other organs
to facilitate further optimization of the use of modern technology in radiotherapy.
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