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Simple Summary: Cancer is the second leading cause of death in humans, and in 2020, 9.8 million
cancer-related deaths were reported worldwide. In the last 20 years, it has become apparent that
small vesicles released by cancer cells, referred to as extracellular vesicles (EVs), are key players
in cell–cell communication in the tumor environment, and as a consequence, research in this area
has increased dramatically. This review summarizes the recent advances in our understanding of
how EVs serve as mediators of communication between cancer cells and with their surroundings
in order to promote the acquisition of specific characteristics that permit their aberrant behavior.
In addition, we dwell on how EVs aid in the development of drug resistance, which is a frequent
cause of treatment failure in chemotherapy. Finally, we discuss an exciting new area of research
that envisions harnessing the unique characteristics of EVs for therapeutic and diagnostic purposes
(theranostics). Taken together, the available literature suggests that advances in our understanding
of EV biology in the next decades will likely be critical to achieving more effective treatments in
cancer patients.

Abstract: Cancer remains a leading cause of death worldwide despite decades of intense efforts to
understand the molecular underpinnings of the disease. To date, much of the focus in research has
been on the cancer cells themselves and how they acquire specific traits during disease development
and progression. However, these cells are known to secrete large numbers of extracellular vesicles
(EVs), which are now becoming recognized as key players in cancer. EVs contain a large number
of different molecules, including but not limited to proteins, mRNAs, and miRNAs, and they are
actively secreted by many different cell types. In the last two decades, a considerable body of evidence
has become available indicating that EVs play a very active role in cell communication. Cancer cells
are heterogeneous, and recent evidence reveals that cancer cell-derived EV cargos can change the
behavior of target cells. For instance, more aggressive cancer cells can transfer their “traits” to less
aggressive cancer cells and convert them into more malignant tumor cells or, alternatively, eliminate
those cells in a process referred to as “cell competition”. This review discusses how EVs participate
in the multistep acquisition of specific traits developed by tumor cells, which are referred to as “the
hallmarks of cancer” defined by Hanahan and Weinberg. Moreover, as will be discussed, EVs play
an important role in drug resistance, and these more recent advances may explain, at least in part,
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why pharmacological therapies are often ineffective. Finally, we discuss literature proposing the use
of EVs for therapeutic and prognostic purposes in cancer.

Keywords: extracellular vesicles; hallmarks of cancer; drug resistance; theranostics

1. Introduction

Extracellular vesicles (EVs) were initially identified in the 1950s as a type of particle
derived from platelets present in plasma [1]. Approximately 20 years later, these particles
were still merely considered as “platelet dust” or an insignificant platelet by-product [2].
It took several years before the role of EVs was revealed to be very much the opposite of
meaningless cell debris, as their fundamental role in regulating homeostasis at the local
and systemic level became apparent [3,4]. EVs are generally described as a heterogeneous
population of membrane-enclosed, non-replicating, and sub-micron sized structures, which
are actively secreted by a wide variety of eukaryotic and prokaryotic organisms [5,6].
Moreover, EVs can be found in biological fluids, such as serum, plasma, urine, saliva,
and breast milk, amongst others [7–10]. In general terms, EVs can be separated into three
subtypes according to their biogenesis and biophysical properties [11], namely exosomes,
microvesicles, and other small membrane-limited fragments, such as apoptotic bodies,
which are generally thought to be less relevant to cell-to-cell communication [12,13].

Indeed, EVs can also induce important changes in recipient cells [4,14,15]. Specifically
in cancer, EVs secreted by tumor cells promote the development of tumor-related features
in recipient cells and the acquisition of the cancer hallmarks described in the literature [16].
Furthermore, several studies have documented that cancer cells secrete increased levels
of EVs when compared to normal cells [17,18]. Considering the aforementioned data and
the fact that EVs play an important role in cancer progression, EVs can also be envisioned
as appealing targets for developing non-invasive liquid biopsy strategies in patients with
cancer. These micron-sized particles can be readily isolated from biofluids as mentioned,
and they can be used to facilitate cancer diagnosis and surveillance. Moreover, they can
serve to evaluate treatment efficacy, as well as identify patients prone to cancer relapse
and/or resistance to therapy [19,20]. Interestingly, EVs have ultimately been described
to display considerable potential as novel transport vehicles, which may be employed to
deliver molecules or chemotherapeutic drugs in a targeted manner to tumors. In doing
so, toxicity or adverse effects can be reduced in comparison to conventional treatment
approaches [21,22]. Thus, this review will discuss literature relating to the role of EVs
in promoting acquisition of the hallmarks of cancer and also the use of these vesicles in
cancer therapy.

It should be mentioned that one of the many difficulties associated with the EV re-
search field in recent years has been the considerable confusion that exists with respect to
their nomenclature. This can be attributed largely to the lack of a consensus between the
type of isolation used to purify EVs and the techniques used to distinguish between EV sub-
types according to their biogenesis or release. To tackle this problem, several EV researchers
decided to combine their knowledge to unify the currently used nomenclature [15,23]. This
effort gave rise to the development of guidelines, which permit distinguishing between
EVs according to their size, density, molecular cargo, or information regarding the cell
of origin. In addition, these guidelines also determined that the terms “exosomes” or
“microvesicles” should only be used, for example, when imaging techniques were used
to confirm a specific biogenesis pathway [15,23]. Thus, in this review, we will refer to
the terms “exosomes”, “microvesicles”, or “apoptotic bodies” only when data regarding
their biogenesis is presented and confirmed. Alternatively, when such data are unclear or
lacking, the term “EVs” will be used instead. In doing so, this review focuses the discussion
predominantly, but not exclusively, on the effects of exosomes.
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2. Extracellular Vesicles

Extracellular vesicles (EVs) are mainly featured as a heterogeneous population of
membrane-enclosed, non-replicating, and sub-micron sized structures, which are actively
secreted by a wide variety of eukaryotic and prokaryotic organisms [5,6]. In addition,
EVs are mediators of communication between cells in physiological and pathological
settings, and they transport a diverse array of biomolecules, including lipids, nucleic acids,
carbohydrates and proteins [6,24]. Finally, EVs can be sorted into three different subtypes
according to their biogenesis and biophysical properties (Figure 1) [11].

Figure 1. Extracellular vesicles are a heterogeneous population of cell-derived membrane vesicles.
Extracellular vesicles (EVs) have classically been divided into three types according to their biogenesis
and biophysical properties: exosomes, microvesicles, and apoptotic bodies. Recently, a new group of
non-membranous nanoparticles of less than 50 nm, called exomeres, was identified. However, still,
little is known about their biogenesis, and proteins that have been connected to exomeres must be
characterized further in order to validate them as markers. For this reason, they are not included
here. EVs are carriers of a variety of molecules, including proteins, nucleic acids, and lipids. The
insert with a close-up view of exosomes shows some molecules commonly transported by them.

2.1. Exosome Biogenesis

Exosomes are currently considered the most studied subtype of nano-sized vesicles
smaller than 150 nm, which originate by the inward budding of endosomes or multi-
vesicular bodies (MVBs) toward the luminal space, which results in the formation of
intraluminal vesicles (ILVs) that are also known as exosome precursors [11,25]. As a next
step, these ILV-containing MVBs can either be redirected to degradation in the lysosome
or fuse with the plasma membrane (PM), thus leading to the release of exosomes into
the extracellular space [6,11]. Interestingly, exosome biogenesis and cargo sorting are
closely related processes. In this regard, there are two well-known mechanisms of ILV
formation that may depend or not on the presence of a particular set of Endosomal Sorting
Complexes Required for Transport (ESCRT), namely complexes 0, I, II, and III [6,11]. The
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first mechanism involving ILV formation requires the presence of ESCRT-0, which has been
described to select ubiquitinated proteins and segregate them into microdomains found on
the endosomal membrane. In addition, ESCRT-I and II are held responsible for the binding
of specific cargoes to the aforementioned microdomains. Subsequently, these complexes
recruit the Alix protein, which aids in recruiting the ESCRT-III complex containing proteins
involved in the last stages of ILV formation or vesicle budding and complex detachment
from the endosomal membrane [11]. The second mechanism, also considered as being
independent of ESCRT, requires the presence of Alix and transmembrane proteins, such
as syntenin and syndecan, which are responsible for recruiting specific molecular cargoes
(adhesion molecules, growth factors, integrins, etc.) along with the tetraspanin CD63,
which eventually leads to ILV formation [11]. Recent evidence points towards the existence
of a third mechanism of ILV biogenesis, which does not depend on components of the
ESCRT complexes but rather involves the participation of membrane lipid microdomains
or lipid rafts. The specific characteristics of the lipids involved favor inward bending of
the MVB membrane and thereby promote ILV formation [11]. One of the main proteins
involved in this lipid-dependent mechanism is the neutral sphingomyelinase, which is
responsible for generating ceramide, a conical lipid with a small head group that favors
bending toward the lumen of the MVB membrane [26].

2.2. EV Release from the Cell Surface

MVBs can either fuse with the plasma membrane for release of their content or with
lysosomes for their subsequent destruction [6,27]. Several reports are available indicating
that the final destination depends on factors such as the interaction with microtubules
or the actin cytoskeleton, as well as the engagement of specific members of the Rab
GTPase family of proteins [27]. Examples in the latter case include Rab27b, Rab11, and
Rab35, which promote MVB motility and fusion with the plasma membrane in HeLa, K562
(bone marrow chronic myelogenous leukaemia cells), and Oli-neu (oligodendroglial) cells,
respectively [28–30].

The second subtype of vesicles ranging in size 50–500 nm (up to 1000 nm), also known
as microvesicles (MVs), ectosomes, oncosomes, or microparticles, are described to be re-
leased from the cell surface by blebbing from the plasma membrane and subsequent mem-
brane fission [6]. Interestingly, MVs are formed by phospholipid redistribution, positioning
phosphatidylserines to the outer leaflet followed by actin–myosin contraction [31,32]. In ad-
dition, MV biogenesis requires the participation of small GTPases, such as ADP-ribosylation
factor 6 (ARF6) [33,34] and Ras-related proteins, e.g., Rab-22A [34,35]. Importantly, ESCRT
complexes also participate in MV formation [32], increasing the level of complexity in EV
subtype studies when evaluating vesicle biogenesis. In addition, MV release has been
shown to involve Rho family members, such as RhoA, which promotes MV release via
ROCK and ERK activation [27,36]. Moreover, RhoA, together with ARF6 and ARF1, in-
creases myosin contractility, thereby favoring MV fission and the subsequent pinching-off
from the plasma membrane [6,27,33,37].

Apoptotic bodies, referred to as the third subtype of EVs in the literature, vary widely
in size ranging from 50 to 2000 nm in diameter and are ultimately produced by an essential
physiological process, which is known as programmed cell death or apoptosis. One of
the main features of apoptotic bodies is that mechanisms for specific sorting of organelles,
RNA and DNA fragments can be detected, which are absent in other EV subtypes [32,38].

2.3. Exomeres

The discovery of exomeres was made possible by the development of new technolo-
gies to isolate and visualize EVs. In this regard, two studies report on the efficient isolation
of exomeres by optimizing asymmetric-flow field-flow fractionation and ultracentrifuga-
tion protocols [39,40]. Exomeres are approximately 50 nm and smaller in size than EVs.
In addition, they were shown to be highly enriched in calreticulin, argonaute proteins,
amyloid precursor proteins, proteins associated with coagulation (for instance, factors



Cancers 2021, 13, 3324 5 of 36

VIII and X), and enzymes involved in metabolism (e.g., glycolysis), especially glycolysis,
and mammalian target of rapamycin complex 1 (mTORC1) metabolic pathways [40,41].
Moreover, several recent reports have shown that exomeres can carry nucleic acids, such as
DNA, RNA, and miRNAs along with lipids, such as ceramide, esterified cholesterol triglyc-
erides, and phosphatidylcholine [42]. Interestingly, exomeres are not limited by a lipid
bilayer, but instead are enriched in certain types of lipids, which differ from those found
in exosomes [41]. Although limited information is available concerning their biogenesis,
the absence of a lipid bilayer suggests that exomeres cannot be classified as EVs but rather
should be viewed as a new type of extracellular particle (EP). In addition, the absence of
ESCRT components in these EPs suggests they are different from EVs derived from the
plasma membrane or generated via the endocytic pathway [42]. Despite such differences, a
novel role for exomeres has been proposed in cancer, since they were shown to promote
tumor organoid growth in recipient cells [40].

Interestingly, a novel role for exomeres in the COVID-19 pandemic was suggested, as
full-length angiotensin-converting enzyme 2 (ACE2) was reported to be contained in EVs
from colorectal cancer cells. Specifically, these cells were able to shed ectodomain fragments
of ACE2 that were enriched in exomeres [43]. Given that soluble human recombinant ACE2
can bind to SARS-CoV-2 [44], the binding of SARS-CoV-2 S protein to ACE2 fragments in
EVs and exomeres may play an important role in controlling the infection [43]. A relevant
question at this point is whether the ability to shed ACE2 fragments is limited to cancer
cells and if so, thinking of treatments for SARS-CoV-2 infection, why this might be the case.

2.4. EVs in Cell Communication

EVs have emerged as essential players in cell-to-cell communication, because they
represent a complex type of “biological package” capable of transporting a wide variety of
molecules from one cell to another.

EVs can elicit cellular responses without the need to be internalized into a cell by two
mechanisms referred to as soluble and juxtacrine signaling. Soluble signaling involves the
proteolysis of an EV surface ligand and its subsequent binding to a cell membrane receptor,
whereas juxtacrine signaling requires the juxtapositioning of ligands and receptors on
opposing surfaces of the EVs and the target cell [45].

On the other hand, EV internalization by recipient cells involves at least four mecha-
nisms: membrane fusion, phagocytosis, micropinocytosis, and endocytosis. For membrane
fusion, the EV membrane directly merges with the cell plasma membrane and transfers
cargo molecules to recipient cells. Protein members of the Rab family, Sec1/Munc-18-
related proteins (SM proteins), Lamp-1, and SNAREs contribute to this process. Uptake by
phagocytosis inevitably results in the fusion of the phagosome with the lysosomes and the
degradation of EV content. Phagocytosis likely represents a process important for EV clear-
ance by the immune system, given that the presence of phosphatidylserine (PS) on the outer
EV surface promotes their uptake. Indeed, PS appears to represent an essential component
of EVs for triggering their clearance by phagocytosis. Macropinocytosis is characterized
by plasma membrane ruffling induced by growth factors or other signals. The resulting
vesicles contain extracellular fluid and small particles. Macropinocytosis is induced by
signaling cascades involving Rho family GTPases, which facilitate actin-driven membrane
protrusion formation. The mechanism of EV macropinocytosis is dependent on Na+/
H+ exchanger function, actin, Rac1 GTPase activity, cholesterol, dynamin, and low pH.
Endocytosis is divided into two types of receptor-mediated processes: clathrin-mediated
endocytosis (CME) and caveolin-dependent endocytosis (CDE). CME is produced by the
interaction between ligands on the EV surface and specific receptors present on the plasma
membrane that utilize clathrin and adaptor protein 2 (AP2) complexes for the subsequent
formation of clathrin-coated vesicles (intracellular) to internalize EVs. The clathrin coat
alters the structure of the plasma membrane to promote invagination and vesicle fission.
Once inside the cell, the clathrin coat of the vesicles is removed to permit fusion with the
endosome and transfer of cargo molecules. CDE requires the presence of caveolins, which
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associate with cholesterol-rich microdomains in the plasma membrane and form small
flask-shaped invaginations together with cavins. Hence, CDE is sensitive to cholesterol
depletion. In addition, dynamin 2 is a common regulator of endocytosis that has been
implicated in CME and CDE [46].

In summary, soluble signaling, juxtacrine signaling, and membrane fusion are more
likely to culminate in a cellular response, since EV components do not enter the endosomal-
lysosomal degradation pathway directly.

EVs can modify the behavior of recipient cells depending on the biological message
or cargo that is being transferred from the donor cell or tissue [47]. Specifically in cancer,
EVs have been shown to play a critical role in cell-to-cell communication in the tumor
microenvironment that permits the acquisition and maintenance of cell traits, which are
referred to as the hallmarks of cancer.

2.5. Regulation of EV Release in Cancer

The number of EVs circulating in the blood of patients with different diseases is
elevated compared to healthy subjects. For example, patients with breast, ovarian, gastric,
prostate, liver, colon, and pancreas cancers have higher levels of exosomes in plasma than
healthy donors [48]. Moreover, in gastric cancer, elevated levels of EVs were associated
with more advanced stages of disease development [49,50]. In addition, patients with hema-
tological malignancies have higher EV levels compared to healthy controls. Interestingly,
among the latter patients, those with Hodgkin lymphomas, multiple myeloma, and primary
myelofibrosis had a higher proportion of smaller EVs in blood samples [51], suggesting
that vesicle size relates to function. Using scanning electron microscopy, normal human
ovarian cells were found to release EVs from a few select areas of the plasma membrane,
while ovarian serous adenocarcinoma cells release EVs from the entire cell surface [52].
Elevated EV release in cancer cells has been proposed to occur via a Ca2+-Munc13-4-
Rab11-dependent pathway. Specifically, the expression of Munc13-4, a Ca2+-dependent
Rab-binding protein, is elevated in cancer cells, which combined with the increased Ca2+
levels enhances exosome release from cancer cells [53]. Comparison of the breast cancer
cells MCF-7 and MCF-7 LTED (Long-Term Estrogen Deprived, a cell line model for the
resistance to aromatase inhibitors) revealed a significant increase in exosome secretion from
the MCF-7 LTED cells. This was accompanied by an increase in Rab GTPase expression,
which could represent another mechanism that permits increased exosome release from
more malignant cells [54]. Finally, EV release from cancer cells can be increased by microen-
vironmental factors, such as hypoxia, increased glycolysis, an acidic microenvironment,
calcium signaling, and irradiation [55].

3. EV-Mediated Function in Cancer

Extracellular vesicles have many physiological and pathophysiological functions. In
cancer, EVs play an important role in many, if not all, stages of cancer development, includ-
ing tumorigenesis, epithelial–mesenchymal transition, metastasis, and drug resistance. The
available evidence also indicates that EVs play a role in many types of cancer, including
gastric cancer, breast cancer, melanoma, and lung cancer, among many others. Moreover,
EVs are involved in the acquisition of all the “hallmarks of cancer” (see Figure 2). Initially
described by Hanahan and Weinberg (2000) [56] and updated in 2011 [16], these traits refer
to several biological characteristics that are acquired by cancer cells during the multistep
process leading to tumor development. In the following section, we will summarize evi-
dence available from in vitro and in vivo studies indicating how EVs participate in these
events (see Figure 2).
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Figure 2. EV-mediated function in cancer. The term “hallmarks of cancer” described by Hanahan
and Weinberg [56] refers to ten biological characteristics that are acquired by cancer cells during
the multistep process leading to tumor development. The EV-mediated roles reported to date are
shown here for each “hallmark of cancer”: Sustaining proliferative signaling [57–63], Evading growth
suppressors [64], Resisting cell death [65,66], Enabling replicative immortality [57,67], Inducing
angiogenesis [58,68–72], Invasion and metastasis [14,73–79], Genome instability and mutation [80],
Tumor promoting inflammation [81,82], Deregulating cellular energetics [83,84] and Avoiding im-
mune destruction [85–87].

3.1. Sustaining Proliferative Signaling

Cancer cells acquire the ability to proliferate continuously and do so by generating
their own signals, thus rendering themselves independent of external input. They may
achieve this through a variety of strategies that do not necessarily involve EVs and have
been reviewed elsewhere. EVs can promote cell proliferation in an autocrine manner in
many types of cancer, including glioblastoma, breast adenocarcinoma, colorectal, and
triple negative breast cancer [58,61,88,89]. Specifically, in some cancers, such as bladder,
gastric, and non-small cell lung cancer, it has been shown that this increase in proliferation
is through the activation of signaling pathways involving phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (AKT) or AMP-activated protein kinase (AMPK)/extracellular
signal-regulated kinases (ERK) [62,90–92]. EVs transfer growth factor receptors, such as
the epidermal growth factor receptor (EGFR), which promote receptor-dependent cell
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signaling [69]. In fact, the EGFR is widely present in EVs from various cancer cell lines [63].
Furthermore, a highly oncogenic isoform of the EGFR (EGFRvIII) is transferred through
EVs in glioblastoma, which is a very aggressive cancer disease [58]. Intermediate signaling
molecules, such as AKT, PI3K, and cyclins are also found within EVs [59,61,62], and they
are likely transferred from cancer cells to target cells to activate proliferative signaling
pathways. Nucleophosmin (NPM) is another oncoprotein that is highly enriched in EVs
of several cancer cells and participates in many pathways involved in proliferation and
growth suppression [63]. Furthermore, EVs may participate in the elimination of tumor
suppressors, such as let-7, which is a microRNA precursor highly expressed in EVs from
cancer cell lines [60].

The tumor microenvironment, which includes cells such as fibroblasts, myofibrob-
lasts, endothelial, pericytes, and immune cells, is also important for tumor growth and
development. EVs play an essential role in communication between tumor cells and the
tumor microenvironment. For instance, HeLa cancer cell EVs increase Human Umbilical
Vein Endothelial Cell (HUVEC) proliferation [93]. In addition, microvesicles from the
cerebrospinal fluid of glioblastoma patients enhanced endothelial cell viability in vitro [94].
This is relevant, since angiogenesis promoted by endothelial cell proliferation increases tu-
morigenicity. Moreover, EVs isolated from non-small cell lung cancer cells (A549) increase
the proliferation of the normal fibroblast cell line HLF1 [95]. Cancer cell EVs containing
the mRNA for hTERT, the telomerase transcript, induce phenotypic changes, including
increased proliferation and extension of the life span in fibroblasts. In addition, EVs isolated
from the sera of patients with pancreatic and lung cancer also reportedly contain hTERT
mRNA [57]. As previously stated, the inverse scenario has also been observed, namely
that EVs from cancer-associated fibroblasts (CAFs) increase the proliferation of pancreatic
and oral cancer cells [96,97]. In summary, the evidence presented highlights how EVs
from cancer cells may act by several mechanisms in a paracrine manner to change the
behavior of neighboring cancer cells or cells of the tumor microenvironment to enhance
tumor growth.

3.2. Evading Growth Suppressors

Tumor suppressor genes act in many different ways to limit cell growth and prolifera-
tion. Thus, because the acquisition of these traits is key to the development and progression
of cancer, tumor suppressor function is frequently reduced or eliminated in tumor cells.
Some of the best-studied tumor suppressor proteins include the retinoblastoma (RB) pro-
tein and p53; both act as central control nodes within two key complementary regulatory
circuits that determine whether cells proliferate or, alternatively, induce senescence and
apoptosis [16].

Due to their relevance, many mechanisms have been identified that control the ex-
pression of these tumor suppressors; yet, to date no reports are available involving either
EVs or exosomes in regulation of the RB protein or vice versa, RB in the regulation of EV
composition. Alternatively, however, p53 has been shown to regulate the secretion, size, as
well as the RNA and protein cargoes of tumor-derived EVs [98]. Proteomics analysis was
used to identify proteins secreted in the culture media that are regulated by p53 in response
to DNA damage in human non-small lung cancer cells. A more comprehensive analysis
showed that exosomes isolated from the culture medium after p53 activation using ionizing
radiation (IR) contained transcriptional targets of p53 (Maspin, PGK1, Eno1, and EF-1α),
and unexpectedly, proteins encoded by genes that are not transcriptional targets of p53
(Hsp90β and CyPA). A p53-regulated gene product, tumor suppressor activated pathway-6
(TSAP6), was shown to increase exosome production in cells when p53 was activated in
response to IR [99]. However, mechanisms that explain how TSAP6 increases exosome
secretion have not yet been identified, although p53 is known to control the intracellular
vesicle trafficking system by regulating components of the endosomal compartment (see
details about EVs biogenesis in Section 1). The activation of p53 directly increases the
transcription of the ESCRT-III subunit CHMP4C [100]. The ESCRT-III complex contains
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oligomers of small α-helical CHMP proteins, of which CHMP4 family members are the
most abundant components [101]. ESCRT-III is required for the scission of the intraluminal
vesicles (ILVs) into the MVB lumen during exosome biogenesis [6]. Human colorectal
cancer cells expressing a dominant-negative mutation of p53 (R248W) were found to
secrete exosomes enriched in several microRNAs (miRNAs), including miR-1246. The
miR-1246-enriched exosomes are taken up by adjacent macrophages leading to their repro-
gramming into the anti-inflammatory, tumor-supportive M2-like phenotype characteristic
of tumor-associated macrophages (TAMs) [102].

Beyond the ability of p53 to determine EV content, EVs are also known to regulate p53
activity. Bioinformatics analysis of proteome changes in astrocytes treated with glioblas-
toma (GBM)-derived EVs predicted the inhibition of p53. At the same time, significantly
decreased ∆133p53 and increased p53β (truncated p53 isoforms) transcripts in astrocytes
exposed to GBM-derived EVs were reported [103]. Changes in both truncated p53 isoforms
suggest that astrocytes acquire a Senescence-Associated Secretory Phenotype that modi-
fies the tissue microenvironment by secreting pro-inflammatory molecules, extracellular
proteases, and extracellular matrix (ECM) components. In doing so, such “senescent”
astrocytes promote tumor progression [103].

Exosomes from colon cancer cells transfected with a shRNA against p53 downregu-
lated p53 expression in fibroblasts and promoted their proliferation. Among the miRNAs
in exosomes from p53-deficient colon cancer cells, the upregulation of miR-1249-5p, miR-
6737-5p, and miR-6819-5p was observed. Moreover, each of these miRNAs was shown
individually to suppress p53 expression in fibroblasts [64]. These results reinforce the
notion that p53 plays an active role in the control of exosomal RNA cargos.

3.3. Resisting Cell Death

Tumor cells develop strategies that limit or prevent apoptosis to survive and grow.
One of these strategies involves EVs, since several studies have shown that EVs play
a role in promoting resistance to cell death. Specifically, EVs are known to transport a
defined set of miRNAs that transfer the resistance phenotype to sensitive cancer cells
by altering cell cycle control and blocking apoptosis [104–108]. One of the anti-apoptotic
pathways that has been linked to EV function is the inhibition of the c-Jun N-terminal kinase
(JNK) pathway. Bone marrow-derived mesenchymal stem/stromal cell (BMSC)-derived
exosomes have been shown to inhibit the JNK pathway and downregulate the expression
and phosphorylation of Bcl-2-like protein 11 (Bim) [109]. Moreover, EVs can help prevent
apoptosis under cell stress conditions. In EVs obtained from HeLa cervical carcinoma cells
exposed to irradiation induced-stress, elevated levels of the inhibitor of apoptosis protein
survivin were detected [110]. Finally, it has been reported that EVs derived from both
bladder and gastric cancer cells inhibit cancer cell apoptosis by upregulating the expression
of Bcl-2 and cyclin-D1 and downregulating Bax and caspase-3 [91,111].

3.4. Enabling Replicative Immortality

Cells in most normal cell lineages in the body can only divide a limited number of
times, as defined by the “Hayflick” limit [112]. In cells in culture, repeated cycles of cell
division induce initially senescence and then the crisis phase, which generally leads to cell
death. However, cells that survive this crisis acquire an unlimited replicative potential.
This transition is referred to as immortalization and is typical of cell lines that proliferate
without developing senescence. The immortalization of cells, as occurs in tumors, is linked
to their ability to maintain telomere regions, thereby avoiding senescence or apoptosis,
and it is achieved by increasing telomerase expression. The telomeres are multiple tandem
hexanucleotide repeats, which shorten progressively in non-immortalized cells after each
cell division. Eventually, these regions lose the ability to protect the chromosome ends
and generate unstable chromosome patterns that affect cell viability. The length of the
telomer regions determines how many successive divisions a cell can undergo before
telomeres are eroded and consequently lose their protective functions. Telomerase, the
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enzyme that adds telomere repeat segments to the ends of telomeric DNA, is almost absent
in non-immortalized cells, but it is expressed at significant levels in human cancer cells,
where it favors telomere maintenance [16].

As an example, breast epithelial cancer cells were treated with EVs purified from
conditioned media of X-ray exposed cells. Compared to control cells, telomerase activity
decreased in EV-treated cells. Moreover, exosome treatment with RNase prevented the
effect on telomerase activity. These observations suggest that EVs transfer RNA-mediated
information relating to telomerase activity between cells; however, unfortunately, this
study did not provide any characterization of the exosomes/EVs [113].

The mRNA of the catalytic subunit of the telomerase reverse transcriptase (hTERT) is
shuttled in exosomes from cancer cells to fibroblasts that do not express telomerase, where
expression of the protein and activity are subsequently detected. Importantly, exosomes
from the sera of patients with pancreatic or lung cancer contained hTERT mRNA as well.
Telomerase activity induced phenotypic changes in target fibroblasts, including increased
proliferation and delayed onset of senescence. In addition, telomerase activity protected
the fibroblasts from DNA damage induced by phleomycin [57]. Later studies showed that
hTERT is also present in amniotic fluid stem cell-derived EVs [67].

3.5. Inducing Angiogenesis

EVs participate in the regulation of pathological angiogenesis, as well as tumor an-
giogenesis. Hypoxia, a common feature of most solid malignant cancers, is generated by
an imbalance between the altered oxygen supply capacity of the abnormal tumor vascu-
lature and increased oxygen consumption of the tumor cells [114]. Therefore, hypoxia
is a key driver of tumor angiogenesis [115,116]. Here, it should be noted that exosomes
derived from hypoxic colorectal cancer cells promote angiogenesis in vitro and in vivo
via Wnt/β-catenin signaling in endothelial cells [117]. In addition, another in vivo study
showed that exosomes isolated from hypoxic lung cancer cells contained miR-23a, which
increased angiogenesis [118]. In addition, exosomes derived from hypoxic leukemia cells
were shown to enhance tube formation by human umbilical vein endothelial cells (HU-
VECs) via a miR-210-dependent mechanism [119]. Nevertheless, it is important to consider
that although hypoxia is important in the development of angiogenesis, it is not the only
relevant factor, given that several different pro-angiogenic molecules are present in EVs
from tumor cells that are independent of hypoxia.

EVs secreted by cancer cells contain pro-angiogenic mediators, including vascular
endothelial growth factor (VEGFA), interleukin-8 (IL-8), interleukin 6 (IL-6) and fibroblast
growth factor 2 (FGF2). Moreover, EVs can contain pro-angiogenic miRNAs, such as
miR-21, miR-23a, miR-29a, and miR-30 [58,68–72]. Exosomes derived from gastric cancer
cells deliver miR-130a to vascular cells to promote angiogenesis and tumor growth by
targeting c-MYB both in vitro and in vivo [120]. In addition, exosomes that contain miR-205
from ovarian cancer cells significantly promoted angiogenesis in an in vivo model [121].
Additionally, using an in vivo nude mouse model, pancreatic cancer cell-derived exosomes
carrying miR-27a were shown to promote angiogenesis [122]. In addition, recent research
showed that the deleted in malignant brain tumors 1 protein (DMBT1) is enriched in
EVs compared to the cancer cell of origin [63]. DMBT1 binds to pro-angiogenic factors
and promotes adhesion, migration, proliferation, as well as angiogenesis [123]. Cancer
cell-derived EVs also contain proangiogenic ECM remodeling enzymes, such as urokinase
plasminogen activator (uPA), as well as the MMP2 and MMP9 [68]. Glioblastomas are
among the most studied types of tumors known to release EVs carrying potent inducers of
angiogenesis in vitro, ex vivo, and in vivo [124] that modify the phenotype of endothelial
cells [58,94,125,126]. To date, two mechanisms have been proposed to understand how
tumor-derived EVs may promote angiogenesis. First, the uptake by endothelial cells of
exosomes derived from cancer cells is known to be increased. In addition, the expression
of certain tetraspannins in cancer cell-derived EVs promotes the internalization of EVs by
endothelial cells [127–131]. Therefore, EVs stimulate the transcription of genes related to
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angiogenesis and promote the migration and proliferation of endothelial cells. For example,
EVs secreted by cancer cells were reported to transfer mutant EGFR to tumor endothelial
cells, promoting mitogenic MAPK and AKT signaling [69]. Second, it has been reported
that EVs mediate intercellular communication in the tumor microenvironment through
mechanisms other than the transfer of their luminal cargos to recipient cells, in a manner
independent on uptake [132,133]. Indeed, a recent study shows that cancer cell-derived
EVs stimulate endothelial cell migration via the heparin-bound 189 amino acid isoform of
VEGF, which, unlike other common VEGF isoforms, is enriched on the surface of EVs [134].

3.6. Invasion and Metastasis

The acquired ability to migrate and invade allows cancer cells to escape from the
primary tumor and establish themselves at a new secondary site in a process commonly re-
ferred to as metastasis, which is responsible for 70–90% of all cancer-related deaths [16,135].
Numerous in vitro and in vivo studies show that EVs, in particular exosomes, play an
important role in cell migration and metastasis in many types of cancer, including breast,
glioblastoma, fibrosarcoma, nasopharyngeal, brain, melanoma, and colorectal, among
others [89,136–139]. Some examples of how cancer cell-derived EVs modulate their envi-
ronment are provided. For instance, the incubation of poorly metastatic B16F1 cells with
EVs from the highly metastatic melanoma cell line B16F10 increased B16F1 metastasis to the
lung after intravenous injection in mice [136]. Furthermore, exosomes obtained from the
sera of prostate cancer patients increased significantly the invasiveness of DU145 prostate
cancer cells in vitro compared to cells incubated with exosomes isolated from healthy
individuals of the same age [140]. The loss of Rab27a in melanoma cell lines changes the
size and protein composition of released exosomes [141]. Rab27a, a protein known to
participate in exosome biogenesis [30], is overexpressed in melanomas. In addition, the loss
of Rab27a in melanoma cell lines inhibited spontaneous metastasis in vivo, suggesting that
Rab27a is important for the pro-invasive effects of exosomes produced by the wild-type
cells [141].

EVs can modulate cell migration and metastasis through a variety of different mech-
anisms. These include the transfer of molecules that enhance migration, EMT-related
molecules, MMPs, and miRNAs [14,73,76,78,142]. For instance, exosomes from a colorec-
tal cancer cell line (HT-29), with high potential to induce liver metastasis, significantly
increased in vitro migration and metastasis to the mouse liver of human colorectal Caco-2
cancer cells, which is a cell line with very low metastatic potential to the liver. This effect
was proposed to be mediated by elevated levels of the C-X-C Motif Chemokine Receptor 4
in the exosomes [78]. In breast cancer, EVs from the highly metastatic cell line MDA-MB-231
containing caveolin-1 enhanced the migration and invasion in vitro of the less metastatic
breast cancer cell line T47-D lacking caveolin-1 [14], providing evidence for the importance
of caveolin-1 in the genesis of exosomes with elevated malignant potential. In prostate
cancer, Integrin subunits α3 and β1, Talin 1, and Vinculin, proteins all relevant to migration
and invasion, were more abundant in EVs of the more aggressive PC3 cell line, compared
to the exosomes from less aggressive LNPaC cells. Furthermore, EVs derived from each of
these cell lines increased the invasion of non-cancerous cells, which was prevented when
integrin subunit α3 was blocked. Additionally, integrin subunits α3 and β1 are increased
in EVs isolated from the urine of metastatic prostate cancer patients [142]. Interestingly,
stromal cells from gastrointestinal tumors release exosomes containing the receptor tyro-
sine kinase proto-oncogene KIT (also called CD117), which increases MMP1 expression
in smooth muscle cells, creating a positive feedback loop between stromal and tumor
cells that favors tumor cell invasion [74]. Moreover, fibrosarcoma exosomes containing fi-
bronectin, an important ECM protein, promoted cell adhesion and migration [143]. Finally,
prostate cancer cells produce large oncosomes containing bioactive MMPs, in addition to
other molecules that are important for cancer progression, such as caveolin-1 and ADP
ribosylation factor 6 [144].
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On the other hand, RNA-bearing exosomes are also important for cell migration
and metastasis. In particular, some miRNAs are relevant in this context, such as miR-9,
-145, -21, -29a, -494, and -542-3p. These miRNAs affect the expression of many different
targets, such as cell–cell adhesion molecules, chemokine ligands, cell cycle regulators and
angiogenesis-promoting proteins, which are all factors that contribute to metastasis [76,79].
Exosomes derived from primary lung tumors, carrying small nuclear RNAs, were shown
to activate Toll-like receptor 3 (TLR3) in lung epithelial cells, inducing chemokine secretion
and neutrophil recruitment to the lung that favors the formation of pre-metastatic niches
in vivo [145]. In addition, exosomes derived from breast cancer cells were shown to
transfer miR-105 to HUVEC cells, where miR-105 reduces the expression of the tight
junction protein ZO-1 to promote vascular permeability that favors the spread of cancer
cells [146]. Furthermore, exosomes from B16-F10 cells can also induce vascular leakiness, as
evidenced by increased pulmonary endothelial permeability [147]. This was corroborated
by Hoshino et al. using exosomes with tropism to the lung from the MDA-MB-231-derived
human breast cancer cell lines 4175 and 1833, in a mouse model [77]. Taken together, this
evidence suggests that exosomes initially increase vessel permeability in order to prepare
the pre-metastatic niche.

Moreover, exosomes can also act as a scaffold for the attachment of metastatic cells [143].
In this respect, an interesting study shows that exosome release is important for autocrine
cell migration. Specifically, using the chick embryo chorioallantoic membrane assay, as well
as in vitro assays, the authors found that exosomes from H10T80 human fibrosarcoma cells
enhanced directional migration and promoted adhesion assembly in an autocrine manner.
Moreover, in these in vitro assays, exosomes promoted the migration of H10T80 cells by
enhancing adhesion. Somewhat surprisingly, miR-210-containing exosomes from HCT-8
colon cancer cells with a more adhesive phenotype inhibited the MET and cell-surface
adhesion of a subpopulation of HCT-8 cells with elevated metastatic potential in vitro [148].
These results suggest that exosomes may also reduce the adhesion of tumor cells and
thereby favor their dissemination.

Exosomes can also function as vectors that sequester molecules to reduce their intra-
cellular bioavailability, thereby altering the phenotype of the parent cell [75]. For example,
the Let-7 and miR-200 miRNA levels observed in exosomes from the ovarian cancer cell
lines SKOV-3 and OVCAR-3 were elevated compared to the intracellular levels. This is
relevant, given that the let-7 miRNA family suppresses cell proliferation, while the miR-200
family suppresses EMT [75]. Thus, the elimination of these miRNAs through exosomes
reduces their intracellular levels.

Regarding the role of exosomes in preparing the metastatic niche and colonization,
Hood et al. provided evidence for the importance of melanoma-derived exosomes in
promoting metastasis to lymph nodes in vivo. To this end, C57BL/6 mice were pre-
conditioned by injecting into the left footpad exosomes isolated from B16F10 cell culture
supernatants. The subsequent injection of B16F10 cells into the left footpad revealed
that preconditioning increased melanoma cell recruitment to lymph nodes of the mice,
which is a preferential site for melanoma metastasis [149]. Another study showed that the
intravenous injection of B16F10-derived exosomes following orthotopic injection of B16F10
cells into C57BL/6 mice increased metastasis to the lung. Furthermore, the transplantation
of bone marrow-derived cells (BMDC) treated with exosomes derived from B16F10 cells,
after subcutaneous implantation with B16F10 cells, resulted in higher metastatic burden
in vivo in the lung and ipsilateral lymph nodes, which was attributed to transfer of the
MET oncoprotein [147]. In addition, during colonization, exosomal integrins are important
for specific organ tropism. In particular, using a knock-down strategy, exosomes containing
the α6β4 integrin were shown to promote lung metastasis, while αvβ5 integrin presence
was linked to liver metastasis. Furthermore, exosomal integrins were associated with the
increased expression of genes related to metastasis, such as S100A8 and S100P, as well as
elevated levels of the src protein and phosphorylation on Tyr-416 [77].
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Finally, another mechanism by which exosomes can promote metastasis is by reducing
the permeability of the vascular endothelial barrier, which is a topic that will be addressed
further on in an independent section.

3.7. Genome Instability and Mutation

In physiological conditions, the genome maintenance systems find and repair defects
in the DNA, maintaining very low rates of spontaneous mutation. Cancer cells often
increase the rates of mutation through increased sensitivity to mutagenic agents or deregu-
lation of components of the genome maintenance and repair machinery, or both [16]. Since
the late 1990s, several types of defects that affect components of the DNA maintenance
machinery, have been described [150]. For instance, DNA repair genes and mitotic check-
point genes, such as the MutL homolog 1 (MLH1), the breast cancer susceptibility gene 1
(BRCA1), MYH (also known as MUTYH), and the xeroderma pigmentosum group A (XPA)
all encode proteins that help to maintain genomic stability [151].

The MLH1 protein is one of seven DNA mismatch repair proteins (MLH1, MLH3,
MSH2, MSH3, MSH6, PMS1, and PMS2) in humans. A heterodimer between MSH2 and
MSH6/MSH3 first recognizes the DNA mismatch. The MSH2–MSH6 heterodimer allows
the binding of a second heterodimer of MLH1 and PMS2/PMS3/MLH3. This protein
complex formed between the two sets of heterodimers enables the initiation of repair
of the mismatch defect in DNA [152]. EVs isolated from sorafenib-resistant renal cell
carcinoma (RCC) cells contain high levels of the microRNA miR-31-5p. Treatment with
miR-31-5p-containing EVs suffices to downregulate MLH1 expression in target cells [80].
This mechanism would presumably reduce the activity of the DNA mismatch repair
system and lead to long-term accumulation of mutations, but this hypothesis has not yet
been corroborated.

BRCA1 promotes the repair of DNA double-strand breaks (DSB) by homologous
recombination. BRCA1 associates with BRCA1-associated RING domain protein 1 (BARD1)
and other tumor suppressor proteins to initiate the nucleolytic resection of DNA lesions
and the recruitment and regulation of the recombinase RAD51 [153], which catalyzes the
insertion of single-stranded DNA (ssDNA) into sister chromatids. Using sister chromatid
as the template, ssDNA is elongated, and junctions are formed between the two sister
chromatids [154]. Recent studies show that BRCA1-deficient fibroblasts treated with uveal
melanoma-derived and colorectal cancer-derived EVs transfer malignant traits to target
cells, and the authors suggest that BRCA1 activity is necessary to prevent the detrimental
effects of cancer-derived EVs in non-cancer cells [155,156].

To date, a literature search for evidence linking EVs to the control of the other two
caretaker genes, MYH/XPA, did not yield any results.

3.8. Tumor-Promoting Inflammation

Cancer cell-derived EVs promote the generation and persistence of the inflammatory
environment, which contributes to disease progression. Fabri et al. demonstrated that
the miR-21 and miR-29a contained in exosomes derived from lung cancer cells bind
to members of the Toll-like receptor (TLR) family on immune cells. TLR engagement
triggers the activation of nuclear factor kappa-light chain-enhancer of activated B cells
(NF-κβ), secretion of pro-metastatic inflammatory cytokines, and the transcription of genes
that favor tumor proliferation and metastasis [81]. Another study showed that when
monocytes are stimulated with EVs derived from oral squamous cell carcinoma (OSCC),
the uptake of these EVs by monocytes leads to NF-κB activation and the generation of a pro-
inflammatory environment, which was characterized by elevated levels of IL-6, monocyte
chemoattractant protein 1 (MCP1), prostaglandin E2 (PEG2) and MMP9 [157]. Using RNA
sequencing and proteomics analysis, Haderk et al., observed that expression of the Y RNA
(small non-coding RNA) hY4 is increased in exosomes isolated from chronic lymphocytic
leukemia (CLL) cells and from the culture supernatant of a CLL cell line. Additionally,
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when monocytes were treated with these exosomes, PD-L1 expression and cytokine release
were induced, facilitating cancer-related inflammation [82].

In addition, the pro-inflammatory effects of tumor-derived exosomes that affect
macrophage performance have been described. Wu et al., found that exosomes derived
from gastric cancer cells induced macrophages to express higher levels of pro-inflammatory
factors, such as IL-6 and TNF-α. These exosomes markedly increased the phosphorylation
of NF-κB in macrophages and, additionally, activated macrophages in human peripheral
blood monocytes via NF-κB [158]. Moreover, lung cancer cell-derived exosomes trans-
form naïve mesenchymal stem cells (MSCs) into a new kind of pro-inflammatory MSCs
(P-MSCs) by activating TLR2/NF-κB signaling [159]. Recently, Pritchard et al. reported
that lung tumor cells secrete exosomes that are taken up by macrophages and differentiate
into tumor-associated M2 macrophages, which can promote inflammation in the tumor
environment and immune suppression [160]. Together, these studies highlight how EVs
play an important role as messengers in the communication between tumor cells and
cells of the immune system. Such cell–cell communication promotes the genesis of a pro-
inflammatory environment that permits the escape of tumor cells from destruction by the
immune system.

3.9. Deregulating Cellular Energetics

Cancer cells exhibit remarkable metabolic plasticity that is necessary to generate en-
ergy and at the same time satisfy the biosynthetic requirements, which permit maintaining
proliferation and/or metastatic spread [161]. In addition, particularly for cancer cells
in a hypoxic environment, the enzymes of the glycolytic pathway are upregulated, and
elevated release of lactate and pyruvate is observed, which leads to an acidification of
the tumor environment [162]. In turn, the decrease in pH is associated with an increase
in the secretion and uptake of EVs [163] that contain proteins involved in metabolism
and miRNAs that target proteins related to metabolic activities of the cell [83,164]. Fatty
acid synthase (FASN), a key enzyme involved in the de novo synthesis of FAs, is one of
the most frequently identified proteins in EVs [83]. Additionally, not only the protein
but also the mRNA of FASN has been identified in prostate cancer (PCa) cell-derived
EVs [165], which suggests a possible role for these EVs in the lipogenesis of cancer cells. On
the other hand, a study compared by proteomics analysis exosomes from non-aggressive
hepatocellular carcinoma cells with those released by aggressive cell lines and found that
in the latter case, exosomes are enriched in enzymes involved in glycolysis, gluconeogen-
esis, and the pentose phosphate pathway [84]. Potentially, these exosomes may be more
easily absorbed by the recipient cells, which translates into an increased uptake of these
metabolic drivers that affect the metabolic profile of the recipient cells, as is the case for
hepatocellular carcinoma cells [84]. However, the presence of glycolytic enzymes in EVs
does not necessarily correlate with functional transfer, as shown in a proteomics analysis
of adipocyte EVs, which suggested that both glucose oxidation and lactic acid release
remained essentially unchanged in recipient cells after treatment with these EVs [166].
Therefore, it will be necessary to increase the number of studies both in vitro and in vivo
to establish more conclusively whether EVs enriched in glycolytic enzymes are able to
reprogram the metabolism of recipient cells and to what extent this capacity depends on
the tumor cell origin.

3.10. Avoiding Immune Destruction

Exosomes can induce immune responses by regulating signals controlling both the
adaptive and innate immune responses [167]. Tumors avoid being recognized by cytotoxic
T cells as a strategy to escape destruction by the immune system. To do so, they can
directly impair the functioning of antigen-presenting cells (APC) or cytotoxic T cells, or
alternatively induce suppressor T cells. In all cases, efficient immune responses against
cancer cells are blocked [168]. Several mechanisms have been described by which EVs
participate in the evasion of the immune destruction of tumor cells. For instance, tumor-
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derived EVs induce immunosuppression by promoting the expansion of regulatory T cells
(Treg) and depletion of anti-tumor CD8+ effector T cells, which in conjunction permit
tumor escape [169]. Interestingly, metastatic melanomas release EVs, mainly in the form
of exosomes, which transport programmed death-ligand 1 (PD-L1) on their surface and
suppress CD8 T cell function [86,87]. Recently, a study showed that exosomes from Lewis
lung carcinoma or 4T1 breast cancer cells impaired dendritic cell (DC) differentiation
and promoted apoptosis [170]. Moreover, several studies have shown that exosomes
from cancer cells can inhibit natural killer (NK) cell proliferation and cytotoxic functions,
mainly through the downregulation of NK group 2 member D (NKG2D), which is a central
mediator of NK cytotoxicity [171–177]. Xia et al., have shed light on a potentially new
mechanism by which cancer-derived EVs may inhibit NK cell activity. Their study shows
that exosomes isolated from the supernatants of primary cell cultures of tissue samples
from patients with clear cell renal cell carcinoma obtained after nephrectomy display
TGF-β1 on their surface, which may impair NK function by activating the Small Mothers
Against Decapentaplegic (SMAD) pathway in these cells [85]. Despite their relevance,
these results were obtained using in vitro approaches and need to be confirmed in in vivo
settings. Elucidating the role of EVs in the evasion of cancer cell destruction by the immune
system should aid in the development of new therapies that block evasion of the immune
response by tumor cells, consequently enhancing anticancer treatment efficacy.

3.11. EVs and Thrombosis

Although the pro-thrombotic role of EVs is not considered a hallmark of cancer,
presumably because it does not appear to contribute to cancer development, it does play an
important role in determining cancer patient survival and for that reason is considered here.

A variety of studies have identified a role for EVs in modulating processes related
to coagulation and hemostasis, as well as in pathologies associated with thromboembolic
events, such as sepsis, atherosclerosis and cancer [178–180]. Thrombosis is one of the
most common complications in cancer patients and represents the second leading cause of
death in cancer patients in the United States [181–185]. The procoagulant activity of EVs
is associated predominantly with the surface exposure of phosphatidylserine (PS), which
facilitates the assembly of complexes, including the coagulation factors VIIIa, IXa, and X, as
well as the prothrombinase factors Va, Xa, and II on the EV surface [179]. Moreover, tumor
cells release EVs with tissue factor (TF) on their surface, which activates the extrinsic branch
of the coagulation cascade [186,187]. Several in vitro and in vivo studies have linked the
expression of TF on EVs to their pro-coagulant potential [188–192]. Indeed, circulating
TF-positive EVs (TF+EVs) have been observed in leukemia [193], multiple myeloma [194],
breast, pancreatic [195], ovarian [180] and lung [189] cancer.

3.12. EVs and Cell Competition

In any given tumor, several different cancer cell subpopulations coexist and, conse-
quently, tumor subclones compete for available resources in a process denominated cell
competition (CC). This process determines the relative fitness in neighboring cells and
permits eliminating defective or damaged cells in communities to favor the proliferation
and growth of the most competent cells [196]. Given that this will ultimately determine the
nature of a tumor, some evidence relating to factors involved in CC mechanisms and the
role of exosomes/EVs in that context will be discussed below.

One of the best characterized factors that regulates CC is the transmembrane protein
Flower (hFWE). In humans, there are four splice variants of hFWE (1–4), and co-culture
studies revealed that cells expressing hFWE2 or hFWE4 proliferate while triggering caspase-
dependent apoptosis in cells expressing hFWE1 or hFWE3 [196]. Although this is perhaps
one of the clearest examples illustrating how specific molecules participate in CC, there is
unfortunately no published information available indicating that hFWE (1–4) are present
in exosomes/EVs.
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Bone morphogenetic proteins (BMPs) have also been previously associated with CC.
In mammals, pluripotent cells with decreased BMP signaling are eliminated in the presence
of WT cells [197]. Calcium-dependent activator protein for secretion 1 (CAPS1) protein
promotes metastasis in colorectal cancer cells (CRCs), and exosomes derived from CAPS1-
overexpressing CRCs increase the migration of normal colonic epithelial cells. Interestingly,
proteomics analysis showed that the overexpression of CAPS1 downregulated the BMP4
cargo in exosomes [198]. Thus, these results suggest that CAPS-1 expressing cells restrict
BMP4 export using exosomes to upregulate their own signaling or to prevent the functional
transfer of this protein to neighboring cells.

Latent membrane protein 1 (LMP1), an oncogenic protein, plays an important role
in malignant transformation. In AGS gastric cancer cell populations, LMP1-positive cells
decreased gradually with each cell passage when the cells were co-cultured with LMP1-
negative cells. The experiments performed to study this phenomenon suggest that LMP1-
positive cells stimulate the proliferation of surrounding LMP1-negative, but not LMP1-
positive cells, via EV-mediated EGFR activation [199].

YAP is a transcriptional co-activator that does not bind directly to DNA. The phospho-
rylation of YAP by LATS kinases can either prime the protein for binding to 14-3-3 proteins
leading to cytoplasmic sequestration or ubiquitin-mediated protein degradation. Alterna-
tively, however, active (non-phosphorylated) YAP translocates to the nucleus and binds
mainly to transcription factors of the TEA domain family (TEAD). In the nucleus, the YAP–
TEAD protein complex transcribes genes that control cell proliferation and apoptosis [200].
In co-culture conditions, cells expressing higher levels of YAP have enhanced growth and
cause the elimination by apoptosis of cells expressing lower levels of this protein [201].
Wnt5a-enriched exosomes isolated from lymph node metastasis-derived gastric cancer
(LNM-GC) cells induced YAP dephosphorylation in bone marrow-derived mesenchymal
stem cells (BM-MSCs) [202]. Experiments performed in Xenopus laevis embryos have
identified human frizzled-5 (hFz5) as the receptor for Wnt5a [203]. Thus, the autocrine
stimulation of gastric cancer cells with Wnt5a-containing exosomes could function as an
auto-stimulatory mechanism that increases the proliferation of specific subpopulations of
cancer cells in metastatic tumors, which are mediated by the activation of hFz5 receptor
and YAP-mediated intracellular signaling.

The non-canonical Wnt-planar cell polarity (PCP) pathway does not involve β-catenin
but rather controls cell movement through the activation of RHOA, c-Jun N-terminal
kinase (JNK), and nemo-like kinase (NLK)-dependent signaling cascades [204]. Exosomes,
secreted from human fibroblasts, stimulate breast cancer cell (BCC) protrusive activity,
motility, and metastasis via Wnt/PCP signaling in vitro. In orthotopic mouse models of
breast cancer, the co-injection of BCCs with fibroblasts dramatically enhances metastasis in a
manner dependent on Wnt/PCP signaling in BCCs. Surprisingly, exosome activity in BCCs
was shown to be dependent on Wnt11 produced in BCCs. Proteomics analysis revealed
that the fibroblast-derived exosomes do not contain Wnt11. The experiments carried out
to elucidate the causes of this unexpected observation showed that fibroblast-derived
exosomes are internalized by BCCs and then loaded with Wnt11 [205]. These results show
how the interactions between different populations of cancer and stroma cells in complex
biological systems can lead to modifications in the composition of exosomes/EVs. Finally,
the incorporation of Wnt11 into exosomes/EVs may represent a key factor in determining
fitness during CC.

Importantly, it should be noted that numerous other proteins found in exosomes or
EVs involved in CC mechanisms were already mentioned in the sections on EV-mediated
functions in cancer: see EGFR, MAPK (Section 3.5), p53 (Section 3.2), src (Section 3.6), and
JNK (Section 3.3).

4. EVs in Cancer Drug Resistance

Chemotherapy is widely used to treat cancer, but the effectivity of such therapies is
reduced in several types of cancer due to the development of drug resistance, which can
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be attributed to the activation of intrinsic or acquired mechanisms. Intrinsic resistance
refers to the presence of resistance factors in tumor cells prior to chemotherapy that
render the treatment ineffective. Acquired resistance, on the other hand, is developed
during the treatment of tumors that were initially sensitive and can be caused either
by mutations arising during treatment or through adaptive responses [206]. Moreover,
tumors are extremely heterogeneous, so drug resistance can arise through the therapy-
induced selection of a minor resistant subpopulation of cells that was present in the original
tumor [207]. Alternatively, drug resistance can also be acquired by drug-sensitive cells via
communication with drug-resistant cells (cancer or stromal) through EV-mediated transfer
of resistance factors. Some of these EV-mediated mechanisms of drug resistance will be
explored in the next sections.

4.1. EV-Mediated Drug Transport

Regardless of the route of anticancer drug administration, these drugs generally need
to be taken up by cancer cells because they target an intracellular process. Note that
membrane receptor antagonists are exceptions in this respect. The uptake of such drugs by
cancer cells may involve active transport mechanisms or rely on simple diffusion because
of high membrane permeability. Independent of the mechanism, these drugs must reach
a threshold concentration to be effective. However, cancer cells are known to express
multidrug resistance (MDR)–ATP binding-cassette (ABC) proteins that export drugs to the
extracellular space. These transporters are membrane-bound proteins that consume ATP
to eliminate a wide variety of molecules, even against steep concentration gradients [208].
This phenomenon results in decreased intracellular anticancer drug accumulation, which
decreases or even abolishes drug effects. In this context, it is important to mention that
an alternative drug export mechanism has been described involving EVs to eliminate the
drugs in an ABC transporter-independent manner.

Shedden et al., (2003) were the first to report that anticancer drug resistance and the
release of EVs could be mechanistically linked. In cancer cell lines, the expression of vesicle
shedding-related genes is associated with chemosensitivity profiles. Furthermore, in the
breast cancer cell line MCF7, the fluorescent chemotherapeutic agent doxorubicin was
incorporated into EVs and released to the culture media [209]. Similarly, in vitro B-cell
lymphoma cell lines efficiently extrude doxorubicin in exosomes [210].

Early studies suggested that cisplatin, once inside tumor cells, may be sequestered
into acidic vesicles belonging to a secretory pathway. The treatment of human ovarian
carcinoma cells with cisplatin showed that the exosomes released from cisplatin-resistant
cells contained more than 2-fold higher platinum levels than those released from cisplatin-
sensitive cells [211]. Moreover, exosomes released by drug-resistant melanoma cells that
were previously treated with a fixed dose of cisplatin in culture contained varying amounts
of the drug depending on the pH of the medium, and the level of cisplatin in the exosomes
was higher in acidic culture medium [212]. Additionally, it was reported that mouse
leukemia cell-derived exosomes can include paclitaxel and, interestingly, that the paclitaxel-
containing exosomes reduced the proliferation of a human pancreatic cell line. These
observations suggest that exosomes or EVs can be used to package and deliver active
drugs [213].

4.2. EVs Transport Drug Efflux Pumps

ABC transporters can confer multidrug resistance to tumor cells. In addition, cancer
cells can transmit resistance through horizontal transfer using EVs carrying drug efflux
pumps. The first evidence for the transfer of ABC transporters between cancer cells was
obtained studying human acute lymphoblastic leukemia cells. P-glycoprotein (P-gp)-
containing “microparticles” were isolated from drug-resistant cells and then used to treat
drug-sensitive cells. The results revealed that P-gp protein transfer coincided with reduced
drug accumulation in recipient cells, confirming that the transfer of functional P-gp was
mediated by EVs [214]. Later studies showed that exosomes from docetaxel-resistant
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human prostate cancer cell lines conferred resistance to previously sensitive target cells. In
addition, this study revealed that P-gp was only present in exosomes derived from resistant
but not docetaxel-sensitive cells [140]. Exosomes derived from doxorubicin-resistant (DXR)
osteosarcoma cells are taken up by recipient cells, where they convey a doxorubicin-
resistant phenotype. The treatment of doxorubicin-sensitive (DXS) osteosarcoma cells
with exosomes derived from DXR cells reduced the sensitivity of the recipient cells to
doxorubicin. Moreover, exosomes from DXR cells contain higher mRNA and protein levels
of P-gp. In addition, both P-gp mRNA and protein levels increased in cells after treatment
with DXR-derived exosomes [215].

P-gp is the best studied drug efflux pump; however, other members of the ABC
transporter family have been identified in cancer cell-derived EVs/exosomes, too. GAIP
interacting protein C terminus (GIPC) is a protein regulator of autophagy and the exocy-
totic pathways in cancer. The knockdown of GIPC in pancreatic cancer cells induces the
overexpression and incorporation into exosomes of the ATP-binding cassette sub-family G
member 2 (ABCG2). This finding opens up the possibility of horizontal transfer of ABCG2
via exosomes mediates drug resistance in pancreatic cancer [216].

In addition, exposure to the chemotherapeutic drug vincristine increases the secretion
of ATP-binding cassette sub-family B member 1 (ABCB1)-enriched EVs by inducing dysreg-
ulation of the Ras-related proteins Rab8B and Rab5. The transfer of ABCB1 via exosomes
helps sensitive cancer cells develop a drug-resistant phenotype [183].

4.3. EVs Transfer Pro-Survival Cargos

EV cargoes also include pro-survival factors, which decrease apoptosis sensitivity
and increase cell viability, thus leading to resistance to anticancer drugs. Components of
the PI3K/AKT pathway, an oncogenic signaling axis involved in cancer cell proliferation
and survival, have been reported in EVs. Exosomes derived from HCC cells induced
sorafenib resistance in vitro and in vivo by activating the HGF/c-Met/AKT signaling
pathway and inhibiting sorafenib-induced apoptosis [217]. Triple negative breast cancer
cell lines, resistant to docetaxel and doxorubicin, release EVs that induced resistance to
the same drugs in recipient non-tumorigenic breast cells. The treatment with EVs from
the resistant cells increased the expression of eight genes associated with the PI3K/AKT
pathway [218].

BRAF is a component of the MAPK pathway involved in cell differentiation and
survival. BRAF kinase inhibitors, such as vemurafenib and dabrafenib, are used in ad-
vanced melanoma treatment. Platelet-derived growth factor receptor β (PDGFRβ) is a
receptor tyrosine kinase that induces activation of the PI3K/AKT pathway. Vella et al.
showed that PDGFRβ can be transferred to recipient melanoma cells in EVs, resulting in
a dose-dependent activation of PI3K/AKT signaling and escape from MAPK pathway
inhibition by BRAF [219].

In addition, resistance to apoptosis is an escape mechanism by which cancer cells
acquire drug resistance and thus contribute to cancer progression. Cancer-associated
fibroblast (CAF)-EVs induced the drug resistance of gastric cancer cells by decreasing
cisplatin-induced apoptosis. The proteomics analysis of CAF-derived EVs identified that
annexin A6 plays a pivotal role in the drug resistance of gastric cancer cells via the activa-
tion of β1 integrin and the downstream intracellular signaling pathways, involving focal
adhesion kinase (FAK) and the yes-associated protein (YAP). Consistently, the inhibition of
FAK or YAP efficiently attenuated gastric cancer drug resistance in vitro and in vivo [220].

Survivin is a pro-survival protein member of the inhibitor of apoptosis (IAP) family
that is present in EVs derived from different tumor types [221]. Paclitaxel treatment of
triple negative breast cancer cells induces the secretion of EVs enriched in survivin, which
increased the survival of serum-starved, as well as paclitaxel-treated fibroblasts and breast
cancer cells [222].



Cancers 2021, 13, 3324 19 of 36

4.4. EVs Mediate Drug Resistance via the Transfer of microRNAs

MicroRNAs (miRs) are well-established components of EVs, and their horizontal
transfer favors the development of drug resistance. Sorafenib is a kinase inhibitor drug
approved for the treatment of primary kidney cancer, advanced primary liver cancer,
and advanced thyroid carcinoma. EVs derived from sorafenib-resistant (SR) cells were
taken up by sorafenib-sensitive (SS) RCC cells and promoted drug resistance. Elevated
miR-31-5p in EVs derived from SR cells downregulated the expression of MLH1, which
is a gene commonly associated with hereditary nonpolyposis colorectal cancer in SS cells
and thus promoted sorafenib resistance in vitro. In addition, low expression of MLH1 was
observed in SR RCC cells and upregulation of MLH1 expression restored the sensitivity
of resistant cell lines to sorafenib. Experiments in mice also confirmed that miR-31-5p
could regulate drug sensitivity in vivo. Finally, miR-31-5p levels in circulating EVs from
the plasma of RCC patients with progressive disease during sorafenib therapy were higher
when compared with the levels observed prior to therapy [80].

Exosomes isolated from gemcitabine (GEM)-resistant human pancreatic cancer stem
cells (R-CSCs) inhibited GEM-induced cell cycle arrest and apoptosis as well as promoted
tube formation and cell migration in drug-sensitive human pancreatic cancer stem cells
(S-CSCs). Elevated miR-210 levels were detected in R-CSC exosomes compared to S-CSCs
exosomes, and MiR-210 levels in exosomes were dependent on the GEM doses used to
treat cells. Moreover, treatment with R-CSC-derived exosomes increased miR-210 levels in
recipient cells [223].

The aforementioned studies are only a few recently published examples of the increas-
ing evidence linking cancer drug resistance to the presence of specific miRNA cargos in
EVs. A more comprehensive summary of related information can be found in a recent
article by Maacha et al. [221].

4.5. EV Interference in Immunotherapies

Specific EV surface antigens can be targeted by immunotherapy where they act as a
“hunter” in monoclonal antibody-based therapies by diminishing antibody bioavailability.
For instance, rituximab (anti-CD20 antibody) binds to CD20 on the surface of EVs and
protects targeted lymphoma cells from rituximab-induced toxicity [224]. EVs secreted either
by HER2-overexpressing breast carcinoma cells or present in the serum of breast cancer
patients bind to trastuzumab. In vitro studies showed that HER2-containing EVs, but not
EVs lacking HER2, prevent the reduction in cell proliferation induced by trastuzumab
treatment, although no change in HER2 activation status was detected in EV-treated cells
by Western blotting [225].

EVs are involved in additional ways in downregulating the immune response.
Melanoma patients display different responses to the immune checkpoint inhibitor pem-
brolizumab (anti-PD-1). The detection of immune checkpoint ligand (PD-L1) on EVs early
after therapy is indicative of whether the patients will respond or not to anti-PD-1 therapy.
PD-L1 binds to PD-1 receptors on the surfaces of effector T cells, preventing their ability to
target tumor cells for destruction. PD-L1 containing exosomes derived from melanoma
cells inhibit the proliferation, cytokine production, and cytotoxicity of T cells. Pre-treatment
of the exosomes with the anti-PD-L1 antibodies nearly abolished these effects. In vivo
studies suggest that exosomal PD-L1 suppresses anti-tumor immunity systemically [86].
In addition, EVs from glioblastoma stem cells were found to contain PD-L1 and inhibit
T cell proliferation and antigen-specific T cell responses [226]. These results suggest that
by capturing the anti-PD-1 antibodies on their surface, EVs prevent this antibody from
accessing the tumor, thereby permitting PD-L1 to bind to PD-1 on T cells and attenuate
anti-tumor immune responses.

These findings further extend our understanding of the implications of EVs in the
development of the disease. The composition of cancer-derived EVs can regulate patient
responses to chemotherapy using one or more of the aforementioned mechanisms. With
this in mind, one may predict that EVs will serve to predict or evaluate therapy efficacy,
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and as such will likely become powerful tools to improve cancer treatment. However, the
clinical application of new techniques for rapid EV detection and characterization remains
a pending issue.

5. EVs in Organ Tropism, Drug Delivery, Imaging and Theranosis

The intrinsic organ tropism of EVs and their potential physiological benefits, combined
with drug loading and targeting strategies, provide multiple therapeutic benefits for drug
delivery, such as greater cellular uptake and focalization, prolonged circulation time,
immunomodulation, biocompatibility, and stability. Furthermore, EVs can be used as
biological nanocarriers with the inclusion of active principles, nanoparticles, or imaging
agents. As such, they can significantly improve the therapeutic efficacy and selectivity, as
well as facilitate the early detection of multiple diseases, including cancer [227]. However,
to consider the use of EVs in potential clinical applications, the effects discussed previously
relating to the role of EVs in cancer and other pathologies need to be kept in mind.

5.1. EV Organ Tropism

EVs have emerged in recent years as potential tools for the delivery of different
bioactive agents to target tissues and specific organs [228,229]. In this context, the cellular
origin of EVs is key to determining the tropism toward specific organs. For instance, EVs
from melanoma cells predominantly accumulate in the lungs, while EVs from dendritic
cells tend to accumulate in the spleen [230]. Interestingly, EVs derived from tumor cells
reportedly also show selective tropism toward the tumor tissue from which they originated.
EVs from brain endothelial cells can cross the blood–brain barrier and accumulate in
the brain and brain tumor tissue, while EVs from melanoma cells preferentially target
metastatic melanoma tumors [229,231]. However, it is not clear whether the tumor cells
from which EVs originate determine alone their tissue tropism. Garofalo et al. [232]
observed the in vitro and in vivo targeting and accumulation of lung cancer cell-derived
EVs in colon carcinoma cells and vice versa. This may be taken to suggest the existence of a
generalized tropism for tumor-derived EVs toward any neoplastic tissue, regardless of the
tumor type. Although the molecular basis for EV tropism is not fully understood, there have
been some significant advances in discovering molecules involved in this process [233,234].
For example, integrins are cell surface adhesion molecules with a substantial role in
determining EV organ tropism, particularly toward the lung and liver. In particular, the
expression of α6β4 and α6β1 is important in the EV tropism toward the lungs, while
αvβ5 promotes EV accumulation in the liver [77,235]. Exosomes from rat pancreatic
carcinoma cells expressing the Tspan8-α4 complex preferentially accumulate in the pancreas
and lungs of rats [236]. There is also evidence showing that the cell migration-inducing
and hyaluronan-binding protein (CEMIP), which is enriched in exosomes of brain-tropic
metastasis-derived MDA-MB-231 breast cancer cells, promotes exosome accumulation in
the brain by generating a pro-metastatic environment [237]. Additionally, expression of the
programmed death-ligand 1 (PD-L1) in tumor-derived EVs is important for the suppression
of T-cell activation and thereby avoiding the immunological anti-tumor responses [87].
These findings further extend our understanding of EV tropism, which opens up novel
possibilities for the selective targeting of diagnostic/therapeutic agents to tumors.

5.2. EVs as Drug Delivery Vehicles

EVs have become novel biological delivery vehicles for several cargoes, due to the
variety of natural properties that they possess. These vesicles have the intrinsic capacity
to cross biological barriers and to transport various cargoes, protecting their content
from degradation until reaching the target. Depending on their cellular origin, EVs are
highly heterogeneous in content, and such variations contribute significantly to their
uptake, organ tropism and immunomodulation [238]. EV tropism is determined by the
presence on their surface of different adhesion and immunoregulatory molecules, as well
as specific cell receptors, which contribute to enhancing their accumulation in specific
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tissues [239,240]. This characteristic combined with their small size favors EV accumulation
in highly vascularized tissues with deficient lymphatic drainage, such as tumors. This
phenomenon, referred to as the enhanced permeability and retention (EPR) effect, can
be used as a strategy to increase targeting toward tumors [230]. EVs have been widely
studied as drug delivery nanocarriers in cancer research, so recent and representative
studies for each application of these vesicles in the delivery of proteins, genetic material,
and chemotherapeutics drugs will be described (see Figure 3). In this field, Kim et al.
developed a formulation of paclitaxel-loaded exosomes by the sonication and conjugation
of an aminoethilanisamide–polyethylene glycol (AA-PEG) vector moiety to target the
sigma receptor, which is overexpressed by lung cancer cells. The nanosystem (AA-PEG-
exoPTX) possesses a remarkable ability to accumulate in cancer cells and demonstrates
high anticancer efficacy in a mouse model of pulmonary metastasis [241].

Figure 3. EVs are nanoscale structures with excellent biocompatibility and the ability to trans-
port/deliver many different types of proteins, genetic material, and chemical drugs that can be used
in cancer therapy.

With respect to protein delivery, Aspe et al. [242] engineered EVs from melanoma cells
to overexpress survivin-T34A, which is a dominant-negative mutant variant of the inhibitor
of apoptosis protein survivin that blocks the protein’s function. Survivin overexpression
plays an important role in the development of resistance to both chemo- and radiotherapy
in pancreatic cancer. The authors observed that EVs containing either survivin-T34A alone
or in combination with gemcitabine increased apoptosis in multiple pancreatic cancer cell
lines, as well as enhanced the sensitivity of these cells to gemcitabine.

Beyond such applications, the use of EVs in site-specific drug delivery can be improved
by protein engineering and modifying the vesicle surface by attaching additional ligands to
improve EV targeting properties and their interaction with tumor cells [243]. For instance,
glycosylphosphatidylinositol (GPI) anchored EV proteins such as decay-accelerating factor
(known as CD55) were used by Kooijmans et al. [244] to attach anti-epidermal growth factor
receptor (EGFR) nanobodies to EVs and thereby improve targeting to EGFR overexpressing
epidermoid carcinoma A431 cells. They showed that the GPI-linked nanobodies were
successfully displayed on EV surfaces and greatly improved EV binding to tumor cells in a
manner dependent on EGFR density.

On the other hand, EVs readily transfer nucleic acids, such as DNA or RNA, to
cells where they can cause specific genetic changes. Regarding genetic drug delivery,
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Kamerkar et al. [245] engineered EVs known as iExosomes derived from fibroblast-like
mesenchymal cells loaded by electroporation with siRNA or shRNA specific for the onco-
genic GTPase KrasG12D, which is a common mutation in pancreatic cancer. The iExosomes
showed enhanced targeting to oncogenic Kras-expressing cells, which was dependent
on CD47 and the uptake facilitated by micropinocytosis. Subsequently, the treatment
with iExosomes was shown to inhibit tumor growth and significantly increase the overall
survival in multiple mouse models of pancreatic cancer.

5.3. EV Imaging for Cancer Diagnosis

Regarding the imaging of tumors, one of the major problems is the tremendous spatial
heterogeneity combined with temporal variation, which leads to errors in the diagnosis
and surgical treatment of tumors and thus represents major causes of therapy failure [246].
Since EVs permit detecting as little as a few hundred cancer cells, their application in cancer
imaging represents a promising new approach. By attaching an optical reporter in the
nanoscale dimension to the EVs and combining with optical imaging, robust diagnostic
and prognostic modalities can be developed [243]. Using such approaches, tumor-targeted
EVs can be monitored in real time to check their distribution and identify the precise
location of tumors. Fluorescence is generally used for exosome tracking and imaging
because of its great versatility and simple application by incubation of EVs with a variety
of lipophilic fluorescent markers. In this field, generally small lipophilic fluorescent dyes,
such as DiR, DiD and PKH67, have been used to label the membranes of EVs. Although
these dyes are useful for distribution studies, clinical applications for diagnosis have yet to
be developed [247,248]. Additionally, EV membranes have been labeled with fluorescent
proteins, such as green fluorescent protein (GFP) or tandem dimer tomato (td Tomato) [249].
This type of labeling is considered more stable and suitable for evaluation in clinical
applications. EVs can also be labeled using luciferase reporters in the cells of origin to
produce bioluminescent proteins that are then included in the EVs and permit stable
real-time monitoring [250,251].

Another alternative is the use of semiconductor quantum dots as optical reporters.
They are more stable and have tunable optical properties that can be used for a wide range
of applications, including in vivo imaging and diagnosis. For instance, Zong et al. [252] and
Jiang et al. [253] obtained high-resolution images of breast tumor cells or their metastatic
activity by loading either silicon or gold-carbon quantum dots, respectively, onto the outer
membrane of the exosomes secreted by SKBR3 cells.

Superparamagnetic iron oxide nanoparticles (SPIONs) represent another interesting
system for imaging. They have been effectively incorporated into EVs and then tracked
in vivo by magnetic particle imaging and MRI, as has been shown for breast cancer [254]
and melanomas [255].

Another type of nanomaterial that can be used for EV imaging is gold nanoparticles
(AuNPs), which are highly versatile due to their tunability, biocompatibility, and unique
optical properties [256]. The AuNP optical properties are due to the interaction of light
with the electrons on the surface of the nanoparticles, which produces the collective
oscillation of electrons, a phenomenon called surface plasmon resonance (SPR). This
phenomenon leads to higher light absorption and scattering efficiency, thus making AuNPs
excellent photoacoustic and Raman imaging agents [257,258]. On the other hand, gold
exhibits a high absorption coefficient of X-rays, which make AuNPs useful as contrast
agents for computerized tomography. AuNPs can be efficiently incorporated into EVs
and then used for imaging, as well as tumor ablation in cancer therapy. In this field,
Lara et al. [229] developed a double-labeling method to incorporate AuNPs indirectly into
EVs by incubating them with cells and isolating them in EVs, which were then labeled with
fluorescent dyes. This combination permitted analyzing the vesicle biodistribution and
detecting the presence of small metastatic foci in the animal lungs by neutron activation
analysis, NIR fluorescence, CT imaging and gold-enhanced microscopy imaging.
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The use of EVs in imaging applications has been made possible by exploiting some
of their natural properties. In particular, EVs have a mean size of 50–200 nm and can
evade clearance by the mononuclear phagocytes, as well as favor passive extravasation
in inflamed tissues [259]. The presence of immunomodulatory molecules, such as CD47
and PD-L1 ligand, on the EV surface aids significantly in avoiding phagocytosis and
suppressing T cell activation, respectively [87,245]. EVs also possess a “tunable” surface
that can be modified by adding targeting molecules, such as antibodies, aptamers, and
ligands, all of which can favor specific EV accumulation in tumors, thereby avoiding
undesirable off-target effects [260,261]. For these reasons, EVs are nowadays considered
very appealing nanoscale tools for use as diagnostic sensors, as well as therapeutic vehicles
in oncology.

5.4. EVs for Theranostic Applications

With the advances in nanotechnology and thanks to their unique properties, nanopar-
ticles have become a promising tool in many areas in recent years, including theranosis.
This novel concept, which combines the use of an agent for diagnosis and therapy in a
single formulation, represents a great advance in personalized medicine. Existing evidence
points towards the great potential of EVs both as diagnostic biomarkers and therapeutic
tools. Such tumor-derived EVs have characteristic proteomic and genomic signatures,
indicating that they represent suitable vectors for cancer diagnosis and prognosis [18,262].
In addition, because EVs can transfer various therapeutic compounds, as well as imaging
agents, some researchers have proposed to exploit these vesicles as a tool for simultaneous
therapy and active diagnosis (see Figure 4). EVs have been proposed as an ideal solution
to overcome limitations of inorganic particles, including toxicity, off-target effects and
immunogenicity [263].

Figure 4. EVs as theranostic nanoplatforms. By combining the natural properties of exosomes
with the use of drugs, imaging agents, or NPs, unique platforms can be generated. In combination
with different targeting strategies, multiple therapeutic benefits can be achieved, such as improved
targeting/uptake, immunomodulation, prolonged circulation time, easy tracking and better ther-
apeutic effects. In doing so, side effects can be reduced, and the need to apply multiple drugs can
be eliminated.

In this regard, Jia et al. [264] obtained glioma-targeting EVs with diagnostic and
therapeutic potential by conjugating RGE, which is a peptide that binds to neuropilin-1
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overexpressed on glioma cells, with the EV membrane by applying click chemistry. In ad-
dition, superparamagnetic iron nanoparticles (SPION) and curcumin were synchronously
loaded into EVs by electroporation. The engineered system efficiently crossed the blood–
brain barrier and provided good results for MRI-targeted imaging when applied to glioma
cells and in orthotopic xenograft models. Additionally, SPION-mediated magnetic flow
hyperthermia and curcumin-mediated effects combined lead to synergistic antitumor
activity. Likewise, Wang et al. [234] designed a new platform for tumor-targeted chemo-
photothermal therapy and imaging that was based on combining gold nanorods (AuNRs)
with exosomes through a donor cell-assisted membrane modification strategy. First, the
membrane of the donor cells was modified with RGD peptides and sulfhydryl groups.
Then, the isolated exosomes (RGD-Exos-SH) were functionalized with AuNRs by the
formation of Au-S bonds and coupling folic acid (FA) to improve the uptake efficiency by
tumor cells. Further, doxorubicin (DOX) was loaded into exosomes by electroporation.
Such designer exosomes showed effective accumulation at target tumor sites via dual
ligand-mediated endocytosis, which were monitored in nude mice bearing tumor cell
xenografts, using non-invasive near-infrared optical imaging. Moreover, the localized
hyperthermia induced by the conjugated AuNRs during near-infrared irradiation increases
the permeability of exosome membranes to enhance drug release, thereby preventing
tumor relapse in a programable manner. Hence, the compatibility of EVs with different
therapeutic agents and nanomaterials provides a unique opportunity to develop novel
approaches in diagnosis and personalized treatment modalities.

6. EVs and Cancer Patient Survival

Cancer-derived EVs/exosomes are promising markers for diagnosis and prognosis in
cancer and have been shown to predict the survival of patients. For example, in colorectal
cancer, high levels of exosomes in the plasma of patients correlated with elevated presence
of the carcino-embryonic antigen (CEA), and such patients tended to have shorter overall
survival periods than patients with low exosome levels [265]. In addition, in lung cancer,
the presence of the EGFR protein in exosomes from patient plasma has been suggested
to represent a biomarker for lung cancer diagnosis [266]. Furthermore, high urinary
exosomal levels of the long non-coding RNAs (lncRNAs) MALAT-1 and PCAT-1 correlated
with decreased recurrence-free survival in non-invasive muscle bladder cancer (NIMBC)
patients [267]. In pancreatic ductal carcinoma (PDAC), the lncRNA Sox2ot was identified in
exosomes from plasma samples, and its presence there was closely associated with higher
Classification of Malignant Tumors (TNM) stage and reduced overall survival rates of
PDAC patients [268]. Combined analysis of exosomal miR-1290 and miR-375 reportedly
predicts the overall survival of castration-resistant prostate cancer patients. Over the same
follow-up period of 20 months, patients with high levels of both miRNAs had a general
mortality rate of 80%, while patients with normal concentrations for both only had a
mortality rate of 10% [269]. These are just a few examples from a rapidly growing research
field illustrating how exosomes/EVs affect the survival of cancer patients.

On the other hand, tumor-derived exosomes may also be used to evaluate the response
to surgery. For instance, their persistence after PDAC tumor resection is related to the
presence of hidden metastases. Patients with more than 20% heparan sulfate proteoglycan
glypican-1 (GPC1) positive exosomes in peripheral blood have been reported to have
lower progression-free and overall survival [270]. Similarly, the detection of high levels
of exosome-encapsulated miR-415a was also associated with reduced progression-free
and overall survival [271]. In addition, the detection of exosomes containing miR-4525,
miR-415a, and miR-21 in the portal vein identified more effectively patients at high risk for
recurrence after surgery than did the detection in peripheral blood [272].

In summary, these examples illustrate how the targeted identification of specific
proteins or miRNAs in exosomes may serve both diagnostic, as well as prognostic purposes.
Indeed, it is important to mention that currently, there are 89 registered clinical trials [273]
underway, studying exosomes in cancer patients and looking for markers that could be
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useful for diagnosis or prognosis. Of these trials, many focus on the prevalent cancer types
in the lungs and prostate (14), breast (9), pancreas (8), and colon (6). As the results of these
studies become available in the next few years, we may anticipate that a clearer picture
should emerge connecting the presence of exosomes and their content to the survival of
cancer patients.

7. Concluding Remarks

In summary, EVs are a heterogeneous population of membrane-enclosed, non-replicating,
and sub-micron sized structures. EVs are actively released by virtually all cell types and
by a wide variety of eukaryotic and prokaryotic organisms. EVs can be sorted into three
different subtypes according to their biogenesis and biophysical properties: exosomes,
microvesicles, and apoptotic bodies (Figure 1). A large number of studies show that EVs
are active participants in cell communication. In the context of cancer biology, cancer cell-
derived EV cargoes can change the behavior of target cells. The evidence provided shows
that EVs are involved in the acquisition of all the “hallmarks of cancer”, that is, biological
characteristics acquired by cancer cells during tumor development. Consequently, more
aggressive cancer cells can transfer their “traits” to less aggressive cancer cells and convert
them into more malignant tumor cells (Figure 2). In addition, EVs play a role in the
mechanisms of drug resistance, which can be acquired by drug-sensitive cells through EV-
mediated transfer of resistance factors and other mechanisms, which aid in understanding
why chemotherapy often fails. However, on the upside, these very characteristics of EVs
combined with drug loading and targeting strategies provide unique opportunities for the
delivery of different cargoes (Figure 3). Finally, EVs can be used as biological nanocarriers
for both therapeutic and diagnostic purposes (theranosis) by including active principles,
nanoparticles, as well as imaging agents (Figure 4). With this in mind, it would appear that
such “designer” EVs will have a bright future in cancer medicine.
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