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Abstract: Epidermal growth factor receptor (EGFR) tyrosine kinases inhibitors (TKIs) are effective
therapies for non-small cell lung cancer (NSCLC) patients whose tumors harbor an EGFR activating
mutation. However, this treatment is not curative due to primary and secondary resistance such
as T790M mutation in exon 20. Recently, activation of transducer and activator of transcription 3
(STAT3) in NSCLC appeared as an alternative resistance mechanism allowing cancer cells to elude the
EGFR signaling. Overexpression of fatty acid synthase (FASN), a multifunctional enzyme essential
for endogenous lipogenesis, has been related to resistance and the regulation of the EGFR/Jak2/STAT
signaling pathways. Using EGFR mutated (EGFRm) NSCLC sensitive and EGFR TKIs’ resistant
models (Gefitinib Resistant, GR) we studied the role of the natural polyphenolic anti-FASN compound
(−)-epigallocatechin-3-gallate (EGCG), and its derivative G28 to overcome EGFR TKIs’ resistance.
We show that G28’s cytotoxicity is independent of TKIs’ resistance mechanisms displaying synergistic
effects in combination with gefitinib and osimertinib in the resistant T790M negative (T790M−)
model and showing a reduction of activated EGFR and STAT3 in T790M positive (T790M+) models.
Our results provide the bases for further investigation of G28 in combination with TKIs to overcome
the EGFR TKI resistance in NSCLC.
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1. Introduction

Lung cancer is the most incident and the leading cause of cancer death worldwide. Non-small cell
lung cancer (NSCLC) subtype is the most common and it represents 80–85% of lung cancers diagnosed.
Early-stage NSCLC patients have long-term survival after surgery. However, approximately 75% of
patients are diagnosed in advanced stages [1,2].

Gefitinib is a first generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor
(TKI). It was approved in 2003 by the Food and Drug Administration (FDA) for the treatment of
patients whose tumors harbor an EGFR sensitizing/activating mutation (EGFRm) i.e., exon 19 deletion
(∆E746-A750) or the point mutation in exon 21 that leads to the amino acid substitution L858R [3–5].
Despite this therapy represents a breakthrough in the treatment of EGFRm NSCLC patients, in a
median time of 9–16 months nearly all patients do not achieve a complete response. One of the
most common resistance mechanisms described is the EGFR point mutation in exon 20 that leads to
the replacement of threonine 790 by methionine (T790M), which normally derives to lethal disease
progression [6]. Osimertinib is an irreversible third generation TKI effective in EGFRm T790M positive
(T790M+) patients. However, the point mutation C797S in exon 20 has appeared as the main resistance
mechanism to the latest FDA-approved TKI [6]. Other mechanisms for EGFR TKI resistance include
Met amplification, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PI3KCA)
mutations, appearance of stem-like properties as evidenced by increase in epithelial–mesenchymal
transition (EMT) and histological transformation, epidermal growth factor receptor type 2 (ErbB2)
gene amplification, increase of insulin-like growth factor 1 receptor (IGF-1R) signaling pathway
through the loss of inhibitory insulin-like growth factor-binding protein (IGF-BP) and loss or reduction
of phosphatase and tensin homolog (PTEN), activation of AXL tyrosine kinase receptor or B-Raf
proto-oncogene, and serine/threonine kinase (BRAF) mutations [6–12].

Recently, the activation of a signal transducer and activator of transcription 3 (STAT3) has
been described as an alternative resistance mechanism allowing cancer cells to escape the EGFR
signaling or the TKI suppression [13]. STAT3 is involved in the transcription of many genes related
to cell differentiation, proliferation, resistance to apoptosis, angiogenesis, metastasis, and immune
response [14–16]. Besides being phosphorylated by EGFR [17], STAT3 can also be activated in response
to different cytokines and growth factors such as interleukin 6 (IL-6), interferon-alpha (IFN-α) or
epidermal growth factor (EGF), among others [18]. Approximately 60% of patients show STAT3
activation, which correlates with poorly differentiated tumors, the presence of metastasis, and the late
clinical stage [19,20]. STAT3 phosphorylation has been related to disease progression in a small cohort
of patients after EGFR TKI treatment [21]. Additionally, neither gefitinib nor osimertinib are able to
inhibit STAT3 activation [22,23].

Energy metabolism deregulation has been described as a hallmark of cancer, allowing cell growth
and proliferation [24]. Fatty acid synthase (FASN) is an essential enzyme for the de novo synthesis of
long-chain fatty acids from acetyl-CoA, malonyl-CoA, and NADPH [25]. Unlike most normal cells,
highly-proliferative cancer cells overexpress this lipogenic enzyme, being an interesting target in cancer
therapy [26,27]. FASN is strongly associated to poor prognosis and resistance to treatment in different
human tumors such as breast [28], bladder [29], pancreatic [30], or lung cancer [31]. Moreover, FASN
overexpression has also been proposed as a multidrug resistance mechanism, protecting cells from
drug-induced apoptosis through the overproduction of palmitic acid [32]. The natural compound
(−)-epigallocatechin-3-gallate (EGCG) is a polyphenolic flavonoid from green tea that has been broadly
studied for its cardiovascular, neuroprotective, anticancer, and antimicrobial properties [33,34]. EGCG
has been reported to compete with NADPH to bind the β-ketoacyl reductase domain of FASN [35].
The ability of several FASN inhibitors to regulate the canonical EGFR/Jak2/STAT pathway has also
been stated in the literature [36,37]. We and others have shown that FASN inhibition is mainly related
to EGFR/HER2 signaling pathways, leading to cytotoxic effects in vitro and in vivo in a wide range of
carcinomas, including breast and lung [38–42]. To date, many EGCG derivatives have been developed
to improve efficacy and increase stability in physiological conditions. Among them, the naphthalene
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derivative G28 has shown interesting antiproliferative features against sensitive and resistant breast
cancer cells [38,43,44].

The purpose of this work was to study the role of FASN inhibitors (EGCG and G28) to overcome
TKI resistance in NSCLC. FASN inhibitors were tested alone and in combination with EGFR TKIs
(gefitinib and osimertinib) in EGFRm NSCLC models resistant to EGFR TKIs (Gefitinib Resistant,
GR). In addition, we also evaluated gene and protein expression changes of FASN, EGFR, and
STAT3 resulting from treatments with FASN inhibitors and EGFR TKIs alone or in combination.
We show that FASN inhibitor G28 cytotoxicity is independent of EGFR TKI resistance mechanisms.
Interestingly, G28 compound exhibited a cytotoxic effect in combination with gefitinib showing changes
in EGFR/STAT3 pathway in T790M positive (T790M+) GR models and strong synergism in combination
with gefitinib or osimertinib in T790M negative (T790M−) GR model.

2. Results

2.1. EGFRm GR NSCLC Models Are Sensitive to FASN Inhibition

In order to study the role of FASN in the acquisition of EGFR TKI resistance in NSCLC, we used the
sensitive PC9 cell line carrying the EGFR exon 19 deletion (ELREA) and three GR models, two T790M+

models (PC9-GR1 and PC9-GR4), and one T790M−model (PC9-GR3) [45].

2.1.1. EGFRm NSCLC Models Overexpress FASN

Firstly, we determined whether EGFRm NSCLC models express FASN enzyme. Hence, FASN
protein (Figure 1a) and mRNA expression levels (Figure 1b) were analyzed by immunoblotting and
quantitative real time PCR (qRT-PCR), respectively.
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Figure 1. FASN protein and mRNA expression levels in sensitive (PC9) and Gefitinib Resistant (GR)
models (PC9-GR1, PC9-GR3, and PC9-GR4). (a) Western blot analysis (quantification in upper panel
and bands in lower panel) of FASN protein expression. GAPDH was used as a loading control. Results
shown are representative from at least three independent experiments. (b) FASN endogenous mRNA
levels were obtained by qRT-PCR and normalized against the GAPDH gene. FASN expression in the
sensitive cells was normalized to 1 an expressed as a fold change, to which all other conditions were
compared. Results shown are mean ± SE from three independent experiments. * p < 0.050, *** p < 0.001
indicate levels of statistically significance.
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All models showed FASN protein and mRNA expression. Despite no differences in mRNA,
GR models presented significantly higher protein expression levels (PC9-GR1 p = 8.710× 10−4; PC9-GR3
p = 3.160 × 10−4, and PC9-GR4 p = 0.049) in comparison to PC9.

2.1.2. PC9-GR3 Model Is Resistant to Gefitinib and Osimertinib

We confirmed the resistance to EGFR TKIs in PC9 and GR models. For that, we measured the
cytotoxic effect of gefitinib and osimertinib on all models by determining the half-maximal inhibitory
concentration (IC50) using the MTT assay (Figure 2).
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Figure 2. Cell proliferation inhibition of EGFR TKIs (gefitinib and osimertinib) in parental and Gefitinib
Resistant (GR) models. Sensitive (PC9) and GR models (PC9-GR1, PC9-GR3, and PC9-GR4) were
treated with increasing concentrations of (a) gefitinib (from 2.5 × 10−3 to 1 µM for PC9 and 1–40 µM for
GR models) and (b) osimertinib (0.02–2000 nM for PC9, PC9-GR1, and PC9-GR4 and 500–7500 nM for
PC9-GR3) for 72 h. Results shown are expressed as percentage of surviving cells after drug treatment
(mean ± SE) and are representative from at least three independent experiments.

As expected, GR models were significantly more resistant to gefitinib with IC50 values in the
micromolar range compared to the nanomolar IC50 found in the PC9 cell line (PC9-GR1 p = 2.793 × 10−7;
PC9-GR3 p = 1.631 × 10−10, and PC9-GR4 p = 1.000 × 10−6). Although no significant differences
were found in the IC50 value for gefitinib between the two T790M+ GR models, the IC50 value of the
PC9-GR3 model for gefitinib was significantly greater than PC9-GR1 (p = 7.953 × 10−7) and PC9-GR4
(p = 1.659 × 10−7). PC9-GR3 model was also resistant to osimertinib compared to other models (PC9
p = 2.799 × 10−9; PC9-GR1 p = 3.749 × 10−8, and PC9-GR4 p = 5.200 × 10−9).

2.1.3. FASN Inhibitors Present Cytotoxic Effects in NSCLC Models

Cancer cells have been described to increase the de novo lipogenesis through the activation of
FASN and its inhibition has proven to cause cell death. Therefore, this enzyme has become a promising
candidate for the development of new anticancer therapies. Here we tested the cytotoxic activity
of the two FASN inhibitors, EGCG and its derivative G28. MTT cell viability assays showed that
the natural polyphenolic compound EGCG was cytotoxic for PC9 (IC50 = 77.9 ± 1.9 µM), PC9-GR1
(IC50 = 74.3 ± 4.3 µM), PC9-GR3 (IC50 = 91.0 ± 5.5 µM), and PC9-GR4 (IC50 = 75.6 ± 2.4 µM) NSCLC
models with no significant differences (p = 0.358; Figure 3a).

The synthetic EGCG derivative G28 showed higher cytotoxicity in all tested models with IC50 of
12.8 ± 1.3 µM for PC9, 12.0 ± 0.8 µM for PC9-GR1, 17.8 ± 1.3 µM for PC9-GR3, and 11.2 ± 1.2 µM for
PC9-GR4 (Figure 3b). Besides, only PC9-GR3 showed a significantly higher IC50 value compared to
PC9 (p = 0.030), PC9-GR1 (p = 0.005), and PC9-GR4 (p = 0.002).
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Figure 3. Cell proliferation inhibition of FASN inhibitors in parental and Gefitinib Resistant (GR) models.
Sensitive (PC9) and GR models (PC9-GR1, PC9-GR3, and PC9-GR4) were treated with increasing
concentrations of (a) EGCG (5–150 µM) and (b) G28 (2–40 µM) for 72 h. Results shown are expressed as
the percentage of surviving cells after drug treatment (mean ± SE) and are representative from at least
three independent experiments.

2.1.4. G28 Inhibits FASN in EGFRm NSCLC Models

The ability to internalize and inhibit FASN activity of EGCG and G28 after being exogenously
added to the media was tested in sensitive and GR models (Figure 4). EGCG and G28 inhibited FASN
in PC9 cells, resulting in a similar FASN activity reduction of roughly 80% (p = 0.265). Moreover,
G28 significantly reduced FASN activity in all GR models in comparison with EGCG (PC9-GR1
p = 3.000 × 10−5; PC9-GR3 p = 0.001; PC9-GR4 p = 0.008) while the EGCG compound was not able to
diminish FASN activity.
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Figure 4. G28 compound inhibits FASN activity in Gefitinib Resistant (GR) models. Cells were treated
for 72 h with EGCG or G28 at a concentration equal to their IC50 and with DMSO as control. FASN
activity was assayed by counting radiolabeled fatty acids synthesized de novo. Bars represent the
remaining activity as a percentage in treated versus untreated cells (control, Ctrl). Data are mean
± SE from at least three independent experiments. ** p < 0.010, *** p < 0.001 indicate levels of
statistically significance.

2.1.5. Apoptosis Induction of FASN Inhibitors and EGFR TKIs Treatments

We also investigated whether the cell death caused by treatment with EGFR TKIs or FASN
inhibitors was the result of apoptosis induction in both sensitive and GR models. Poly(ADP-ribose)
polymerase (PARP) terminal proapoptotic protein activated after cleavage was used as an apoptosis
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marker. The effects of all compounds on PARP was determined by Western blot analysis in all models
(Figure 5). The uncropped Western blots can be found in Figure S2a.
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Figure 5. Effects of FASN inhibitors and EGFR TKIs on apoptosis determined by PARP cleavage.
Sensitive (PC9) and Gefitinib Resistant (GR) models (PC9-GR1, PC9-GR3, and PC9-GR4) were treated
for 72 h with a concentration equivalent to IC50 of each drug. Untreated cells were used as an internal
control (Ctrl) and GAPDH as a loading control. Results shown are representative from at least three
independent experiments.

The cleaved form of PARP (89 kDa) appeared in either sensitive or resistant T790M− models
after treatment with the IC50 concentration of both EGFR TKIs (gefitinib and osimertinib) and FASN
inhibitors (EGCG and G28), indicating the induction of apoptosis. Gefitinib treatment led to PARP
cleavage in T790M+ GR models. Additionally, EGCG and osimertinib led to the formation of cleaved
PARP in PC9-GR1 model.

2.2. G28 Increases EGFR Activation in EGFRm NSCLC Models

FASN has been previously related to AKT/ERK/EGFR signaling pathways [46] and the inhibition
of the transcription factor STAT3 [36] in lung adenocarcinomas. Thus, differences in FASN, EGFR,
and STAT3 protein and mRNA expression levels after FASN inhibitors or EGFR TKIs treatment were
analyzed through immunoblotting (Figure 6a) and qRT-PCR (Figure 6b) in PC9 and GR models.
The uncropped Western blots can be found in Figure S2b.

A reduction of FASN mRNA expression levels was observed in sensitive and GR models treated
with FASN inhibitors, being statistically significant in the PC9-GR4 treated with G28 (p = 0.004) and PC9
cells treated with G28 (p = 7.370 × 10−4) and gefitinib (p = 3.210 × 10−4). T790M+ GR models presented
a basal hyperactivation of EGFR that was inhibited after treatment with EGFR TKIs. Regarding FASN
inhibitors, EGCG and G28 increased its activation in PC9 cells contrary to the PC9-GR1 model, while
no changes were observed in PC9-GR3 and PC9-GR4 models.

EGCG reduced EGFR protein levels in sensitive and T790M+ GR models that did not correlate
with mRNA expression levels. Contrary, G28 significantly increased EGFR mRNA expression in all
models, without protein level modification. No changes in EGFR mRNA levels were observed after
gefitinib treatment, however higher protein levels were detected in T790M− GR models. Osimertinib
treatment did not lead to EGFR protein nor mRNA expression alteration. EGFR TKIs treatment
increased STAT3 activation in all GR models. Gefitinib increased p-STAT3 levels in sensitive cells,
while the highest STAT3 activation in GR models was found with osimertinib treatment. No STAT3
protein or mRNA expression differences were found in any of the models and treatments assayed.

Lung carcinomas are highly proliferative and resistance acquisition after EGFR TKI-based therapy
is a major problem. Overproduction of palmitic acid by FASN emerges as a resistance mechanism,
protecting cells from drug-induced apoptosis [47]. The combination of these drugs with a different
mechanism of action may decrease resistance development and improve treatment response.
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Figure 6. FASN, EGFR, and STAT3 protein and mRNA expression levels after FASN inhibitors (EGCG
and G28) and EGFR TKIs (gefitinib and osimertinib) treatment in sensitive (PC9) and Gefitinib Resistant
(GR) models (PC9-GR1, PC9-GR3, and PC9-GR4). (a) Western blot analysis of FASN, EGFR, and
STAT3 protein expression after 72 h of FASN inhibitors (IC50) and EGFR TKIs (IC50) treatment in EGFR
TKI sensitive and GR models. Untreated cells were used as an internal control (Ctrl) and GAPDH
as a loading control. Results shown are representative from at least three independent experiments.
(b) FASN, EGFR, and STAT3 mRNA levels after treatment with FASN inhibitors and EGFR TKIs in
sensitive and GR models. mRNA levels were obtained by qRT-PCR and normalized against the GAPDH
gene. All conditions were compared to control (untreated cells), which was normalized to 1 (indicated
by the dotted line) and expressed as a fold change. Experiments were performed at least three times.
* p < 0.050, ** p < 0.010, *** p < 0.001, indicate levels of statistically significance.2.3. G28 Combined with
EGFR TKIs Outcomes in Synergistic Effects.
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Once the effects of FASN inhibitors and EGFR TKIs alone were analyzed in all models, the
combinatorial treatment between FASN inhibitors and EGFR TKIs was also studied in order to evaluate
the possible synergistic interactions (Figure 7 and Figure S1). Despite the fact that EGCG did not
reduce FASN activity in GR models, no IC50 differences were found in comparison with sensitive cells.
Therefore, GR models were treated with EGCG or G28 in combination with the EGFR TKI to which
they were resistant. Three EGFR TKIs concentrations were chosen based on MTT assays (vide supra).
The combination of EGCG with either gefitinib or osimertinib resulted in mostly additive effect as
shown by the combination index (CI; Figure 7a). The combination of G28 with gefitinib generally led
to additivism in T790M+ GR models, with some synergism found in G28 concentrations ranging from
10 to 20 µM. Remarkably, T790M− GR model treated with G28 combined with gefitinib or osimertinib
showed greater synergistic effects (Figure 7b).

2.3. G28 Reduces STAT3 Activation in T790M+ GR Models Alone or in Combination with Gefitinib

In order to discern whether G28 is able to reduce the STAT3 activation produced by EGFR
TKIs, a combinatorial analysis was performed (Figure 8). As before, FASN, EGFR, and STAT3
protein and mRNA levels were analyzed using Western blot (Figure 8a) and qRT-PCR (Figure 8b)
in GR models treated with synergistic drug concentrations (all of them under the IC50 value).
The uncropped Western blots can be found in Figure S2c. Therefore, GR models were treated with
G28 at 15 µM in combination with 1 µM gefitinib, which is the highest clinically achievable plasma
concentration [5]. Osimertinib-resistant PC9-GR3 model was co-treated with 15 µM G28 and 0.5 µM
osimertinib. All concentrations were also used in single-treatment to elucidate the effects produced by
the combination.

T790M+ GR models treated with G28 alone and in combination with gefitinib showed both
FASN protein and mRNA expression decrease. In the PC9-GR3 model, the FASN protein was slightly
diminished in mono- and co-treatments. This decrease is in accordance to FASN mRNA expression,
which was significantly reduced in combination with osimertinib. Although G28 alone showed more
activated EGFR compared to control in all GR models, the combination of G28 with both EGFR TKIs
decreased p-EGFR levels. Regarding the total EGFR, co-treatment resulted in higher protein levels
compared to monotreatment in all GR models. However, only T790M+ GR models treated with
G28 in combination with gefitinib presented significantly higher EGFR mRNA expression (PC9-GR1
p = 0.036 and PC9-GR4 p = 0.040). Moreover, G28 both alone and in combination with gefitinib reduced
STAT3 activation in T790M+ GR models. No changes in STAT3 activation were seen in PC9-GR3
in any treatment. None of the models analyzed showed alterations in the STAT3 protein or mRNA
expression levels.
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Figure 7. Combination index (CI) of FASN inhibitors (EGCG and G28) and EGFR TKIs (gefitinib
and osimertinib) treatment in Gefitinib Resistant (GR) models (PC9-GR1, PC9-GR3, and PC9-GR4).
(a) CI of EGCG and gefitinib in PC9-GR1, PC9-GR3, and PC9-GR4 models or osimertinib in PC9-GR3.
(b) CI of G28 and gefitinib in PC9-GR1, PC9-GR3, and PC9-GR4 models or osimertinib in PC9-GR3.
PC9-GR1, PC9-GR3, and PC9-GR4 models were treated with EGCG (10–150 µM) or G28 (2-30 µM) in
combination with gefitinib (1, 2.5, and 5 µM) for 72 h. PC9-GR3 cells were also treated with EGCG
(10–150 µM) or G28 (2–30 µM) in combination with osimertinib (0.5, 1, and 2 µM) for 72 h. Results
were determined using the MTT assay and are expressed as the CI based on the Chou and Talalay
method [48]. The dotted line indicates additivism (CI approximately equal to 1). CI > 1 designates
antagonistic effects and CI < 1 synergistic effects. Experiments were performed at least three times.
Results shown are mean ± SE.
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Figure 8. FASN, EGFR, and STAT3 protein and mRNA expression in sensitive (PC9) and Gefitinib
Resistant (GR) models (PC9-GR1, PC9-GR3, and PC9-GR4) treated with FASN inhibitors (EGCG
and G28) in combination with EGFR TKIs (gefitinib and osimertinib). (a) Western blot analysis of
FASN, EGFR, and STAT3 in PC9-GR1, PC9-GR3, and PC9-GR4 models treated with G28 alone and
in combination with gefitinib, and PC9-GR3 treated with G28 and osimertinib for 72 h. Results
shown are representative from three independent experiments. Untreated cells are used as internal
control (Ctrl) and GAPDH as a loading control. (b) FASN, EGFR, and STAT3 mRNA levels analysis in
PC9-GR1, PC9-GR3, and PC9-GR4 models treated with G28 in combination with gefitinib, PC9-GR3
model treated with the combination G28 and osimertinib for 72 h. mRNA levels were obtained by
qRT-PCR and normalized against the GAPDH gene. All conditions were compared to the control
(untreated cells), which was normalized to 1 (indicated by the dotted line) and expressed as a fold
change. Experiments were performed at least three times. * p < 0.050, ** p < 0.010, *** p < 0.001 indicate
levels of statistical significance.
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3. Discussion

Despite significant advances in EGFRm NSCLC treatment, current therapy is still ineffective to
many patients due to the late stage of diagnosis and acquisition of resistance to EGFR TKIs [2,6]. Hence,
several efforts have been made on the identification of EGFR TKIs resistance mechanisms to develop
an effective treatment for these patients. Some authors pointed out the important role of FASN in drug
resistance due to its capacity to allow fast synthesis of new phospholipids for membrane remodeling
and plasticity [49,50]. Although the relationship between EGFR and FASN remains unclear, it has
recently been described that EGFR upregulates FASN in TKI-resistant EGFRm NSCLC [41]. In addition,
FASN inhibition showed cytotoxic effects in lung cancer [40] and resensitized cells to chemotherapy,
anti-EGFR and anti-HER2 therapies in breast cancer [38,51]. Therefore, the FASN enzyme may become
a promising target for anticancer therapy in EGFRm NSCLC.

Here we studied the effects of natural polyphenolic compound EGCG and its derivative G28 to
overcome EGFR TKI resistance in sensitive and GR models. The higher FASN protein levels observed
in EGFR TKI resistant models (Figure 1) demonstrated its potential involvement in EGFR TKI resistance
acquisition. FASN inhibitors showed similar cytotoxic effects between sensitive and resistant models
with IC50 values ranging from 75 to 90 µM for EGCG and from 12 to 18 µM for G28 (Figure 3).
As determined by K. Jacobsen and coworkers, PC9-GR1 is a T790M+ GR model that also presents MET
and EphA2 activation, the PC9-GR3 model exhibits AXL overexpression, and the T790M+ PC9-GR4
model shows EphA2 activation and AXL overexpression [45]. In correlation with this, the higher G28
IC50 found in PC9-GR3 model and the significantly similar IC50 values in the two T790M+ GR models
indicate that none of the known resistance mechanisms described are related to FASN inhibition.

Both compounds have the ability to internalize and inhibit FASN activity as observed in parental
PC9 cells (Figure 4), however G28 was of average 5.5 times more effective than EGCG. We have
previously shown the ability of the natural compound EGCG to inhibit FASN activity in wild type
EGFR NSCLC cells and different breast cancer subtypes [40,43]. Despite their cytotoxicity, only the
synthetic compound significantly reduced FASN activity in GR models (Figure 4). Other studies proved
the ability of G28 to inhibit FASN activity in triple-negative breast cancer (TNBC) cells [43]. Nevertheless,
our study demonstrated that EGCG anticancer activity was independent of FASN inhibition in GR
models. It has been extensively described that EGCG has multiple targets and it is involved in multiple
signaling pathways and transcription factors, membrane-associated receptors tyrosine kinase (RTKs),
or DNA methylation [33]. Some authors exposed that the mechanism underlying EGCG antitumor
potency is due to the suppression of the EGFR signaling pathway in NSCLC [52]. Others observed a
very stable complex between EGCG and EGFRm (exon 19 ELREA deletion) that was lost with the T790M
substitution [53]. Kozue and coworkers showed that EGCG reduced stemness and immunogenicity in
EGFR wild type NSCLC cells in vitro and in vivo through the inhibition of AXL [54]. AXL is a tyrosine
kinase receptor that has been related to drug resistance and the induction of malignant properties [55]
and is overexpressed in GR models [45].

The apoptosis induction was verified by PARP cleavage for all treatments in sensitive and
T790M− GR models (Figure 5). However, no PARP cleavage was observed through Western
blot analysis in T790M+ GR models after G28 treatment. These results suggest that G28 might
cause an apoptosis-independent proliferation reduction in T790M+ GR models as found by
others in NSCLC wild-type EGFR models treated with the natural plant polyphenol resveratrol
(3,5,40-trihydroxystilben) [56]. The anticancer activity of polyphenols has been shown to be mediated
by numerous mechanisms including cell cycle arrest. EGCG, among other natural compounds, showed
down-regulation of cyclin-dependent kinases (CDK) and modulation in CDK inhibitors in different
human carcinomas [33,57]. The lack of PARP cleavage in some of the treatments and models could be
due to the activation of other programmed cell death mechanisms such as autophagy [58].

Alteration in EGFR expression was observed after treatment with FASN inhibitors. EGCG
produced a decrease in EGFR protein levels in T790M+ GR models, which is in agreement with
Ali et al., who observed an EGFR decrease in sensitive and resistant PC9 cells treated with Orlistat,
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a FDA-approved FASN inhibitor for obesity management [41]. The synthetic G28 compound increased
EGFR mRNA levels in all models, indicating that EGFR overexpression could be an alternative pathway
to FASN inhibition. The EGFR activation after FASN gene overexpression in epithelial breast cells
has been previously shown [42]. Furthermore, our results suggest that the EGFR pathway could
be implicated in FASN regulation at a transcriptional or translational level as exposed before [40].
Despite all models increased EGFR mRNA expression after G28 treatment, only PC9 cells seemed to
compensate the effect of G28 by increasing EGFR activation. Therefore, cell proliferation reduction
found in all models after FASN inhibition (Figure 3) could be due to the lack of post-translational
palmitoylation substrate [41].

It seems increasingly clear that persistent STAT3 activation is related to EGFR-based therapies
resistance [13]. STAT3 is under the control of different cytokines and growth factors playing an
important role in metastasis, proliferation, survival, invasion, migration, and angiogenesis [14–16].
Natural polyphenols, normally multitarget inhibitors, are now emerging as promising STAT3 inhibitors
or its upstream signaling molecules Src, gp130, or NFкB [18]. Among them, EGCG has been reported
to reduce STAT3 phosphorylation in head and neck carcinomas [59] and pancreatic cancer [60]. Based
on the above, we hypothesized that EGCG and its derivative G28 would diminish the STAT3 activation
produced by EGFR TKIs in NSCLC cells. Both compounds reduced p-STAT3 levels in a dose-dependent
manner when used alone in comparison to control samples. In agreement with previous studies, STAT3
was activated by EGFR TKIs (Figure 6) [22].

Combinatorial treatments of EGCG and G28 with EGFR TKIs were performed in order to study
their effects on GR models (Figure S1). The combination of gefitinib and osimertinib with EGCG
showed additivism whereas synergistic effects were identified in combination with G28 (Figure 7).
Other authors have previously reported synergistic outcomes after co-treatment with a STAT3 inhibitor
(TPCA-1) and EGFR TKI in EGFRm NSCLC models [61]. Previous results from our group demonstrated
that G28 compound had a synergistic interaction with pertuzumab and temsirolimus in HER2+ breast
cancer cells [38] and EGCG with cetuximab in TNBC [51]. Interestingly, G28 in combination with
gefitinib decreased the activation of STAT3 to the same extent as when used alone in T790M+ GR
models. Thus, other mechanisms must be involved in the synergistic effects found. On the other
hand, no differences in p-STAT3 were observed in PC9-GR3. This could be, in part, due to the
multiple pathways that can be altered in the acquisition of gefitinib and osimertinib double-resistance
in PC9-GR3 model such as mutations in EGFR/STAT3 or other related up- or downstream signaling
molecules, leading to the constitutive activation of STAT3. The analysis of the main genes regulated
by the STAT3 transcription factor could provide relevant information to identify some pathways
alterations after FASN inhibitors treatment. The synergistic effects found in GR models co-treated with
FASN inhibitor G28 and EGFR TKIs supports the idea that EGFR palmitoylation mediated by FASN
leads to TKI resistance acquisition in EGFRm NSCLC [41]. However, the specific G28 mechanism of
action and possible targets are still unknown and further studies are needed. Wu et al. suggested
that FASN inhibition may cause an imbalance in the membrane lipids levels, which may produce a
membrane localization decrease of IGF-1R, and the inactivation of the downstream STAT3 signaling
pathway [36]. Furthermore, the IGF-1R is a transmembrane tyrosine kinase linked to MAPK and
PI3K/AKT pathways, shared with EGFR, which could explain the effects found only in T790M+ GR
models [62].

Taken together, our observations suggest that FASN has a key role in acquired TKI-resistant
EGFRm NSCLC. The inhibition of this enzyme resensitizes cells to EGFR TKIs treatments. These
results encourage for further studies to analyze the combinatorial treatment of FASN inhibitors and
EGFR TKIs to overcome the EGFR TKI resistance in NSCLC.
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4. Materials and Methods

4.1. Cell Lines and Culture Conditions

Human adenocarcinoma PC9 cells and its gefitinib resistant derivatives PC9-GR1, PC9-GR3, and
PC9-GR4 models [45] were kindly provided by Dr. R. Rosell and Dr. M. A. Molina (Barcelona, Spain).
All cells were routinely grown in RPMI-1640 medium (Lonza, Basel, Switzerland), supplemented
with 10% fetal bovine serum (FBS; HyClone Laboratories, GE Healthcare, Chicago, IL, USA), 50 U/mL
penicillin, and 50 µg/mL streptomycin (Lonza). In all cases, the cells were used immediately after
resuscitation and were maintained at 37 ◦C in a humidified atmosphere with 5% CO2, propagated
following established protocols, remaining free of mycoplasma throughout the experiments.

4.2. Cell Proliferation Assays

To investigate the effect of EGFR TKIs or FASN inhibitors cells were seeded into 96-well
plates at the appropriate density in their growth medium. Gefitinib and osimertinib were
kindly provided by AstraZeneca. EGCG was purchased from Sigma (USA) and G28 was
synthesized as described elsewhere [43]. For monotreatment assays, after 24 h cells were treated
with different concentrations of each drug for 72 h. Cell viability was determined by the
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) assay (Sigma) as described
elsewhere [44]. For drug combination experiments, cells were treated with three fixed concentrations
of gefitinib (1, 2.5, and 5 µM) or osimertinib (0.5, 1, and 2 µM) in combination of a series of increasing
concentrations of EGCG or G28 for 72 h. Following treatment, cell proliferation was measured using
the standard colorimetric MTT assay. Using the multi-well plate reader Benchmark Plus (Bio-Rad
Laboratories, Inc., CA, USA), absorbance was determined at 570 nm. Combinatorial effects were
evaluated using the combination index (CI) based on the Chou and Talalay method [48] using the
CompuSynTM software (Biosoft, MO, USA). CompuSynTM calculates the CI values; if the value equals
1 the effect is considered additive, if above 1 antagonistic and below 1 synergistic. Data presented are
from three separate wells per assay, and the assay was performed at least three times.

4.3. Western Blot Analysis of Cell Lysates

Gefitinib-sensitive and -resistant models were treated with EGFR TKI, FASN inhibitor, or the
combination of both drugs for 72 h. Afterwards, attached and floating cells were harvested and
lysed in ice-cold lysis buffer (Cell Signaling Technology Inc., MA, USA) containing 100 µg/mL
phenylmethylsulfonylfluoride (PMSF; Sigma) by vortexing every 5 min for 30 min. Protein concentration
was determined by the Lowry method (DC Protein Assay, Bio-Rad Laboratories, Inc.). Equal amounts
of protein were heated in lithium dodecyl sulfate (LDS) sample buffer with a sample reducing agent
(Invitrogen, CA, USA) for 10 min at 70 ◦C, separated by SDS-PAGE and transferred to nitrocellulose
membranes (ThermoFisher Scientific Inc., MA, USA). Membranes were incubated for 1 h at room
temperature in blocking buffer (5% skim milk powder in Tris-buffered saline (TBS)) 0.05% Tween
(TBS-T) and overnight at 4 ◦C with the following primary antibodies diluted in blocking buffer:
FASN (Cell Signaling Technology Inc.; #3180), p-STAT3Tyr705 (Cell Signaling Technology Inc.; #9131),
p-EGFRTyr1068 (Cell Signaling Technology Inc.; #2234), PARP (Cell Signaling Technology Inc.; #9542),
EGFR (Cell Signaling Technology Inc.; #2232), STAT3 (Cell Signaling Technology Inc.; #4904), and
GAPDH (Proteintech, Manchester, UK; #60004-1-IG). Specific horseradish peroxidase (HRP)-conjugated
secondary antibodies were incubated for 1 h at room temperature. The immune complexes were detected
using chemiluminescent HRP substrate ClarityTM Western ECL Substrate (Bio-Rad Laboratories, Inc.)
or West Femto Maximum Sensitivity Substrate (ThermoFisher Scientific Inc.) in a Bio-Rad ChemiDocTM

MP Imaging System (Bio-Rad Laboratories, Inc.). Western blot analyses were repeated at least three
times and representative results are shown.
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4.4. Quantitative Real-Time PCR (qRT-PCR) Analysis

Cells were treated with EGFR TKIs or FASN inhibitors as a single agent or in combination for 72 h.
Then, cells were PBS washed and resuspended in 1 mL of Qiazol (Qiagen, Hilden, Germany). GeneJET
RNA Purification Kit (ThermoFisher Scientific Inc.) was used to isolate total RNA following the
manufacturer’s instructions. RNA samples were quantified using a Nano-Drop 2000 Spectophotometer
(ThermoFisher Scientific). Total RNA was reverse-transcribed into complementary DNA (cDNA)
using a High Capacity cDNA Archive Kit (Applied Biosystems, CA, USA). Different gene expression
levels were determined using QuantStudio3 Real-time PCR System (ThermoFisher Scientific Inc.) with
qPCRBIO SyGreen Mix Lo-Rox real-time PCR (PCR Biosystems Inc., PA, USA), following manufacture
instructions. Primers used are shown in Table 1. qRT-PCR analyses were performed at least four times
and each gene was run in triplicate. Gene expression levels were quantified using the standard formula
2ˆdCT and normalized to the housekeeping GAPDH (2ˆdCT).

Table 1. Primer design.

FASN
Forward CAGGCACACACGATGGAC
Reverse CGGAGTGAATCTGGGTTGAT

STAT3
Forward CACCTTCAGGATGTCCGGAA
Reverse ATCCTGGAGATTCTCTACCACTTTCA

EGFR7
Forward CATGTCGATGGACTTCCAGA
Reverse GGGACAGCTTGGATCACACT

GAPDH
Forward TCTTCCAGGAGCGAGATC
Reverse CAGAGATGATGACCCTTTTG

4.5. Inhibition of Fatty Acid Synthase Activity

Cells were seeded in 24-well plates at a density of 3 × 104 cells/well in RPMI supplemented with
10% fetal bovine serum (FBS). 24 h later, the maintenance medium was replaced by the treatment
medium (RPMI-1640 supplemented with 1% lipoprotein-deficient FBS (Sigma-Aldrich)) along with the
assayed compounds or vehicle (dimethyl sulfoxide, DMSO, Sigma-Aldrich). Cells were treated with
a concentration corresponding to the previously determined IC50 for 72 h. For the last 6 h (1,2-14C)
acetic acid sodium salt (53.9 mCi/mmol, Perkin Elmer Biosciences, Waltham, MA, USA) was added
to the medium (0.5 µCi/mL). The lipid extraction was performed as previously described [43]. Cells
were washed twice with phosphate-buffered saline (PBS, HyClone Laboratories, Logan, UT, USA)
and once with MeOH/PBS (2:3). Cell pellets were resuspended in 0.2 M NaCl and lysed with freeze
(liquid N2)—thaw (37 ◦C) cycles. Then, lipids were extracted with CHCl3/MeOH (2:1) and 0.1 M KOH.
The organic phase was washed with CHCl3/MeOH/H2O (3:48:47) and the solvents were evaporated
under vacuum conditions. Finally, pellets were resuspended in EtOH and counted by scintillation.
The total protein content was quantified by the Bradford assay (Sigma-Aldrich).

4.6. Statistical Analysis

Parametric data were analyzed by the Student’s t test when comparing two groups or the one-way
analysis of variance (ANOVA) followed by Bonferroni or Tamhane’s T2 post hoc test for multiple
comparisons. The non-parametric data were analyzed with the Mann–Whitney U tests for non-normally
independent variables; otherwise, the Kruskal–Wallis test was used for more than two groups. All data
are expressed as mean ± SE. Levels of significance were set at p < 0.050 and are represented by
asterisks, as follows: p < 0.050 (denoted as *), p < 0.010 (denoted as **), and p < 0.001 (denoted as ***).
The statistical analysis was performed using the IBM SPSS software (Version 21.0; SPSS Inc., IL, USA).
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5. Conclusions

The need to find more effective and less toxic therapeutic treatments for EGFRm NSCLC patients
is one of the major challenges in lung cancer research. Natural compounds are emerging as potential
anticancer candidates for their safety and multitarget intrinsic features. Improvement of the properties
of natural compounds through the design of synthetic derivatives is aimed at maintaining these
features while increasing, efficacy, bioavailability, and stability in physiological conditions.

Here we show additive and synergistic effects of the polyphenolic plant-derived EGCG compound
and its derivative G28, respectively, in combination with EGFR TKIs in GR models. Despite the
exact mechanism by which these compounds are cytotoxic is still unknown, our results shed light
on their ability to modulate FASN/EGFR/STAT3 pathways. The capacity to affect multiple pathways
might prove useful in overcoming other drug resistances. Further analyses are required to completely
understand the mechanism of action.

Taken together, this paper supports the inhibition of the metabolic enzyme FASN by G28 compound
in combination with EGFR TKIs as a new potential strategy for resistant EGFRm NSCLC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/5/1283/s1,
Figure S1: Proliferative curves of FASN inhibitors (EGCG and G28) alone and in combination with EGFR TKIs
(gefitinib and osimertinib) in EGFR TKIs resistant models, Figure S2. Whole Western blot figures showing PARP,
FASN, EGFR, STAT3 and GAPDH protein bands with molecular weight markers (merge of colorimetric and
chemiluminescence). (a) Western blot images from Figure 5. (b) Western blot images from Figure 6. (c) Western
blot images from Figure 8.
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