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Simple Summary: Although transarterial chemoebolization (TACE) is indicated for small hepato-
cellular carcinoma (HCC) as a second choice, TACE for small HCC is frequently difficult and less
effective because of less hypervascularity and the presence of tumor portions receiving a dual blood
supply. The aim of this study was to evaluate the efficacy of superselective cTACE under guidance
software for patients with HCC within three lesions smaller than 3 cm. By using TACE guidance
software, 81.2% of HCC lesions could be completely embolized and the cumulative local tumor
progression rates in 303 tumors at 1, 3, 5, and 7 years were 17.8, 27.8, 32.0, and 36.0%, respectively.
The 1-, 3-, 5-, and 7-year overall and recurrence-free survival rates in 175 patients were 97.1 and 68.7,
82.8 and 34.9, 64.8 and 20.2, and 45.3 and 17.3%, respectively. Our results indicate the efficacy of
superselective cTACE using guidance software for HCC within three lesions smaller than 3 cm.

Abstract: The indication of transarterial chemoembolization (TACE) has advanced to hepatocellular
carcinoma (HCC) of Barcelona Clinic Liver Cancer (BCLC) stage A when surgical resection (SR),
thermal ablation, and bridging to transplantation are contraindicated; however, TACE for small HCC
is frequently difficult and ineffective because of less hypervascularity and the presence of tumor
portions receiving a dual blood supply. Here, we report outcomes of superselective conventional
TACE (cTACE) for 259 patients with HCCs within three lesions smaller than 3 cm using guidance
software. Automated tumor feeder detection (AFD) functionality was applied to identify tumor
feeders on cone-beam computed tomography during hepatic arteriography (CBCTHA) data. When
it failed, the feeder was identified by manual feeder detection functionality and/or selective angiog-
raphy and CBCTHA. Regarding the technical success in 382 tumors (mean diameter, 17.2 ± 5.9 mm),
310 (81.2%) were completely embolized with a safety margin (5 mm wide for HCC ≤25 mm and
10 mm wide for HCC >25 mm). In 61 (16.0%), the entire tumor was embolized but the safety margin
was not uniformly obtained. The entire tumor was not embolized in 11 (2.9%). Regarding the
tumor response at 2–3 months after cTACE in 303 tumors excluding those treated with combined
radiofrequency ablation (RFA) or SR and lost to follow-up, 287 (94.7%) were classified into complete
response, seven (2.3%) into partial response, and nine (3.0%) into stable disease. The mean follow-up
period was 44.9 ± 27.6 months (range, 1–109) and the cumulative local tumor progression rates at
1, 3, 5, and 7 years were 17.8, 27.8, 32.0, and 36.0%, respectively. The 1-, 3-, 5-, and 7-year overall
and recurrence-free survival rates in 175 patients, excluding those with Child–Pugh C class, who
died of other malignancies, or who underwent combined RFA or hepatic resection, were 97.1 and
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68.7, 82.8 and 34.9, 64.8 and 20.2, and 45.3 and 17.3%, respectively. Our results indicate the efficacy of
superselective cTACE using guidance software for HCC within three lesions smaller than 3 cm.

Keywords: hepatocellular carcinoma; transarterial chemoembolization; tumor burden; computer
application software

1. Introduction

Transarterial chemoembolization (TACE) is widely performed for the treatment of
unresectable hepatocellular carcinoma (HCC). There are two major techniques of TACE:
conventional TACE (cTACE) using iodized oil (Lipiodol 480, Guerbet Japan, Tokyo, Japan)
and gelatin sponge (GS) particles; and TACE using drug-eluting beads (DEB-TACE). Al-
though several randomized controlled trials (RCT) conducted in Europe have indicated no
significant differences in therapeutic effects between the two techniques [1–3], DEB-TACE
is widely accepted in Western countries because it can provide an amelioration of quality
of life due to its lower liver toxicity, although its routine use is slightly more expensive over
the entire post-TACE life span [4]. On the other hand, cTACE is mainly performed in Asian
countries. Its costs are lower [4]; however, cTACE damages the normal liver more severely
compared with DEB-TACE [1,3–5], especially when it is performed non-selectively. The
latest RCT conducted in Japan showed the superiority of selective cTACE over selective
DEB-TACE for local tumor control [5]. Superselective cTACE, especially ultraselective
cTACE defined as cTACE at the most distal portion of the subsubsegmental hepatic artery,
can necrotize not only hypervascular tumor portions but also hypovascular tumor portions
and the surrounding liver, like radiofrequency ablation (RFA) [6–9], and we named this ef-
fect transarterial ablation (TAA) [10]. Therefore, cTACE should be performed as selectively
as possible to increase the therapeutic effects and reduce the adverse effects.

According to the latest European Society for Medical Oncology (ESMO) and American
Association for the Study of Liver Diseases (AASLD) guidelines, the indication of TACE
has been expanded to HCC of Barcelona Clinic Liver Cancer (BCLC) stage 0-A (BCLC-0
and A) when surgical resection (SR), thermal ablation, and bridging to transplantation
are contraindicated [11,12]. However, small HCCs are usually less hypervascular and the
identification of tumor feeders, as well as tumor staining, is frequently difficult on digital
subtraction angiography (DSA) [13,14]. The presence of tumor portions receiving a dual
blood supply may also reduce the therapeutic effect of TACE [15]. Therefore, the efficacy
of TACE for HCC of BCLC-0 and A is still uncertain.

Recently, cone-beam computed tomography (CT) (CBCT) and TACE guidance soft-
ware, including automated tumor feeder detection (AFD) functionality, have been devel-
oped and have contributed to improving the technical success rates and therapeutic effects
of TACE [13,16–24]. We hypothesized that the combination of superselective cTACE and
TACE guidance software can achieve sufficient therapeutic effects on small HCC. The
purpose of this study was to evaluate the efficacy of superselective cTACE under guidance
software for patients with HCC within three lesions smaller than 3 cm.

2. Materials and Methods

Our institutional review board (IRB) approved this retrospective study and individual
patient consent was waived (ID: 2021-15). Written informed consent related to TACE
treatment was also obtained from each patient before the procedure.

2.1. Patient Selection

TACE guidance software (EmboGuide, Philips Healthcare, Best, The Netherlands)
has been routinely used since September 2012, and prototype TACE guidance software
(EmboGuide App, Philips Healthcare) has also been used since May 2018 (The use of
prototype TACE guidance software has also been approved by our IRB [ID: 2017-091].
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Between September 2012 and December 2020, superselective cTACE, mostly ultraselec-
tive cTACE, was performed on 259 consecutive patients with HCC within three lesions
smaller than 3 cm who were not suitable for SR because of multiple foci/tumor location
or who refused SR. One-hundred sixty-nine patient had naïve HCC and 90 had newly
developed tumors after curative treatment (Cohort 1). The diagnosis of HCC was estab-
lished based on imaging findings: nodular staining and washout on dynamic CT and/or
gadoxetate disodium (EOB-Primovist; Bayer Healthcare, Osaka, Japan)-enhanced magnetic
resonance imaging (MRI). Furthermore, nodular staining on DSA and/or CBCT during
hepatic arteriography (CBCTHA), and nodular perfusion defects on CBCT during arterial
portography (CBCTAP), in addition to corona enhancement on the second-phase CBCTHA,
could confirm the diagnosis during TACE. Tumors that demonstrated no obvious early
enhancement on arterial-phase and hypointense signal on the hepatobiliary-phase of ga-
doxetate disodium-enhanced MRI images were also diagnosed as hypovascular (early)
HCCs [25]. The serum levels of tumor markers (α-fetoprotein [AFP] and protein induced
by absence of vitamin K or antagonist-II [PIVKA-II]) were also referenced.

Tumor hypervascularity, feeder detection by AFD, grades of portal vein visualization
with iodized oil, technical success of TACE, and complications were evaluated in Cohort 1.
Local tumor response and local tumor progression (LTP) were evaluated in 303 tumors in
195 patients (Cohort 2) because these could not be evaluated in 65 tumors in 55 patients
that were treated with combined RFA after TACE, one tumor in one patient that was
resected 2 months after TACE, and 13 tumors in eight patients that were lost to follow-up
without evaluation of the tumor response. Additionally, intrahepatic distant recurrence
(IDR), extrahepatic lesions, and prognosis were evaluated in 175 patients (Cohort 3) after
exclusion of the following patients from Cohort 2: eight patients with Child–Pugh class C
liver function, eight patients who died of other malignancies (colonic carcinoma [n = 3],
renal cell carcinoma [n = 1], cholangiocellular carcinoma [n = 1], nasopharyngeal carcinoma
[n = 1], leukemia [n = 1], and malignant lymphoma [n = 1]), and five patients in whom at
least one tumor was treated with combined RFA after initial TACE.

Patient characteristics of Cohort 1 are summarized in Table 1 and a flow chart of the
study cohort is shown in Figure 1.

Table 1. Patient characteristics of Cohort 1.

Patient Value

Number of patients 259
Sex, male/female 154/105

Age, y, mean (range) 73.4 ± 8.2 (39–91)
Child–Pugh Class (score) A (5/6)/B (7/8/9)/C (10) 202 (144/58)/49 (28/14/7)/8 (8)

ECOG performance status 0/1 241/18

Etiology Value

Hepatitis C 147
Hepatitis B 51

Hepatitis B + C 8
Alcohol 14

Hepatitis C + alcohol 2
Hepatitis B + alcohol 2

Nonalcoholic steatohepatitis 10
Primary biliary cirrhosis 3

Unknown 22

Tumor Value

Single/2/3 167/61/31
Size, mm, mean (range) 17.2 ± 5.9 mm (5–30)

AFP level, ng/mL, mean (range) 85.7 ± 396.6 (2–3950)
PIVKA-II level, mAU/mL, mean (range) 186.7 ± 1278.0 (7–18,371)
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Table 1. Cont.

Prior Treatment Value

None 173
Hepatectomy 16

TACE 31
RFA 13

Hepatectomy + TACE/RFA/HAIC/radiation 9/2/1/1
TACE + RFA 13

HAIC 1
HAIC + TACE 1

Radiation 2
Abbreviations: AFP, alpha fetoprotein; ECOG, European Cooperative Oncology Group; HAIC, hepatic arterial
infusion chemotherapy; PIVKA-II, protein induced by absence of vitamin K or antagonist-II; RFA, radiofrequency
ablation; TACE, transarterial chemoembolization.
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Figure 1. Flow chart of the study cohort. Abbreviation: RFA, radiofrequency ablation.

2.2. Protocol of CBCT and Angiography

All CBCT images were obtained with a 38 × 30 cm flat panel detector C-arm angio-
graphic unit (Allura Xper FD20 or AlluraClarity Xper FD20; Philips Healthcare). Three
hundred and twelve projections at 120 kV and 50–325 mA were acquired over an angu-
lar range of 240 degrees during a 5.2-s rotation of the C-arm around the patient in the
expiratory phase. The 3-dimensional (3D) volume reconstructed images were displayed
within 3 s after acquisition. The resulting CBCT had an isotropic resolution of 0.6 mm for
a 250 × 250 × 194 mm field of view (FOV) (matrix size, 384 × 384 × 296; pixel binning,
4 × 4). The maximum radiation dose of a single CBCT scan measured on a CT phantom
was 14 mGy [19].

After a 4-F 25 cm sheath introducer (Terumo, Tokyo, Japan) was inserted into the right
femoral artery, a 4-F shepherd hook catheter (Angiomaster, Terumo) was navigated into the
superior mesenteric artery (SMA), then CBCTAP was performed. During CBCTAP, 40 mL
of contrast material (370 mg I iopamidol (Iopamiron 370; Bayer, Germany)) was injected
at a rate of 3 mL/s through a catheter after the administration of 2.5 µg of prostaglandin
E1 (Liple; Tanabe Mitsubishi, Osaka, Japan). The scan began 25 s after the beginning of
the injection of contrast material. Then, arteriograms of SMA and the celiac artery were
obtained by injection of 20 mL of contrast material at a rate of 5 mL/s. Thereafter, a common
or proper hepatic arteriogram was achieved using a 4-F twist catheter (Hanako Medical,
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Saitama, Japan) by injecting 12 mL of contrast material at a rate of 3 mL/s. Subsequently,
dual-phase CBCTHA was obtained by injection of 24 mL of contrast material at a rate of
2 mL/s. The first scan began 7 s after the beginning of the injection of contrast material
and the second scan began 30 s after the end of the first scan. If the 4-F catheter could not
be navigated into the common or proper hepatic artery, CBCTHA at the proper, left, or
right hepatic artery was carried out using a microcatheter (Progreat ∑ [1.9-F tip], Terumo
Clinical Supply, Kakamigahara, Japan, Asahi Veloute [1.7-F tip], Asahi Intecc, Seto, Japan,
or Asahi Veloute Ultra [1.5-F tip], Asahi Intecc) by injecting 12 mL of contrast material at a
rate of 1 mL/s. Dual-phase CBCT during arteriography (CBCTA) at the extrahepatic artery,
such as the right inferior phrenic artery (IPA), was also performed by injecting 12 mL of
contrast material at a rate of 1 mL/s if necessary.

2.3. Tumor-Feeder Detection Using TACE Guidance Software

TACE guidance software was used at a workstation (XtraVision Interventional Work-
station; Philips Healthcare) with the techniques described previously [19,21–24]. First, a vir-
tual target lesion including a safety margin (approximately 5 mm wide for tumors <25 mm,
and 10 mm wide for tumors ≥25 mm around the tumor) was created on the first-phase
CBCTHA images, referencing CBCTAP and/or second-phase CBCTHA images. If the tu-
mor could not be identified on CBCT images, it was identified by the overlay image fusion
technique between the first-phase CBCTHA and conventional CT or MRI images (Figure 2).
When all target lesions were created on the tumors, all potential feeders were automatically
highlighted from the start position of vessel tracking to all targets on CBCTHA images
and a 3D arteriogram. In EmboGuide, the start position of vessel tracking was decided
using the “Set Catheter” functionality and the “Auto Detect” button was pressed to identify
the tumor feeders. Then, the tumor feeders were identified within a few seconds. In
EmboGuide App, the start position was automatically set on the catheter tip and the tumor
feeders were highlighted instantaneously during the creation of each target lesion. When
AFD could not identify tumor feeders, reanalysis was performed after enlargement of the
target lesion. In EmboGuide, it was manually enlarged. In the EmboGuide App, concentric
enlargement of the virtual target lesion was performed by clicking a “D+” dilation button.
During this process, the highlighted tumor feeders were instantly changed according to
the size of the target lesion. If excessive tumor feeders were identified, the target was
again reduced in size using the “D-” button. When AFD could not identify appropriate
tumor feeders, manual feeder detection (MFD) was performed using the “Add Feeder”
functionality. A branch in the vicinity of the target lesion was determined as a tumor feeder
and a cursor was placed on it on a 3D arteriogram or CBCTHA image. Then, the vessel
was automatically traced and highlighted on the display. The process of “Add feeder” was
the same for both EmboGuide and the EmboGuide App. The AFD process was usually
finished within 2 min.
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Figure 2. Overlay image fusion technique. (a) Arterial-phase images of gadoxetate disodium-
enhanced MRI showed overt HCC (arrowhead) and well-differentiated HCC (red arrow).
(b) Hepatobiliary-phase images also depicted early HCC (blue arrow). CBCTAP (c) and first-phase
CBCTHA (d) showed overt HCC (arrowhead) and well-differentiated HCC (red arrow), but early
HCC could not be identified. (e) Thus, early HCC was segmented after overlay image fusion between
the first-phase CBCTHA and MRI images. (f) Common hepatic arteriogram showed only one tumor
(arrow). (g) On the other hand, AFD could identify all tumor feeders. (h) Then, all tumor feeders were
embolized without performing selective DSA of each feeder. (i) Iodized oil was densely accumulated
in the highly limited area, including the tumors on unenhanced CT performed 1 week after TACE.
(j) MRI performed 2 months after TACE showed that the embolized areas were necrotized regardless
of tumor vascularity. (k) The tumors have remained well controlled for 4 years. Figure 2a–d,f–j are
reprinted with permission from [24].

2.4. TACE Procedure

Nasal inhalation of 3 L of oxygen was performed throughout the procedure. After the
acquisition of CBCTHA images, an analgesic (Pentagin, Daiichi-Sankyo, Tokyo, Japan) was
administered intravenously. Then, a microcatheter was advanced into the tumor feeder
distal to the subsubsegmental hepatic artery. When the branch identified by AFD was
determined to be a true tumor feeder, it was embolized without performing selective DSA
or CBCTHA.

After the injection of 0.5 mL of 2% lidocaine (Terumo) to prevent pain and vasospasm,
a mixture of 2–8 mL of iodized oil and chemotherapeutics (10–30 mg of epirubicin (Farmor-
bicin; Pfizer, Tokyo, Japan) and 2–6 mg of mitomycin C (Mitomycin; Kyowa Hakko Kirin,
Tokyo, Japan)) was slowly injected, followed by a GS slurry created from 1 mm-diameter GS
particles (Gelpart; Nippon Kayaku, Tokyo, Japan) crushed into approximately 0.2–0.5 mm
particles by pumping with a three-way stopcock valve and two 2.5 mL syringes. The ratio
of chemotherapeutic solution to iodized oil was 1:3. The total amount of iodized oil was
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determined based on the tumor size, which was almost equal to the sum of the diameters
of the target tumors. If the tumor was supplied by multiple feeders, it was separately
injected according to the tumor volume supplied by each feeder. The injection of iodized
oil emulsion was stopped when the flow of the tumor feeder stalled or the portal veins
were clearly opacified with iodized oil near the tumor. When arterial flow was stopped
before sufficient portal vein visualization, iodized oil injection was paused and 0.5 µg of
prostaglandin E1 (Liple) or 0.5 mL of lidocaine was administered through the catheter to
increase arterial flow and/or the microcatheter was advanced more distally and iodized
oil was reinjected under a semi-wedged condition (Figure 3). We usually tried the latter
technique, if possible. However, iodized oil injection was ceased when the tumor-feeding
branch did not flow despite several attempts. The endpoint of GS slurry injection was
complete occlusion of a tumor feeder.
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Figure 3. More distal advancement of a microcatheter during TACE. (a) Gadoxetate disodium-
enhanced MRI showed a tumor of 12 mm in diameter (arrows) with a hypervascular focus. This
patient also had another overt HCC 20 mm in diameter in the left hepatic lobe. (b) CBCT studies
also depicted the tumor (arrows). Note that the second-phase CBCTHA image depicted corona
enhancement around the hypervascular focus. (c) Common hepatic arteriogram showed no tumor
stains. (d) AFD could identify one tumor feeder despite artifacts due to insufficient breath holding.
(e) TACE was performed at the proximal portion of the tumor feeder (arrow), but the flow stalled
during iodized oil injection. (f) Thus, the microcatheter was advanced more distally into the tiny
tumor feeder (arrow) and iodized oil was reinjected. As a result, Grade 2 portal vein visualization
could be achieved. (g) CT performed 1 week after TACE showed a sufficient safety margin around
the tumor. (h) Another tumor was also successfully embolized. (i) Both tumors have remained
well controlled for 1 year and 4 months. Abbreviations: HBP, hepatobiliary-phase; DWI, diffusion-
weighted image.

2.5. Endpoint of the TACE Procedure

TACE was finished when all tumor stains disappeared and the tumor feeders were oc-
cluded on DSA. CBCT after TACE (LipCBCT) was not routinely performed until May 2018
when accumulation of iodized oil in the target tumor was identified on fluoroscopy. Since
May 2018, LipCBCT has been routinely performed at the end of the procedure. When
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LipCBCT showed incomplete embolization of the tumor, TACE was added when additional
tumor feeder(s) could be identified by TACE guidance software, DSA, and/or CBCT.

2.6. Follow-Up

All patients underwent unenhanced CT 1 week after TACE to check for iodized oil
distribution in the liver and were followed up by dynamic CT and/or MRI performed
every 2–3 months after TACE to investigate any tumor recurrence. In most patients, CT
and MRI were performed in turn [26]. If tumor recurrence was demonstrated, additional
treatment was performed according to the patient and tumor conditions, if possible.

2.7. Assessment
2.7.1. Tumor Hypervascularity on DSA and CBCTHA

Tumor hypervascularity was evaluated based on whether tumor staining was demon-
strated on a common, proper, or left or right hepatic arteriogram. If DSA showed no
tumor staining, the tumor was defined as angiographically occult HCC. Additionally, it
was evaluated whether the tumor had hypovascular tumor portions in the first-phase
CBCTHA images.

2.7.2. Detectability of Tumor-Feeders by AFD

The number of embolized arterial branches of each tumor was counted and the
detectability of tumor feeders by AFD was also evaluated.

2.7.3. Grades of Portal Vein Visualization with Iodized Oil

Portal vein visualization with iodized oil was evaluated by a spot digital radiograph
obtained during the TACE procedure. Degrees of portal vein visualization were divided
into three grades: (1) Grade 0 (no visualization), no obvious branching portal vein visu-
alization; (2) Grade 1 (slight visualization), visualization of the portal vein adjacent to
the tumor; and (3) Grade 2 (marked visualization); marked visualization of the portal
veins in the whole embolized area or extending into surrounding non-embolized areas [6].
Additionally, grades of portal vein visualization were compared after categorizing them
into three sizes of a microcatheter.

2.7.4. Technical Success of cTACE

The embolized area was defined as the area where iodized oil was retained on un-
enhanced CT performed 1 week after TACE. The minimum safety margin was defined
as 5 mm for tumors <25 mm and 10 mm for tumors ≥25 mm, based on a report by
Sasaki et al. [27]. The embolized area was evaluated in three dimensions (axial, coronal,
and sagittal views) on reviewing reconstructed CT images on the image viewer (Shade-
Quest/Report, Fujifilm, Tokyo, Japan) (Figure 3). According to CT findings, the technical
success of TACE was classified into three grades: (1) Grade A, the embolized area included
the entire tumor with a circumferential safety margin; (2) Grade B, the embolized area
included the entire tumor but the safety margin was not uniformly obtained in parts; and
(3) Grade C, the embolized area did not include the entire tumor [14]. Accumulation of
iodized oil in the hypovascular tumor portion was also evaluated.

2.7.5. Complications

Complications were assessed based on Common Terminology Criteria for Adverse
Events version 5.0 [28].

2.7.6. Tumor Response, Tumor Recurrence, and Prognosis

Tumor response was evaluated on dynamic CT or MRI performed at 2–3 months after
TACE using the modified Response Evaluation Criteria in Solid Tumors (mRECIST) [29].
Two radiologists (S.M. and M.Y., with 35 and 25 years of experience in liver imaging and
interventional procedures, respectively) finally evaluated all CT and MRI images in con-
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sensus. Tumor recurrence was classified into three categories: LTP; IDR; and extrahepatic
spread. Follow-up of this cohort was censored on 7 October 2021.

2.7.7. Statistical Analysis

LTP, IDR and OS rates were calculated by the Kaplan–Meier method. The incidences of
LTP between Grade A and B tumors and Grade 1–3 tumors were compared by the log-rank
test. Comparisons of grades of portal vein visualization and the size of a microcatheter tip
were also performed by a Chi-square test. Statistical calculations were performed using
software (Excel, Microsoft, Redmond, WA, USA). All statistical analysis was two-sided and
a p-value less than 0.05 was considered to indicate a significant difference.

3. Results
3.1. Tumor Hypervascularity on DSA and CBCTHA

Among 382 tumors, 121 (31.7%) showed no tumor staining on DSA, but the first-
phase CBCTHA showed hypervascularity in the entire tumor (n = 94) or some tumor
parts (n = 27). Additionally, the first-phase CBCTHA images depicted hypovascular tumor
portions in 30 other HCCs showing tumor staining on DSA. In total, 57 (14.9%) tumors had
hypovascular tumor portions on first-phase CBCTHA images (Figures 2–4).
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3.2. Embolized Branches 

Figure 4. Peritumoral recurrence at the tumor portion without a safety margin. (a) Gadoxetate
disodium-enhanced MRI showed a tumor of 27 mm in diameter with a hypervascular focus (arrow).
(b) CBCT studies also showed the hypervascular focus (arrow) in the isovascular tumor with de-
creased portal blood. (c) Common hepatic arteriogram showed tumor stain corresponding to the
hypervascular focus (arrow). (d) AFD could identify two tumor feeders. (e) Then, each tumor feeder
was subsequently embolized and iodized oil was densely accumulated in the tumor and Grade 1
portal vein visualization was obtained. (f) However, CT performed 1 week after TACE showed that
the sufficient safety margin was not obtained at the ventral side of the lower tumor portion (arrow).
(g) Gadoxetate disodium-enhanced MRI performed 5 years and 8 months after TACE showed the
recurrent tumor adjacent to the tumor portion without a safety margin (arrow). (h) Additional TACE
was performed 6 years and 4 months after the first TACE and iodized oil was densely accumulated
in the recurrent tumor (arrow) on CT performed 1 week after additional TACE. Abbreviation: HBP,
hepatobiliary phase.

3.2. Embolized Branches

In total, 737 arterial branches (mean, 1.9 ± 0.9/session; range, 1–5) were embolized:
719 hepatic arterial branches and 18 extrahepatic arterial branches. Seven-hundred and
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20 arterial branches (719 hepatic arterial branches and one branch of the cystic artery)
were embolized as tumor feeders. Among them, 645 (89.6%) tumor feeders could be
identified by AFD, although mis-tracing infrequently occurred mainly at the proximal
portion (Figure 5). Seventy-five (10.4%) tumor feeders could not be identified by AFD,
and they were searched for using MFD, selective DSA, and/or CBCTHA. On the other
hand, 59 arterial branches, including extrahepatic arteries, such as the cystic and right
gastric arteries, were misdiagnosed as tumor feeders. Additionally, 36 branches that were
detected by AFD could not be identified on DSA and/or fluoroscopy during test injection
of contrast material. TACE was performed proximal to the orifice of 27 uncertain tumor
feeders. In the remaining nine uncertain feeders, TACE was not performed because it was
considered a false feeder or embolization of a relatively large liver volume was expected
by additional TACE.
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Figure 5. Mis-tracing of a tumor feeder. (a) Dynamic CT showed well-differentiated HCC of
23 mm in diameter (arrows) in the caudate lobe. The approximately 70% of tumor portions showed
hypervascularity. (b) CBCT studies also depicted the hypovascular tumor portion with decreased
portal blood around the hypervascular tumor portion (arrows). (c) Common hepatic arteriogram
showed no tumor stains. The caudate artery (A1) was also unclear. The superior lateral subsegmental
artery of the left hepatic artery arose from the left gastric artery (not shown). (d) AFD identified
the tumor-feeding A1 arising from the medial subsegmental artery (A4). (e) Selective arteriogram
of A4 showed A1 (arrow). (f) Selective arteriogram of A1 showed faint tumor staining (arrow).
(g) Then, two branches were subsequently embolized and Grade 2 portal vein visualization could
be achieved. Note that AFD mis-traced one tumor feeder (pink on Figure 5d). (h) Unenhanced CT
performed 1 week after TACE showed dense iodized oil accumulation in almost the entire tumor
(arrow). (i) Arterial-phase CT performed 3 months after TACE showed the disappearance of the
Spiegel lobe. (j) The tumor has remained well controlled for 5 years and 7 months after TACE.

Blood supply to the tumor from the right superior adrenal artery that was identified by
AFD using the data of CBCTA at the right IPA and iodized oil accumulation was confirmed
during TACE of this vessel. Sixteen branches of the right IPA were embolized without
CBCTA and AFD analysis in tumors protruding into the diaphragm or bare area from the
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liver surface. The branch of the right IPA was embolized first before TACE of the hepatic
arterial branches (Figure 6).
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Figure 6. Virtual parenchymal perfusion functionality. (a) The first-phase CBCTHA depicted two
HCCs of 28 mm and 7 mm in diameter, respectively (arrows). (b) The tumor in S8/4 was depicted
on a common hepatic arteriogram, but a small HCC in S3\ could not be depicted. (c) AFD could
identify three tumor feeders for the tumor in S8/4 and one feeder for the tumor in S3. (d) First,
the anterior branch of the right IPA was embolized because the tumor was protruding into the
diaphragm from the liver surface. During TACE of this branch, iodized oil accumulation in the
tumor was confirmed on a spot radiograph (arrows). Then, one branch of A4 and two branches of
A8 were subsequently embolized and Grade 2 portal vein visualization was obtained. Finally, one
branch of A3 was embolized, but the portal veins were not opacified (Grade 0). Selective DSA of
each vessel was not performed. (e) The virtual embolized areas and the real embolized areas on
CT performed 1 week after TACE were well correlated. (f) The tumor in S8/4 has remained well
controlled and the tumor in S3 has disappeared 4 years and 1 month after TACE. Abbreviations:
S8/4, boundary between segments 8 and 4; S3, segment 3; RIPA, right inferior phrenic artery; A4,
medial subsegmental artery of the left hepatic artery; A8, anterior superior subsegmental artery of
the right hepatic artery; A3, superior lateral subsegmental artery of the left hepatic artery.

3.3. Grades of Portal Vein Visualization

Two hundred and thirty-five (61.5%) tumors were classified into Grade 2 (Figures 2, 3, 6 and 7),
104 (27.2%) into Grade 1 (Figure 4), and 43 (11.3%) into Grade 0 (Figure 6). Grade 2 portal
vein visualization was achieved in 15 (62.5%) of 24 tumors using a 1.9-F tip microcatheter
(Figure 7), 104 (61.5%) of 169 tumors using a 1.7-F (Figures 2 and 5), and 116 (61.4%) of
189 tumors using a 1.5-F (Figures 3 and 6). There were no significant differences between
the grades of portal vein visualization or size of the microcatheter tip (p = 0.994).
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3.4. Technical Success of TACE

Three hundred and ten (81.2%) tumors were classified into Grade A (Figures 2, 3 and 5–7),
61 (16.0%) into Grade B (Figure 4), and 11 (2.9%) into Grade C. Additional TACE was
performed for eight of 11 Grade C tumors 4–34 months (10.8 ± 10.9) after the first TACE.
At the second TACE, one residual tumor was fed by the right middle adrenal artery arising
from the aorta. Four tumors were supplied by another hepatic branch. However, the
remaining three were supplied by the same feeder; therefore, technical failure, such as air
embolism or excessive advancement of a microcatheter, was suspected.

Regarding technical success in 121 angiographically occult HCCs, 98 (81.0%) tumors
were classified into Grade A (Figures 2, 3, 5 and 6), 18 (14.9%) into Grade B, and five (4.1%)
into Grade C. Among 57 tumors with hypovascular tumor portions, 32 (56.1%) tumors
showed dense accumulation in the entire or most (≥80%) hypovascular tumor portions
(Figures 2–5), 16 (28.1%) showed dense accumulation in part (<80%) of the hypovascular
tumor portions, and 10 (17.5%) showed sparse or no accumulation in the hypovascular
tumor portions.

3.5. Complications

Besides mild post-embolization syndrome and slight transit elevation of serum liver
enzymes, pleural effusion and/or ascites developed or increased temporarily in 37 (14.3%)
patients. In five (1.9%) patients, including three who underwent TACE of the right IPA,
a partial atelectasis of the right basal lung was present. Biloma developed in two (0.8%)
patients and liver abscess in one (0.4%). The patient who presented with liver abscess had
a history of pancreaticoduodenectomy for pancreatic carcinoma. One biloma and liver
abscess were successfully treated with percutaneous transhepatic drainage. These two
(0.8%) complications were classified into Grade 4 adverse events (AE). Other complications
were classified into Grade 1–2 AE.
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3.6. Tumor Response and Local Tumor Progression

Regarding the early response tumor by tumor, 287 (94.7%) of 303 tumors were classi-
fied into complete response (CR), seven (2.3%) into partial response, and nine (3.0%) into sta-
ble disease. During the follow-up period, LTP developed in 81 tumors (26.7%) with a mean
interval of 14.9± 26.1 months (range, 2–68). Durable local CR was maintained in 222 (73.3%)
tumors with a mean interval of 41.7 ± 25.8 months (range, 1–109) (Figures 2, 3 and 5–7).
The cumulative LTP rates at 1, 3, 5, and 7 years were 14.2, 27.8, 32.0, and 36.0%, respectively.
The LTP rates of Grade 2, 1, and 0 tumors at 1, 3, 5, and 7 years were 8.2, 20.6, and 31.8;
18.8, 42.5, and 51.9; 20.9, 53.5, and 51.9; and 24.4, 53.5, and 51.9%, respectively. There were
significant differences in LTP between Grades 2 and 1 (p = 0.0004) and between Grades
2 and 0 (p < 0.0001). There was no significant difference in LTP between Grades 1 and
0 (p = 0.259) (Figure 8). Regarding the relationship between the grades of portal vein
visualization and LTP, 34 (18.2%) of 187 Grade 2 tumors, 31 (38.3%) of 81 Grade 1 tumors,
and 16 (45.7%) of 35 Grade 0 tumors locally progressed. The LTP rates of Grade A and B
tumors at 1, 3, 5, and 7 years were 9.4 and 20.5, 22.2 and 39.8, 27.0 and 42.8, and 27.0 and
51.0%, respectively. The LTP rates of Grade A tumors were significantly lower than Grade
B tumors (p = 0.006). Regarding the relationship between technical success and LTP, 50
(20.7%) of 241 Grade A tumors, 20 (39.2%) of 51 Grade B tumors, and all 11 (100%) Grade
C tumors locally progressed. Of 151 tumors with Grade 2 portal vein visualization and
Grade A technical success, durable CR during the follow-up period could be achieved in
132 (87.4%) tumors with a mean interval of 42.3 ± 25.8 months (range, 1–109). Regarding
the relationship between the presence of hypovascular tumor portions and LTP, 16 (28.1%)
of 57 tumors locally progressed.
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3.7. Prognosis

All patients were followed up for 3–109 months (mean, 47.6 ± 26.7). Apart from LTP,
IDR developed in 92 (52.6%) of 175 patients during a mean follow-up of 21.6± 23.6 months
(range, 3–71). The cumulative IDR rates at 1-, 3-, 5- and 7-year were 18.1, 51.7, 64.7, and
70.1%, respectively (Figure 8). Extrahepatic spread also developed in four patients (lymph
node (n = 1), lymph node and lung (n = 1), bone (n = 1), and bone and left adrenal gland
(n = 1)). These lesions were treated with additional TACE (n = 79, 1–11 times, mean;
2.5 ± 1.8), TACE plus RFA (n = 3, 1–2 times; mean, 1.7), TACE plus systemic therapy (n = 5,
1–5 TACE sessions; mean, 3 times), TACE plus systemic therapy and radiotherapy (RT)
(n = 1, 5 TACE sessions), TACE plus RT (n = 3, 2–8 TACE sessions; mean, 4.3 times), TACE
plus hepatic arterial infusion chemotherapy (n = 1, 5 TACE sessions), RFA alone (n = 1),
and RT alone (n = 1).

The cumulative OS rates at 1, 3, 5, and 7 years were 97.1, 82.8, 64.8, and 45.3%,
respectively, and the median survival time (MST) was 75.4 months. Recurrence-free
survival (RFS) rates at 1, 3, 5, and 7 years were 68.7, 34.9, 20.2, and 17.3%, respectively,
and the MST was 22.0 months (Figure 9). Fifty-seven (32.6%) patients died between 3 and
94 months (mean, 42.5 ± 26.3) due to tumor progression (n = 26), hepatic failure (n = 13),
variceal bleeding (n = 1), other liver-unrelated diseases (n = 11), and sudden death due
to unknown causes (n = 6), including two early deaths within 1 year. Among them, 23
(40.4%) of 57 patients had no viable tumors at death. One hundred and eighteen (66.7%)
patients survived from 10–109 months (mean, 50.0 ± 26.8) with (n = 31) or without (n = 87)
viable tumors.
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4. Discussion

According to the global HCC treatment algorithms, local ablation therapy, SR, or
transplantation is recommended for HCC of BCLC-0 or A [11,12]. However, local ablation
therapy is usually difficult for tumors adjacent to the major vessels or other organs, as well
as for tumors that cannot be depicted on ultrasound or CT. SR is frequently invasive for
tumors located in the central portion of the liver. Transplantation is also a limited option
because of donor-liver shortages with resultant long waiting times [30]. With advancement
of TACE technology, therapeutic effects of TACE have improved. As a result, TACE is now
considered an alternative treatment option for small HCC [11,12].

Therapeutic effects of TACE are influenced by tumor dimensions and the number
of TACE sessions. Golfieri et al. [31] reported that cTACE was most effective for naïve
HCC ≤2 cm. However, small HCC may have well-differentiated tumor portions that are
generally fed by both arterial and portal blood [15]. Additionally, 46% of HCCs ≤5 cm, and
even 29% of HCCs ≤2.5 cm, histologically showed micrometastases around the tumor [27],
mainly in the drainage area (corona) of the tumor [32,33]. They also receive a dual blood
supply [15]. Therefore, non-selective cTACE has a limited therapeutic effect on HCC≤2 cm
and tumor portions receiving a dual blood supply were more likely to survive in 64%
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of tumors [15]. On the other hand, superselective cTACE could achieve complete tumor
necrosis and peritumoral necrosis in 80–83% of tumors, including daughter nodules and
capsular invasion [7,34]. Therefore, selective embolization of the tumor area including
the drainage area (safety margin) is essential for small HCCs [14]. However, TACE can
frequently fail to embolize the target tumors completely when it is performed using DSA
alone, because identification of feeders of small HCC, as well as the tumor itself, is difficult
on DSA [13,14]. In the present study, 31.7% of tumors were angiographically occult HCC.
Additionally, identification of a small branch mainly supplying the safety margin is difficult
even on selective DSA because tumor staining is not usually demonstrated [14]. Therefore,
the use of CT or CBCT and TACE guidance software is mandatory in TACE for small HCC.
AFD can identify the branches supplying not only the tumor but also safety margin by
adding a sufficient safety margin to the virtual target lesion. This is a notable advantage
of TACE guidance software, and AFD could identify 89.6% of tumor feeders and 81.2%
of tumors could be completely embolized in the present study. Additionally, 81.0% of
angiographically occult HCCs were successfully embolized and the success rate was almost
equal to that of HCC showing tumor staining. This indicates that TACE guidance software
can expand the indication of ultraselective cTACE to angiographically occult HCC. Another
advantage of AFD is that it can reduce the procedural time and total doses of radiation
exposure and contrast material [35], although it was not evaluated in the present study.
However, AFD might still miss some tumor feeders, and 18.8% of tumors resulted in Grades
B and C technical success. Excessive advancement of a microcatheter might also lead to
incomplete embolization. To help determine the optimal catheter position, our prototype
TACE guidance software has a novel function (Virtual Injection, Philips Healthcare) to
visualize the virtual embolized area according to the position of the virtual catheter tip in
the tumor feeder [36,37]. The preliminary results using this software were promising, and
an increase in the technical success of TACE can be expected [37].

There is a relationship between LTP and grades of portal vein visualization with
iodized oil. In our previous analysis, massive peritumoral necrosis was histologically
observed in all tumors with Grade 2 portal vein visualization [7]. Additionally, LTP rates
of the Grade 2 tumor group were significantly lower than those of Grade 1 and 0 tumor
groups [6]. These results suggest that iodized oil has sufficient embolic effects to occlude
the portal vein. Moreover, active injection of iodized oil into the distal hepatic artery can
increase the total dose of iodized oil in the hypovascular tumor portion [8–10]. As a result,
the therapeutic effect on small HCC can be enhanced. The present study also confirmed
the same results. Additionally, the incidence of Grade 2 portal vein visualization was
higher than in our previous study conducted using a 2-F tip microcatheter. Although the
outer diameters of a microcatheter with a 2- and 1.9-F tip were almost equal, we suggest
that advancement of microcatheter-guidewire technologies can avoid vascular spasm or
injury and prevent a decrease in arterial flow via catheter manipulation. As a result, a
larger amount of iodized oil can be injected into the tumor and surrounding liver. Now,
we routinely use a 1.5-F tip microcatheter in TACE, although the incidence of Grade 2
portal vein visualization was almost equal among 1.5-, 1.7-, and 1.9-F tip microcatheters.
A thinner microcatheter can facilitate catheterization not only into a distal portion of the
hepatic and extrahepatic arteries but also into a tiny tumor feeder and can minimize the
damage to the normal liver and other organs. This is a significant advantage, especially for
patients with Child–Pugh class B [38]. On the other hand, the smaller microcatheter has a
thinner lumen; therefore, the flow rate of contrast material is also lower. However, in our
procedure, the tumor and tumor feeder are identified by CBCT data and most selective
DSA can be skipped [23]; therefore, a high flow rate is not required for a microcatheter and
tumor feeders can also be identified by CBCTHA data obtained using a 1.5-F microcatheter.
Additionally, more distal advancement of a microcatheter can enhance the embolic effect
on hypovascular HCC [8–10]. In the present study, iodized oil accumulation in more than
80% of the hypovascular tumor portion was achieved in 59.6% of tumors, and durable CR
was also achieved in 62.5% of tumors.
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There are a few reports regarding the OS and RFS of patients with HCC of BCLC-0
and A. In a report by Wang et al. [39], the 1-, 3-, and 5-year cumulative OS and RFS rates
were 96.1 and 84.3, 87.8 and 59.9, and 77.2 and 50.8% in patients with HCC of BCLC-0
treated with SR, respectively, and those were 91.6 and 61.2, 73.5 and 28.3, and 57.4 and
14.1% in patients treated with RFA, respectively. The SR group had significantly better
OS and RFS rates than the RFA group (p = 0.001 and <0.001, respectively). In patients
with HCC of BCLC-A, the 1-, 3-, and 5-year cumulative OS and RFS rates were 96.1 and
84.3, 87.8 and 59.9, and 77.2 and 50.8% for the SR group and 91.6 and 61.2, 73.5 and 28.3,
and 57.4 and 14.1% for the RFA group, respectively. The SR group had significantly better
OS and RFS rates than the RFA group (p = 0.001 and <0.001, respectively). There was
no significant difference in OS between RFA and SR groups (p = 0.088) after adjusting
covariates in multivariate analysis; however, the RFA group had a significantly higher risk
of recurrence than the SR group. Ryu et al. [40] reported excellent outcomes of operative
microwave ablation for patients with HCC within three lesions smaller than 3 cm, and
the OS and RFS rates at 1, 3, 5, and 10 years were 98 and 91, 87 and 60, 73 and 42, and 39
and 21%, respectively. Yang et al. [41] reported that the RFS rate in patients with solitary
HCC ≤3 cm was significantly worse in the cTACE group than in the SR and RFA groups
after inverse probability weighting, although the weighted OS was equal among the three
groups. The RFS rate in the present study was better than that in a report by Yang et al.
(almost equal to that of their RFA group) [41] but was also worse than that of SR and
microwave ablation therapy. This might be caused by high LTP rates of TACE therapy,
and it might also promote IDR [23]. As mentioned above, inflow of iodized oil into the
portal vein around the tumor can reduce LTP; however, it is influenced by the vascularity
of the tumor and microcirculation in the surrounding liver, because iodized oil reaches
the portal vein through the drainage of the tumor and pre-existing arterioportal shunts,
such as the peribiliary vascular plexus [6,9,42]. It is also influenced by the catheter position
during TACE because iodized oil injection under a semi-wedged condition can increase
the volume of iodized oil that flows into the portal vein [9,10]. However, the microcatheter
cannot be advanced to the optimal position in some tumor feeders due to vessel angulation
caused by chronic liver disease. Therefore, peritumoral necrosis cannot always be achieved,
and this is a technical difficulty of TACE for small HCC.

There are several limitations to the present study. First, this was a retrospective
study conducted in a single institution. Second, not all hypovascular tumors detected
by gadoxetate disodium-enhanced MRI were treated. Any tumor at the periphery of the
liver expected to be easily embolized might be preferentially selected. In addition, there is
no consensus on the indication of TACE for hypovascular HCC. Third, the magnitude of
TACE was not uniform in each tumor. When selective catheterization into the tumor feeder
arising from the artery supplying a large liver volume was impossible, complete blockage
of the entire embolized branches was avoided to reduce liver damage. This might markedly
influence the grade of portal vein visualization and incidence of LTP. Fourth, TACE was
performed for 167 patients with a single HCC lesion because most of them selected TACE
treatment, not SR, and were referred to our hospital. Finally, the patient backgrounds
were not very homogenous; therefore, we evaluated outcomes using an irregular approach.
Technical success was evaluated in all tumors including tumors that were developed in
patients with Child–Pugh C class or were treated with TACE plus RFA, because we treated
all tumors with a curative intent. Additionally, we wanted to evaluate the technical success
of TACE using a large number of tumors and avoid the bias that additional RFA might be
performed for tumors, resulting in unsuccessful TACE. However, the patients treated with
TACE plus RFA were excluded from the evaluation of LPT and prognosis, and the patients
with Child–Pugh C class and patients with other malignancies that developed after TACE
were also excluded from the evaluation of prognosis, because the rates of LPT and survival
might be strongly influenced by such patients.
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5. Conclusions

Superselective cTACE under guidance software has a sufficient therapeutic effect on
HCC within three lesions smaller than 3 cm and can expand the indication of TACE to
angiographically occult HCC and some types of hypovascular HCC.
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