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Abstract: Anaplastic thyroid cancer (ATC) is one of the most malignant tumors, with a median
survival of only a few months. The tumorigenic processes of this disease have not yet been completely
unraveled. Here, we report an mRNA expression and DNA methylation analysis of fourteen primary
ATCs. ATCs clustered separately from normal thyroid tissue in unsupervised analyses, both by RNA
expression and by DNA methylation. In expression analysis, enrichment of cell-cycle-related genes as
well as downregulation of genes related to thyroid function were seen. Furthermore, ATC displayed
a global hypomethylation of the genome but with hypermethylation of CpG islands. Notably,
several cancer-related genes displayed a correlation between RNA expression and DNA methylation
status, including MTOR, NOTCH1, and MAGI1. Furthermore, TSHR and SLC26A7, encoding the
thyroid-stimulating hormone receptor and an iodine receptor highly expressed in normal thyroid,
respectively, displayed low expression as well as aberrant gene body DNA methylation. This study is
the largest investigation of global DNA methylation in ATC to date. It shows that aberrant DNA
methylation is common in ATC and likely contributes to tumorigenesis in this disease. Future
explorations of novel treatments should take this into consideration.

Keywords: anaplastic thyroid cancer; DNA methylation; RNA sequencing; formalin-fixed
paraffin-embedded tissue

1. Introduction

Anaplastic thyroid cancer (ATC), accounting for 1–5% of all thyroid malignancies, is one of the
most malignant endocrine tumors, with a patient median survival of less than 1 year [1]. ATC may arise
de novo or by dedifferentiation of pre-existing well-differentiated thyroid tumors [2,3]. Deciphering its
pathogenesis is likely to lead to the development of more effective therapy. However, the underlying
epigenomic and transcriptomic changes that drive ATC are still largely unknown.

Gene expression analyses using microarrays have shown upregulation of genes involved in
mitotic cell cycle, epithelial to mesenchymal transition, and TGF-beta signaling in ATC compared with
papillary thyroid cancer (PTC) and/or normal thyroid tissue. In contrast, genes related to thyroid
hormone synthesis and differentiation have been reported to be downregulated [4–9]. However,
all expression studies published so far were conducted on small cohorts, including ≤20 cases. Similarly,
all DNA methylation studies done so far on ATC have been performed on very small cohorts of
samples. Two have included genome-wide methylation analyses using arrays, each including only
two or three ATC cases each [10,11]. Putative tumor suppressor genes that have been reported
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to display promoter hypermethylation in ATC include PTEN, RAP1GAP, RASAL1, REC8, RASSF1,
and RASSF2 [11–16], whereas hypomethylation has been observed in NOTCH4, MAP17, and TCL1B.
Notably, TSHR and NKX2-1 (previously TTF-1), involved in thyroid functions, have also been reported
to be hypermethylated in ATC [17,18].

Matched expression and methylation data may unravel genes that are dysregulated by methylation
and that could contribute to tumorigenesis. However, no such studies have hitherto been performed on
the genomic level in ATC. Here, we applied RNA sequencing (RNA-seq) and genome-wide methylation
arrays, including 850,000 CpG sites, on primary ATC tumor samples to identify novel genes that exhibit
significant methylation and expression correlation and to further delineate the tumorigenic process
of ATC.

2. Results

2.1. Global Expression Analysis Shows Upregulation of Cell Cycle Genes and Downregulation of
Thyroid-Related Genes

Expression levels could be ascertained for 15,043 mRNAs in eleven samples (Table S1).
Unsupervised principal component analysis (PCA) and hierarchical clustering showed clear separate
clusters for the ATCs and the normal samples (Figure 1a, Figure S1). In the supervised analysis,
2616 genes were upregulated and 1692 genes were downregulated in ATC compared with normal
thyroid tissue.

To identify up- or downregulated pathways in ATC, enrichment analysis was performed. Pathways
that were upregulated in ATC compared with normal thyroid tissue included cell-cycle-related processes,
cytokine interactions, extracellular matrix, and G-protein-associated signaling, whereas downregulated
pathways were mainly related to translation, transcription, metabolic processes, and mitochondria
(Tables S2 and S3). Notably, “thyroid hormone generation” and “thyroid hormone metabolic process”
were also downregulated.

To investigate the expression of genes involved in thyroid differentiation, we focused on the genes
used to determine the thyroid differentiation score in PTC according to TCGA [19]. Relatively low
expression levels of these genes were seen in the majority of cases compared with normal thyroid tissue
(Figure 1b), suggesting dedifferentiation, in line with the result from the GSEA. The exceptions were
cases 6 and 12, which showed similar expression levels of these genes as in the normal thyroid tissue
samples. Furthermore, we ascertained the BRAF-RAS score according to TCGA. This showed that ten
of eleven cases were BRAF-like, two of which had BRAF V600E mutations (#9 and #11) and one of which
had an NRAS mutation (#1). One case (#12) was NRAS-like despite not having an NRAS-mutation
(Figure 1c).
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Figure 1. Expression analysis of anaplastic thyroid cancer (ATC). (a) Unsupervised clustering by 
principal component analysis of expression data from 11 ATC cases and tissue from four normal 
thyroids, showing clear clusters. (b) Heatmap displaying relative expression of 15 genes related to 
thyroid differentiation score in 11 ATC and tissue from four normal thyroids (N1-N4). (c) Heatmap 
displaying expression of 67 genes in BRAF-RAS score signatures in ATC. Based on their expression, 
cases were classified as BRAF- like (purple) or NRAS-like (yellow) in the top panel. 

2.2. Methylation Analysis Shows Global Hypomethylation and Hypermethylation of CpG Islands 

Genome-wide methylation was analyzed in ten primary ATC cases and four normal thyroid 
tissue samples. These clustered separately in unsupervised PCA and hierarchical clustering analyses 
(Figure 2a and Figure S2). A total of 13,842 CpG probes were differentially methylated between ATC 
and normal thyroid tissue, with 1993 probes being hypermethylated and 11,849 being 

Figure 1. Expression analysis of anaplastic thyroid cancer (ATC). (a) Unsupervised clustering by
principal component analysis of expression data from 11 ATC cases and tissue from four normal
thyroids, showing clear clusters. (b) Heatmap displaying relative expression of 15 genes related to
thyroid differentiation score in 11 ATC and tissue from four normal thyroids (N1-N4). (c) Heatmap
displaying expression of 67 genes in BRAF-RAS score signatures in ATC. Based on their expression,
cases were classified as BRAF- like (purple) or NRAS-like (yellow) in the top panel.

2.2. Methylation Analysis Shows Global Hypomethylation and Hypermethylation of CpG Islands

Genome-wide methylation was analyzed in ten primary ATC cases and four normal thyroid
tissue samples. These clustered separately in unsupervised PCA and hierarchical clustering analyses
(Figure 2a and Figure S2). A total of 13,842 CpG probes were differentially methylated between ATC
and normal thyroid tissue, with 1993 probes being hypermethylated and 11,849 being hypomethylated



Cancers 2020, 12, 680 4 of 11

(Figure 2b; Tables S4 and S5). Annotation of probes according to their positions showed a slightly
higher proportion of hypermethylated probes in gene bodies as well as in shores and CpG islands,
whereas more hypomethylated probes were seen in intergenic regions and open sea (Figure 2c,d).
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gene expression, including MTOR, NOTCH1, and HIF1A (Table S6). DAVID pathway analysis 
showed that hypomethylated/overexpressed genes were enriched for cell adhesion, kinases, and cell 
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decreased gene expression (Table S8), including MAGI1. DAVID pathway analysis showed 
enrichment for genes involved in cell adhesion and transcription (Table S9). 

Figure 2. Methylation analysis of anaplastic thyroid cancer (ATC). (a) Unsupervised clustering by
principal component analysis of methylation data from ten ATC cases and tissue from four normal
thyroids. (b) Proportions of hypomethylated and hypermethylated differentially methylated probes
in ATC. (c) Classification of probes based on their location relative to promoter, body and intergenic
region based on Illumina EPIC annotation. (d) Classification of probes based on location relative to
CPG island, shore, shelf, and open sea regions based on Illumina EPIC annotation. Background refers
to all the probes in the array.

2.3. Combined Expression and Methylation Analyses Identify Genes Potentially Involved in Tumorigenesis

To identify genes that were dysregulated by aberrant DNA methylation, we analyzed the seven
cases where both RNA expression and methylation data were available (Table 1). We first looked
at differentially methylated probes in promoter regions that were associated with a corresponding
change in gene expression. We found a total of 191 hypomethylated probes associated with increased
gene expression, including MTOR, NOTCH1, and HIF1A (Table S6). DAVID pathway analysis showed
that hypomethylated/overexpressed genes were enriched for cell adhesion, kinases, and cell cycle
(Table S7). Among hypermethylated probes in promoter regions, 30 were associated with decreased
gene expression (Table S8), including MAGI1. DAVID pathway analysis showed enrichment for genes
involved in cell adhesion and transcription (Table S9).
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Table 1. Methylation and expression analysis of 14 cases of primary anaplastic thyroid cancer and
tissue from 4 normal thyroids (N1-N4).

Case No. * Gender Age Survival (Months) Expression Analysis Methylation Analysis

1 F 71 1 Yes Yes
2 M 70 13 Yes Yes
3 F 73 8 Yes Yes
4 M 64 14 No Yes
5 M 64 4 Yes No
6 F 72 11 Yes No
7 F 74 4 Yes Yes
8 F 84 0 No Yes
9 F 86 1 Yes Yes

10 F 70 18 Yes No
11 M 84 2 Yes No
12 M 49 15 Yes Yes
13 M 76 1 No Yes
14 F 63 7 Yes Yes
N1 F 62 N/A Yes Yes
N2 M 64 N/A Yes Yes
N3 F 40 N/A Yes Yes
N4 F 56 N/A Yes Yes

* Same as Ravi et al. [20]. N/A, not applicable.

Hypermethylation in gene bodies has been reported to be associated with increased gene
expression and vice versa [21]. We found a total of 32 genes with hypermethylation in the gene body
and significantly increased expression, including MTOR (Table S10). DAVID pathway analysis showed
enrichment for cadherins (Table S11). Furthermore, a total of 226 genes displayed hypomethylation
in the gene body and significantly decreased expression, including TSHR and SLC26A7 (Table S12).
DAVID pathway analysis did not show enrichment for any cancer-related processes (Table S13).

Methylation of regulatory regions may also affect gene expression. To address this, we performed
analysis with ELMER [22,23]. A total of 9390 hypomethylated CpG sites in enhancer regions were
found to be associated with increased expression of a nearby gene (Table S14), showing DAVID pathway
enrichment for cell-cycle-associated pathways (Table S15). Of the 289 motifs that were found to be
enriched for hypomethylation with ELMER, 13 potential top transcriptional regulators were identified,
among them TWIST1 (Table S16). Furthermore, 476 hypermethylated CpG sites in enhancer regions
were found to be associated with decreased expression of a nearby gene (Table S17) but were not
enriched for any cancer-related processes using DAVID (Table S18). A total of 138 motifs were enriched
for hypermethylation with ELMER, including 12 potential top transcriptional regulators (Table S19).

3. Discussion

ATC is a rare disease, and this study is the largest on DNA methylation performed so far as well
as the first that has correlated data on gene expression and DNA methylation. Although it remains
understudied, the overall genomic landscape of ATC is becoming clearer, and this investigation
provides additional clues into the tumorigenic processes in this disease.

ATC clustered separately from normal thyroid tissue both by expression and by methylation
(Figures 1 and 2), in line with previous studies [4,7,10,11] and showing that the tumor cell percentage
was relatively high in the tumor samples. The expression signature of ATC was dominated by
cell-cycle-related processes (Table S2), reflecting the high proliferative rate of this malignancy. In regards
to DNA methylation, the majority of differentially methylated CpGs in ATC were hypomethylated and
in intergenic regions (Figure 2), in line with previous studies [10,11,24]. Global hypomethylation is
a common phenomenon in cancer and is believed to be associated with genomic instability [25], agreeing
well with the genomic complexity generally seen in ATC [20]. Conversely, most hypermethylated CpG
sites were in CpG islands, indicating specific effects on gene expression.
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In addition to the high proliferation, dedifferentiation is a hallmark of ATC. We found that
genes associated with thyroid function were enriched in the downregulated fraction of genes in ATC
compared with normal thyroid tissue (Table S3). In line with this, relatively low expression was seen
for the thyroid-related genes previously used to determine thyroid differentiation status of PTC for the
majority of cases (Figure 1b). The low number of cases in this study prevented analysis of whether low
expression of thyroid-related genes correlated with survival, but it can be noted that the two cases (#6
and #12) that retained normal expression of these genes were among the patients that survived the
longest (11 and 15 months, respectively; Table 1). Furthermore, we found relatively low expression
of TSHR and SLC26A7, encoding the thyroid-stimulating hormone receptor and an iodine receptor
highly expressed in normal thyroid, respectively, as well as aberrant DNA methylation in their gene
bodies (Table S12). Both of these genes have been previously reported to display low expression in
ATC, and aberrant methylation has previously been reported for TSHR [5,18]. However, a link between
expression and methylation has not been previously reported in primary ATC. Taken together, our data
suggest that the role of aberrant DNA methylation in ATC dedifferentiation and loss of normal thyroid
cell function should be further explored.

The TCGA study of PTC showed that BRAF and RAS mutations were highly correlated with
different expression patterns, denoted by the BRAF-RAS score [19]. In contrast, Landa et al. [4] reported
that most ATCs display a BRAF-like gene expression pattern, regardless of mutational status, a finding
recently confirmed by Yoo et al. [26]. In line with these studies, we also found that 10/11 ATC cases
in our study displayed a BRAF-like expression pattern, including one case with an NRAS mutation
(Figure 1c). However, one case (#12) was NRAS-like despite not having a mutation in this gene.
This case was also one of two which showed a relatively high thyroid differentiation score (Figure 1b),
showing that the correlation between the NRAS-BRAF and thyroid differentiation scores seen in the
TCGA study was preserved in our dataset. Notably, we have previously reported that case 12 was also
an outlier in terms of mutational pattern, with a very high number of somatic mutations, a different
mutational signature, possible microsatellite instability, and occurring in a relatively young patient [20].

Aberrant DNA methylation may result in both upregulation of oncogenes and the silencing of
tumor suppressor genes. Examples of both of these mechanisms were seen in this study. Oncogenes that
displayed both aberrant methylation and increased expression included MTOR and NOTCH1 (Tables
S6 and S10). MTOR encodes a protein kinase promoting cell growth and survival via PI3K/AKT/mTOR
signaling [27], and our data suggest that this pathway could also be involved in ATC cases lacking
activating mutations in these genes. Considering that clinical trials are ongoing for mTOR inhibitors in
ATC [28], the role of epigenetic activation of MTOR should be further explored in larger ATC cohorts.
NOTCH1 signaling is one of the main pathways involved in cell differentiation, and this gene is
frequently dysregulated in cancer [29]. Furthermore, HIF1A displayed promoter hypomethylation
as well as increased expression in ATC compared with normal thyroid tissue. HIF1A is one of the
main players in enabling cells to adapt to hypoxic conditions and has previously been reported to
be highly expressed at the protein level in ATC [30,31]. Conversely, MAGI1 displayed promoter
methylation as well as decreased expression in ATC compared with normal thyroid tissue (Table
S1). MAGI1 has been reported to be a tumor suppressor gene in colorectal, gastric, and renal cancer,
and knockdown of this gene has been shown to result in migration and invasion in vitro [32–34].
Analysis of aberrant methylation in enhancers identified TWIST1 as a potentially important transcription
factor. In cancer, TWIST1 has been shown to be involved in epithelial–mesenchymal transition and to
promote metastasis [35]. Notably, we have previously reported that TWIST1 is sometimes amplified in
primary ATC (#2 in the present study) [20]. Thus, aberrant activation of TWIST1-associated pathways,
either by copy number changes or by aberrant methylation, could be a recurrent event in ATC.

Taken together, we report a high degree of aberrant methylation in ATC, suggesting that
epigenetic factors contribute to tumorigenesis. The details of this should be further explored in larger
patient cohorts.
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4. Materials and Methods

4.1. Patients

The study included a total of 14 primary cases of ATC previously included in Ravi et al. [20]
(Table 1); somatic mutations and gene fusions have been previously reported. Cases were selected
based on not having obtained chemotherapy or radiotherapy treatment prior to sampling, sample
availability, and >30% tumor cells based on the pathologist’s estimate and/or copy number aberrations
or mutations detected by whole-exome sequencing (WES). Thirteen of the samples were formalin-fixed,
paraffin-embedded (FFPE) tissue, and one was a fine-needle aspirate obtained at ATC diagnosis.
We also included four normal thyroid tissue samples in the study (Table 1). The study was approved
by the Ethical Review Board of Lund University (No. 2016/51, 1 February 2016).

4.2. Expression Analysis

RNA-seq data from Ravi et al. [20], including 11 ATC cases and four normal thyroid samples
(Table 1), were reanalyzed to ascertain mRNA expression. One case (#8) was excluded because of poor
sequencing data quality. For #4 and #13, no RNA-seq data was available due to no RNA of sufficiently
high quality for RNA-seq being available. Briefly, RNA-seq data were processed using the TCGA
mRNA-seq pipeline (https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_
Pipeline/#mrna-analysis-pipeline). The sequencing reads were aligned to the human GRCh38 genome
assembly using STAR [36], and the read counts for each gene were obtained using HTSeq-count [37].
Genes with count-per-million (CPM) values greater than 1 were defined as expressed genes, and only
genes expressed in more than 80% of samples in at least one sample group were used for further analyses.
Differential expression analysis was performed using DESeq2 [38], and Benjamini–Hochberg-adjusted
(BH-adjusted) p-values <0.05 were used as the cutoff for identifying differentially expressed genes.
Heatmaps were plotted using GENE-E (https://software.broadinstitute.org/GENE-E/) default settings.
Functional enrichment analysis was performed by Gene Set Enrichment Analysis (GSEA) preranked
algorithm [39]. The list of genes for the BRAF-RAS score and thyroid differentiation plots were obtained
from The Cancer Genome Atlas Research Network (TCGA) study on PTC [19]. Of the 71 BRS genes in
the TCGA study, 67 genes were expressed in our dataset, and the BRAF-RAS score was calculated
using these according to [19].

4.3. Methylation Analysis

The purity of extracted DNA from tumor and normal thyroid tissue was quantitated using
NanoDrop (Thermo Fisher Scientific, Waltham, MA, USA), and only DNA with A260/280 >1.7 were
included. To assess DNA degradation, all samples were run on agarose gel. In total, 10 tumor samples
and four normal thyroid tissue samples could be included in the methylation analysis (Table 1). Cases 5,
6, and 10 were excluded because of too poor DNA quality, and #11 was excluded because no DNA was
available. Bisulfite conversion of DNA and methylation profiling using Infinium MethylationEPIC
Beadchip arrays (Illumina, Eindhoven, Netherlands) were done according to the manufacturer’s
instructions at the Human Genotyping Facility of Erasmus MC (Rotterdam, Netherlands). Methylation
analysis was performed using the ChAMP package in R(3.5.2) [40]. Briefly, the raw IDAT files obtained
from the array were loaded into ChAMP using the minfi method [41]. Single sample dye correction
was performed using the Noob method [42]. Probes with cross-hybridizing potential and polymorphic
putative sites with minor allele frequency (MAF) of >5% in the European population were excluded [43].
Probes on sex chromosomes were filtered using ChAMP. The filtered data were normalized using
BMIQ in the ChAMP package [44]. Methylation data have been deposited in the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE146003.

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/#mrna-analysis-pipeline
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/#mrna-analysis-pipeline
https://software.broadinstitute.org/GENE-E/
https://www.ncbi.nlm.nih.gov/geo/
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4.4. Correlation between Methylation and Expression

The normalized methylation BMIQ data were binned into three groups according to β-values:
low methylation (≤0.3), moderate methylation (>0.3 but <0.7), and high methylation (≥0.7) [45].
Fisher’s two-sided t-test was performed, with CpG probes with Benjamini–Hochberg-adjusted
p-values <0.05 and median (∆β ± 0.3) deemed as statistically significant CpG probes. Filtered
CpG probes were annotated as in CpG islands, shores, shelves or open sea as well as annotated
as in promoter regions, gene bodies or intergenic regions based on the Infinium MethylationEPIC
v1.0 B4 manifest file (http://emea.support.illumina.com/array/array_kits/infinium-methylationepic-
beadchip-kit/downloads.html?langsel=/se/). Heatmaps were plotted using GENE-E (https://software.
broadinstitute.org/GENE-E/) default settings. Custom Perl scripts were used to correlate CpG sites
to expressed genes obtained from DESeq2. Pearson correlations between differentially methylated
promoter sites against corresponding fold changes of matched genes were plotted in R. For genes with
multiple CpG probes mapping to the promoters, median ∆β value was used.

ELMER (version 2.11.0) supervised analysis model was used to investigate the correlation between
gene expression levels and DNA methylation status for enhancers and to identify transcription
factor networks regulated by epigenetic modifications [22,23]. Gene expression (FPKM value) and
methylation data (BMIQ value) derived from the same sample were used as input (tumor n = 7, normal
thyroid tissue n = 4).

5. Conclusions

Aberrant DNA methylation is common in ATC and likely contributes to tumorigenesis. This should
be considered in future explorations of novel treatments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/3/680/s1,
Figure S1: Heatmap displaying unsupervised hierarchical clustering of RNA expression data based on all
expressed genes from 11 anaplastic thyroid cancers and tissue from four normal thyroids (N1-N4). Tumors and
normal samples cluster separately, Figure S2: Heatmap displaying unsupervised hierarchical clustering of DNA
methylation data based on 6000 most variable probes from ten anaplastic thyroid cancers and tissue from four
normal thyroids (N1-N4). Tumors and normal samples cluster separately, Table S1: List of differentially expressed
genes in 11 primary anaplastic thyroid cases compared with tissue from 4 normal thyroids, Table S2: Upregulated
pathways in anaplastic thyroid cancer in gene set enrichment analysis, Table S3: Downregulated pathways in
anaplastic thyroid cancer in gene set enrichment analysis, Table S4: List of hypermethylated probes (beta values)
in 10 cases of primary anaplastic thyroid cancer, Table S5: List of hypomethylated probes (beta values) in 10
cases of primary anaplastic thyroid cancer, Table S6: Genes displaying increased expression and hypomethylated
CpG sites in their promoters in anaplastic thyroid cancer, Table S7: DAVID pathway analysis of genes displaying
increased expression and hypermethylated CpG sites in their promotors in anaplastic thyroid cancer, Table S8:
Genes displaying decreased expression and hypermethylated CpG sites in their promoters in anaplastic thyroid
cancer, Table S9: DAVID pathway analysis of genes displaying decreased expression and hypermethylated CpG
sites in their promotors in anaplastic thyroid cancer, Table S10: Genes displaying increased expression and
hypermethylated CpG sites in their gene bodies in anaplastic thyroid cancer, Table S11: DAVID pathway analysis
of genes displaying increased expression and hypermethylated CpG sites in their gene bodies in anaplastic thyroid
cancer, Table S12: Genes displaying decreased expression and hypomethylated CpG sites in their gene bodies
in anaplastic thyroid cancer, Table S13: DAVID pathway analysis of genes displaying decreased expression and
hypomethylated CpG sites in their gene bodies in anaplastic thyroid cancer, Table S14: Hypomethylated CpG’s in
enhancer regions that were associated with increased gene expression in ELMER, Table S15: DAVID pathway
analysis of genes displaying increased expression associated with hypomethylation of a nearby enhancer in
anaplastic thyroid cancer, Table S16: Enriched motifs in enhancers that were hypomethylated in primary anaplastic
thyroid cancer, Table S17: Hypermethylated CpG’s in enhancer regions that were associated with decreased gene
expression in ELMER, Table S18: DAVID pathway analysis of genes displaying decreased expression associated
with hypermethylation of a nearby enhancer in anaplastic thyroid cancer, Table S19: Enriched motifs in enhancers
that were hypermethylated in primary anaplastic thyroid cancer.
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