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Simple Summary: CircRNAs (circular RNAs), a novel kind of non-coding RNAs, play a regulatory
role in cellular processes. A growing number of biological experiments has proved that circRNAs
can be used as biomarkers and therapeutic targets of some cancers. As the time and financial costs of
biological experiments are high, computational methods have become a better way to predict the
associations between circRNAs and diseases. Graph attention network was first applied to predict
circRNA-disease associations with multiple similarities of data in this study. The circRNA-miRNA
interactions and disease-mRNA interactions were adopted to construct features. The computational
method proposed in this study has improved the prediction performance.

Abstract: CircRNAs (circular RNAs) are a class of non-coding RNA molecules with a closed circular
structure. CircRNAs are closely related to the occurrence and development of diseases. Due to the
time-consuming nature of biological experiments, computational methods have become a better
way to predict the interactions between circRNAs and diseases. In this study, we developed a
novel computational method called GATCDA utilizing a graph attention network (GAT) to predict
circRNA—-disease associations with disease symptom similarity, network similarity, and information
entropy similarity for both circRNAs and diseases. GAT learns representations for nodes on a graph
by an attention mechanism, which assigns different weights to different nodes in a neighborhood.
Considering that the circRNA-miRNA-mRNA axis plays an important role in the generation and de-
velopment of diseases, circRNA-miRNA interactions and disease-mRNA interactions were adopted
to construct features, in which mRNAs were related to 88% of miRNAs. As demonstrated by five-fold
cross-validation, GATCDA yielded an AUC value of 0.9011. In addition, case studies showed that
GATCDA can predict unknown circRNA-disease associations. In conclusion, GATCDA is a useful
method for exploring associations between circRNAs and diseases.

Keywords: circRNA-disease association; graph attention network; circRNA-miRNA-mRNA axis

1. Introduction

CircRNAs (circular RNAs) are a class of non-coding RNA molecules with a closed
circular structure, without a 5’-end cap and a 3’-end ployA tail. They are mainly located
in the cytoplasm or stored in exosomes, and are not affected by RNA exonuclease [1].
Although circRNAs are non-coding RNAs, some circRNAs can encode polypeptides. Cur-
rently, biological functions of circRNAs are well-recognized as follows [2]: miRNA sponges,
regulatory protein binding, regulation of gene transcription, and coding functions. Cir-
cRNA expression is more stable and not easily degradable, and has been proved to exist
widely in a variety of eukaryotes [1]. Most circRNAs are formed by exon loops, and some
circRNAs are lariat structures formed by intron loops. Because circRNAs contain a number
of miRNA response elements (MREs), they can form the catalytic core of the RNA-induced
silencing complex (RISC) with AGO proteins, which eventually leads to the degradation
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of circRNAs [3]. According to their sources, circRNAs can be roughly divided into four
categories [4]: full-exon circRNAs, exon-introns circRNA (ElcircRNAs), intron-composed
lariat circRNAs, and circRNAs produced by cyclization of viral RNA genomes (tRNA,
rRNA, snRNA, etc.). Twenty years ago, scientists found circRNAs from plant viroids, yeast
mitochondria, and hepatitis B viruses (HBV) as byproducts of abnormal splicing that have
no regulatory function [5]. In 2013, Hansen et al. proposed and confirmed for the first
time that circRNA is the regulatory mechanism of the miRNA sponge [6], providing a new
field for circRNA research. With the rapid development in RNA sequencing technology
and bioinformatics analysis, 14,807 candidate circRNAs have been identified in the human
tissue transcriptome, and many exons have been found to form circRNAs by nonlinear
reverse splicing or gene rearrangement in cells of other species.

In recent years, many studies [7-9] have shown that circRNAs are closely related to the
occurrence and development of diseases, and predicted circRNAs’ application prospects
in aspects of diagnostic markers of diseases. For example, after brain/spinal cord injury,
circRNAs can activate several biological, molecular, and cellular activities. Therefore,
interventions centered on the regulation of circRNAs may be promising for traumatic brain
injury and spinal cord injury [10]. Chen et al. demonstrated that circRNA circCTNNA1
promoted colorectal cancer progression by sponging miR-149-5p and regulating FOXM1
expression [11]. Wang et al. found that circCNST promoted the tumorigenesis of osteosar-
coma cells by sponging miR-421 and targeting SLC25A3, providing a potential biomarker
for patients with osteosarcoma [12]. Wu et al. discovered that circ_0009582, circ_0037120,
and circ_0140117 may serve as potential biomarkers for predicting the occurrence of hepa-
tocellular carcinoma in patients with HBV infection [13]. Li et al. revealed that circRNA
circITGA7 may play a regulatory role in thyroid cancer and may be a potential marker for
thyroid cancer diagnosis or progression [14].

At present, the number of known interactions between circRNAs and diseases ob-
tained through biological experiments is increasing. Some relevant databases have ap-
peared [15-18], including the interactions between circRNAs and diseases verified by
biological experiments. Due to the significant time and financial costs associated with
biological experiments, in recent years, it has become a hot topic to predict associations
between circRNAs and diseases using computational methods with these databases. The
current calculation methods can be divided into five categories [19]. The first category is
a network propagating method. For example, the computational model BRWSP applies
biased random walk to search paths on a multiple heterogeneous network to discover
circRN A-disease associations [20]. A method called KATZHCDA uses KATZ measures for
human circRNA-disease association prediction [21]. The second category is a recommen-
dation system method. For example, Lei et al. proposed a computational method named
ICFCDA based on collaboration filtering recommendation system, handling the “cold start”
problem to predict potential circRNA-disease associations [22]. The third category is the
matrix completion methods. For example, a computational method called iCircDA-MF
was developed based on matrix factorization by Wei et al. [23]. Zhang et al. [24] utilized
metapath2vec++ and matrix factorization to discover circRNA-disease associations. The
fourth category is the classical machine learning methods. For example, based on a gra-
dient boosting decision tree, a model named GBDTCDA was proposed by Lei et al. in
2019 [25]. A computational model called RWLR uses logistic regression to predict circRNA-
disease associations [26]. The fifth category is the deep learning methods. For example,
Wang’s method [27] applies a convolutional neural network to discover unknown circRNA-
disease associations. In 2020, GCNCDA was proposed based on a graph convolutional
network [28].

In this paper, we propose a novel computational model named GATCDA to predict
circRNA-disease associations with graph attention network (GAT). First, we construct
a circRNA-disease association network, a circRNA-miRNA association network and a
disease-mRNA association network. Second, we calculate disease symptom similarity,
network similarity and information entropy similarity for both circRNAs and diseases.
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Third, these similarities are integrated to create the features of circRNAs and diseases.
Fourth, the circRNA-disease association network and the features of circRNAs and diseases
are fed into GAT, and the output is the prediction score of associations between circRNAs
and diseases.

2. Materials and Methods
The whole flowchart of GATCDA is shown in Figure 1.
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Figure 1. The flowchart of the computational method GATCDA.

2.1. Dataset Curation
2.1.1. CircRNA-Disease Association

The circRNA-disease associations were downloaded from CircR2Disease [15], Cir-
cAtlas 2.0 [16], Circ2Disease [17], and CircRNADisease [18], in which the number of
circRNA-disease associations are 739, 927, 273, and 354, respectively. After integration, we
obtained 768 circRNA-disease associations, including 624 circRNAs and 102 diseases.

2.1.2. CircRNA-MiRNA Association and Disease-mRNA Association

An initial circRNA-miRNA association dataset was downloaded from the starBase
v2.0 [29] including 130,000+ circRNA-miRNA interactions, with 276 miRNA entries and
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7018 circRNA entries. We selected 82 circRNAs common to circRNA-disease interac-
tions and circRNA-miRNA interactions. There were only 142 miRNAs related to these
82 circRNAs in the initial circRNA-miRNA interactions. Finally, we constructed a new
circRNA-miRNA association network including 509 circRNA-miRNA associations among
142 miRNAs and 82 circRNAs.

An initial disease-mRNA association dataset was downloaded from DisGeNET [30]
including 60,000+ disease-mRNA interactions. We selected 37 diseases common to circRNA-
disease interactions and disease-mRNA interactions. There were 820 mRNAs related to
these 37 diseases in the initial disease-mRNA interactions. Finally, we constructed a new
disease-mRNA association network including 1239 disease-mRNA associations among
37 diseases and 820 mRNAs.

CircRNAs act as miRNA sponges in cells and increase the expression level of tar-
get genes. The circRNA-miRNA-mRNA axis plays an important regulatory role in dis-
eases [2,31,32]. In the new circRNA-miRNA associations, we found all the miRNAs related
with diseases from circRNA-disease associations or mRNAs from disease-mRNA associ-
ations. Furthermore, in the new disease-mRINA associations, we found all the mRNAs
related to the 125 of 142 miRINAs mentioned above.

2.1.3. Construction of the Interaction Network

For convenience, we formulate circRNA-disease associations as a binary matrix
Y € RO?4x102_1f there exists an experimentally verified interaction between circRNA c;
and disease d;, Y(i,j) = 1; otherwise, Y(i,j) = 0. At the same time, a circRNA-miRNA
interaction matrix and a disease-mRNA interaction matrix are constructed in the same way
based on circRNA-miRNA associations and disease-mRNA associations, respectively.

2.2. Similarity Calculation
2.2.1. Network Similarity

Zhou et al. [33] demonstrated the usefulness of network similarity. For a given miRNA
miy, we denote the set of its interacting circRNAs by C(miy). For a given mRNA 1y, we
denote the set of its interacting diseases by D(m). The network contribution of miRNA i,
in the circRNA-miRNA interaction network can be calculated as follows

Y
nc(miy) = —1n<|C(mik)|/kZ:C(mik)|>, 1)
—1

where nc(miy) is the network contribution of miRNA mij in the circRNA-miRNA interaction
network, and y is the number of miRNAs. The network contribution of mRNA 1 in the
disease-mRNA interaction network can be calculated as follows

ne(my) = —1n<D<mk>| / f|D<mk>|>, @
k=1

where nc(my) is the network contribution of mRNA 1, in the disease-mRNA interaction
network, and z is the number of mRNAs. We also denote the set of miRNAs that interact
with a given circRNA ¢, by Mi(c,), and the set of mRNAs that interact with a given disease
d, by M(d,). The network similarity between circRNA ¢, and circRNA ¢; can be defined as

CNS(cy,cp) = Z nc(miy), (3)
mipeMi(cy)Mi(cy)

where CNS(cy;, ¢y) is the network similarity between circRNA ¢, and circRNA c¢,. Similarly,
given two diseases, d, and d,, the network similarity between disease d,, and disease d
can be defined as
DNS(d,,dy) = ) ne(my), 4)
meM(dy)NM(dy)
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where DNS(d,, dy) is the network similarity between disease d,, and disease d.

2.2.2. Information Entropy Similarity

Information entropy is also used to measure topological similarities of circRNAs and
diseases. For a given circRNA ¢, we denote the set of its interacting diseases by Ty
For a given circRNA c¢,, we denote the set of its interacting circRNAs by T;?. Next, the
information entropy of Ty can be calculated as

{ H(Tq) = =X p(Ty (i) log, (p(Tht (i) )
p(Ta (i) = n(Ta (i) / Nea ’

where nd is the number of diseases related with circRNA ¢,, N4 is the total number of
known circRNA-disease interactions, n( Ty (i)) is the number of interactions between the
ith disease in the related disease set of circRNA ¢, and all circRNAs, and p(Ty (7)) is the
rate of the ith disease in the related disease set of circRNA ¢, with the known circRNA-
disease interactions. The information entropy similarity between circRNA ¢, and circRNA
¢y can be calculated as

2x H(Ty NTy7)

CES(CM’CU) = H(Tfu) +H(TC?))’
m m

(6)

where H(T;# N Ty?) is the information entropy of the intersection of Ty and T,?, and
CES(cy, cv) is the information entropy similarity of circRNA ¢, and circRNA c.

Similarly, the information entropy similarity between disease d,, and disease d, can
calculated as follows
2% H(T N T

H(T{) + H(TE)

DES(du;dv) = (7)

where T,’f“ is the set of disease d,s interacting circRNAs, T,'f” is the set of disease dys

interacting circRNAs, H(T2* N T2) is the information entropy of the intersection of T2
and T,‘f”, and DES(d,,, dy) is the information entropy similarity of disease d,, and disease d.

2.2.3. Disease Symptom Similarity

According to the co-occurrence of diseases and symptom terms recorded in the
PubMed bibliography, and the work of Zhou et al. [34], the disease similarity can be
measured and a symptom-based human disease network can be constructed. Here, the
symptom-based disease similarity matrix DSS was obtained from the symptom profiles
of diseases.

2.2.4. Integration of Similarities

The integrated circRNA similarities and integrated disease similarities are regarded
as circRNA features and disease features, respectively. The integrated circRNA similarities
can be calculated as follows:

B x CNS(cy,co) + (1 —B) x CES(cy, co)

CES(cy, cp) ’ ®)

ICS(cy,c0) = {
where CNS(cy, cy) is the circRNA network similarity between circRNA ¢, and circRNA ¢,,
CES(cy, cv) is the circRNA information entropy similarity between circRNA ¢, and circRNA
¢y, and ICS(cy, ¢y) is the integrated circRNA similarity between circRNA c;, and circRNA c.
B is an adjusting parameter. The dimensions of the ICS matrix are 624 x 624.

The integrated disease similarities can be calculated as follows

& x (DNS(dy,dy) + DSS(dy, do)) + (1 — &) x DES(dy, dy)

IDS(dy,dy) = { DES(du, dy) C)
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where DNS(d,, dy) is the disease network similarity between disease d,, and disease d,
DES(dy, dy) is the disease information entropy similarity between disease d,, and disease
dy, DSS(d,, dy) is the disease symptom similarity between disease d,, and disease d,, and
IDS(d,, dy) is the integrated disease similarity between disease d,, and disease d,. « is an
adjusting parameter. The dimensions of the IDS matrix are 102 x 102.

2.3. Graph Attention Network

GAT [35] combines a weighted sum of the adjacent node features with the attention
mechanism. The weight of the adjacent node features is completely dependent on the node
features and independent of graph structure. GAT aims to construct a hidden self-attention
layer and to learn representations for nodes on a graph by assigning different weights to
different nodes in a neighborhood.

The input of graph attention layer is

f:{flleI'”ffN}/fieRPI (10)

where N is number of nodes (all circRNAs and all diseases), F is the length of features, and
matrix f € RN*F denotes the features of all nodes.
The output of the graph attention layer is

f={ffr fn}. fl €RY, (11)

where F’ denotes the dimension of new features and matrix f' € RN*F’ denotes the new
features of all nodes.

The first step is to learn the importance of the neighbors for a given node. GAT
implements the self-attention mechanism for every node. The attention coefficient e;; for an
association pair between circRNA ¢; and disease d; is formulated as follows

ei]'(cir d]) = att<wfir Wf])/ (12)

where att denotes a single-layer feed-forward neural network that transforms input features
into high-level features for circRNAs and diseases, and W € RF "<Fis a weight matrix.

To make the attention coefficient comparable across different nodes, GAT further
normalizes the attention coefficient ¢;; as follows

exp(e;j)

0ij = softmax(e;j) = Tren, expleir)’

(13)
where N is the set of neighbor nodes of circRNA ¢;, and 6;; is the normalized attention coef-
ficient indicating the importance of disease d; for circRNA ¢; in the process of information
propagation.

By combining Formulas (12) and (13), the complete attention mechanism can be
obtained as follows

0 — exp(leakyReLu(aT[Wfi"ij]))
7 Lien,exp(leakyReLu(al [Wfi|[Wfi]))

(14)

where leakyReLu is a nonlinearity activation function assigning all negative values a non-
zero slope, T denotes transposition, | | is the concatenation operation, and a € R "is the
weight coefficient matrix of the graph attention layer.

The second step is to fuse the representations of the neighbors for a given node
according to their attention coefficients. The embedding of a given node can be fused by
the projected node features of neighbors with different weights as follows

fi =0 tenaWfi), (15)



Cancers 2021, 13, 2595 7 of 13

where ¢ is a nonlinear activation function.

GAT applies a multi-head attention mechanism to increase the stability of the learning
process of self-attention. Multi-head attention is the combination of multiple self-attention
structures. Each head learns the features in different representation spaces, and the focus of
attention learned by multiple heads may be slightly different, which increases the capacity
of the model. Specifically, K-independent attention mechanisms are integrated to achieve
embedding as follows:

= oo D el - W), 6)

where K is the number of attention mechanisms and W¥ is the weight matrix for the kth
attention mechanism.
Ultimately, the probability score matrix S can be calculated as follows

S=uxvr, (17)

where U € R"*F is the final representation matrix of the circRNAs, in which nc is the
number of circRNAs; and V € R"™*F is the final representation matrix of diseases, in
which nd is the number of diseases. The dimension of probability score matrix S is nc x nd.

The detailed procedures of using GAT to predict the associations between circRNAs
and diseases are shown in Figure 2. As shown in Figure 2, the circRNA-disease association
network is fed into a GAT in which the final node representation is obtained through feature
propagation and attention fusion. Finally, the prediction score is calculated according to
node representation. In the case of disease d3 and circRNA c¢;, the dark blue row represents
ds, the dark yellow row represents ¢, and the red grid represents the predicted score of the
association between dz and c,.

@ 3

I

Score matrix

[/
Q,
=
QL

Q
{
EEET] T

T

B

S=UxVT

T

]

BT

Figure 2. The detailed procedures of using GAT to predict the associations between circRNAs and diseases.

3. Results
3.1. Performance Evaluation

The five-fold cross-validation (5CV) technique was used to evaluate the prediction
performance of our model. The 5CV technique randomly divides the positive samples
into five equal parts, and takes out one part of them as a testing sample while the rest
of samples are regarded as training samples. Next, the predicted scores are sorted in
descending order. We drew the receiver operating characteristics (ROC) curve via plotting
the true positive rate (TPR) versus the false positive rate (FPR) at different score thresholds.
TPR (FPR) refers to the percentage of positive (negative) cases that are correctly identified.
Generally, the area under the ROC curve (AUC) is calculated and employed to evaluate
the prediction performance. Specifically, the closer the AUC value is to one, the better
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the prediction performance. As a result, in 5CV, GATCDA achieved an AUC of 0.9011. In
addition, GATCDA yielded an accuracy of 0.8710, with a precision of 0.9013.

3.2. Adjustment of Parameters

The GATCDA model involves two parameters, « and (3, which adjust the influence of
similarity data when calculating integrated similarities. We let « and 3 both range between
0.1 and 0.9. As a result, GATCDA (x =0.1, = 0.1) gained the highest AUCs of 0.9011 in

5CV as shown in Figure 3.
B=0.1 B=02 PB=03 B=04 PB=05 B=06 B=07 B=08 B=09
0.9011 0.8802  0.8745 0.8742 0.8719 0.8632 0.8622 0.8615 0.8611
0.8608  0.8594  0.8584 0.8584 0.8572 0.8571 0.8554 0.8526 0.8519
0.8517  0.8511  0.8508 0.8499 0.8494 0.8485 0.8471 0.8451 0.8438
0.8411 0.8406  0.8399 0.8392 0.8390 0.8383 0.8371 0.8359 0.8352
0.8349  0.8347  0.8330 0.8323 0.8319 0.8311 0.8301 0.8300 0.8285
0.8281 0.8277  0.8275 0.8260 0.8245 0.8241 0.8237 0.8236 0.8229
0.8228  0.8211  0.8208 0.8180 0.8171 0.8171 0.8151 0.8139 0.8139
0.8125  0.8122  0.8096 0.8084 0.8071 0.8060 0.8050 0.8022 0.7982
0.7943  0.7928 0.7912 0.7842 0.7690 0.7647 0.7529 0.7479 0.7378

Figure 3. Heatmap of AUC results of adjustment parameters.

3.3. Compared with Other Methods

To analyze the performance of GATCDA in predicting circRNA-disease associations,
we compared GATCDA with other four methods: DWNN-RLS [36], KATZHCDA [21],
bi-random walks (BiRWR) [37], and DeepWalk [38]. DWNN-RLS uses the regularized
least squares of the Kronecker product kernel to predict circRNA-disease associations.
KATZHCDA uses KATZ measures for human circRNA-disease association prediction.
BiRWR predicts circRNA-disease associations by walking in a circRNA subnetwork and
disease subnetwork. DeepWalk is a way to learn the potential representation of nodes in a
graph structure. The ROC curve and AUC value of each method using 5CV are shown in
Figure 4. The precision-recall curve and the area under the precision-recall curves (AUPR)
value of each method with 5CV are shown in Figure 5. Through comparison, it can be seen
that the extraction of circRNA and disease features by GAT can achieve better prediction
performance compared with DeepWalk. In addition, as a deep learning method, GAT also
shows better prediction performance compared with the other two link-based prediction
methods (KATZHCDA and BiRWR).
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Figure 4. The ROC curves and AUCs of five methods using 5CV.
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Figure 5. Comparison of five methods in PR curves and AUPRs (5CV).

3.4. Case Study

To further evaluate the prediction performance of GATCDA, we also carried out
case studies on three common diseases, i.e., bladder cancer, diabetes retinopathy, and
rheumatoid arthritis.

Bladder cancer is the most frequent cancer affecting the urinary tract [39], and has a
high rate of recurrence [40]. Diabetes retinopathy is a common chronic metabolic disorder,
increasing with an ageing population and the growing number of cases of diabetes [41].
Rheumatoid arthritis is the most common chronic inflammatory arthritis, which can lead to
cartilage and bone damage and disability [42]. There is increasing evidence that circRNNAs
can be used as effective biomarkers for the diagnosis of bladder cancer, diabetes retinopathy,
and rheumatoid arthritis. Therefore, we selected bladder cancer, diabetes retinopathy, and
rheumatoid arthritis to verify the predictive ability of GATCDA.

In this work, all known associations between the investigated disease and circRNAs
were assumed to be unknown. Through the calculation of GATCDA, the circRNAs with the
top 10 scores were selected among all the predicted associations between the investigated
disease and circRNAs. Then, through searching the related literature, some circRNAs were
confirmed to be related to the investigated disease.

The results of the case studies of the three diseases (bladder cancer, diabetes retinopa-
thy, and rheumatoid arthritis) are shown in Table 1. For bladder cancer, we can see that
8 of the top 10 candidates with the highest prediction scores are confirmed by the relevant
literature. Notably, the seventh circRNA (hsa_circ_0075828) predicted by GATCDA is
related to bladder cancer. For diabetes retinopathy and rheumatoid arthritis, 7 of the top
10 candidates with the highest prediction scores are confirmed by the relevant literature.
For example, Li et al. found that hsa_circ_0001859 regulates ATF2 expression by functioning
as an MiR-204/211 sponge in human rheumatoid arthritis [43]. Zhang et al. revealed that
hsa_circ_0005015 acts as an miR-519d-3p sponge to inhibit miR-519d-3p activity, leading to
increasing MMP-2, XIAP, and STAT3 expression in diabetes retinopathy [44].

In order to verify the prediction performance of GATCDA, we compared it with other
models in the case studies of these three kinds of same diseases, as shown in Table 2. From
Table 2, 8,7, and 7 out of these top 10 circRNAs predicted by GATCDA were verified to be
associated with bladder cancer, diabetes retinopathy, and rheumatoid arthritis, respectively,
which are the highest among competing methods. Therefore, GATCDA also outperforms
the competing prediction models in terms of the hit rate in case studies.
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Table 1. Candidate circRNAs identified by GATCDA for bladder cancer, diabetes retinopathy and
rheumatoid arthritis.

Disease Rank CircRNA Source
1 hsa_circ_0091017 [45]
2 hsa_circ_0002495 [46]
3 hsa_circ_0071410 -1
4 hsa_circ_0001141 [47]
5 hsa_circ_0007915 -
Bladder cancer 6 hsa_circ_0041103 [48]
7 hsa_circ_0075828 [49]
8 hsa_circ_0061265 [48]
9 hsa_circ_0002768 [50]
10 hsa_circ_0082582 [48]
1 hsa_circ_0098964 -
2 hsa_circ_0057093 [44]
3 hsa_circ_0051172 -
4 hsa_circ_0087215 [44]
. . 5 hsa_circ_0081162 [44]
Diabetes retinopathy 6 hsa_circ_0066922 [44]
7 hsa_circ_0026388 [44]
8 hsa_circ_0005525 -
9 hsa_circ_0000615 [51]
10 hsa_circ_0005015 [44]
1 hsa_circ_0083964 [52]
2 hsa_circ_0064996 [52]
3 hsa_circ_0004712 [52]
4 hsa_circ_0061893 -
Rheumatoid arthritis 5 hsa_circ_0052012 [52]
6 hsa_circ_0032683 [52]
7 hsa_circ_0001859 [43]
8 hsa_circ_0088036 [53]
9 hsa_circ_0003028 -
10 hsa_circ_0010090 -

1—means has no source.

Table 2. The number of circRNAs confirmed by evidence in the top 10 potential disease-related
circRNAs predicted by GATCDA and other models in case studies of the three kinds of diseases such
as bladder cancer, diabetes retinopathy, and rheumatoid arthritis.

Model Bladder Cancer Diabetes Retinopathy Rheumatoid Arthritis
GATCDA 8 7 7
DWNN-RLS 7 5 4
KATZHCDA 5 4 4
BiRWR 5 3 4
DeepWalk 3 1 2

4. Discussion

With the rapid development in RNA sequencing technology and bioinformatics analy-
sis, various studies have shown that circRNAs are closely related to the occurrence and
development of disease, and circRNAs act a potential biomarkers for patients with certain
cancers. Therefore, discovering associations between circRNAs and diseases is significative
for disease diagnosis and treatment. Nevertheless, biological experiments are very costly
in terms of time and money. It has become a hot topic to predict associations between
circRNAs and diseases using computational methods in recent years. The lack of data
on the interactions between circRNA and disease limits the predictive power of most
computational methods.
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In this study, we proposed a new computational model named GATCDA to identify
underlying circRNA-disease associations. We performed 5CV experiments to assess the
predictive performance of GATCDA. Our method yielded an AUC value of 0.9011 and an
AUPR value of 0.896, which are higher than those of DWNN-RLS, KATZHCDA, BiRWR,
and DeepWalk. In addition, the predicted top 10 circRNA-disease interactions in the case
studies of three diseases (bladder cancer, diabetes retinopathy, and rheumatoid arthritis)
have been confirmed in the relevant literature, which suggests that GATCDA can be an
effective tool for predicting circRNA-disease associations.

The accurate predictive performance of GATCDA is attributed to the following factors:
First, in order to identify more interactions between circRNAs and diseases, circRNA-
disease interactions were integrated from four databases, i.e., CircR2Disease, CircAtlas 2.0,
Circ2Disease, and CircRNADisease. Therefore, the number of positive samples input to
GAT algorithm is higher. Second, as the circRNA-miRNA-mRNA axis plays an important
role in the generation and development of diseases, the circRNA-miRNA interactions
and disease-mRINA interactions were adopted to construct features, in which mRNAs
are related to 88% of miRNAs. CircRNAs have several distinct modes of action. From
the functional perspective of circRNAs as miRNA sponges, an interaction network can
be constructed for circRNA network similarity calculations. Other functions of circRNA
are difficult to quantify. Third, more similarities are involved in GATCDA, i.e., disease
symptom similarity, disease network similarity, disease information entropy similarity;,
circRNA network, and circRNA information entropy similarity, which are integrated
effectively. Fourth, GAT has obvious advantages, including learning representations for
nodes on a graph using an attention mechanism. Therefore, it can assign different weights
to different nodes in a neighborhood.

GATCDA also has limitations. Compared with other non-coding RNAs, the interac-
tions between circRNAs and diseases are still insufficient. Therefore, the circRNA-disease
association matrix is sparse, which has an impact on prediction performance. In the future,
we will collect more data on the associations between circRNAs and diseases.

5. Conclusions

In this study, we proposed a new computational model named GATCDA to identify
underlying circRNA-disease associations. Specifically, GAT was used to predict circRNA-
disease associations based on multiple similarities of circRNA and disease. This work has
two highlights: First, as the circRNA-miRNA-mRNA axis plays an important role in the
generation and development of diseases, circRNA-miRNA interactions and disease-mRNA
interactions are adopted to construct features, in which mRNAs are related to 88% of
miRNAs. Second, GAT is used to predict the interactions between circRNAs and diseases.
GAT can assign different learning weights to different neighbors, and the correlation
between vertex features can be better integrated into the model. In terms of predictive
performance, GATCDA achieves an AUC of 0.9011 in 5CV, and in case studies of three
diseases, 70% of experimentally validated relationships were predicted. In summary,
GATCDA is a powerful tool for predicting circRNA-disease associations.
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