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Simple Summary: Caryophyllane sesquiterpenes are unique natural compounds widely occurring
in nature, especially in plant essential oils, that are characterized by multiple properties of
pharmacological interest. Although 3-caryophyllene is the most investigated compound, its metabolite
[-caryophyllene oxide and the analogues «x-humulene and isocaryophyllene have been evaluated, too.
Previous studies showed a polypharmacological profile of these compounds and a possible interest in
cancer research; however, emerging evidence have highlighted a complex pool of healing properties,
including a block of carcinogen-mediated DNA damage and cytoprotection against anticancer drug
toxicity in noncancerous cells, along with antiproliferative and chemosensitizing activitives in cancer
cells, thus suggesting their promising role as chemopreventive agents. In line with this evidence,
the present review provides the pharmacological basis to support a further therapeutic interest for
caryophyllane sesquiterpenes as chemopreventive agents. Moreover, possible structure-activity
relationships and future research directions have been highlighted.

Abstract: Chemoprevention is referred to as a strategy to inhibit, suppress, or reverse tumor
development and progression in healthy people along with high-risk subjects and oncologic
patients through using pharmacological or natural substances. Numerous phytochemicals have
been widely described in the literature to possess chemopreventive properties, although their
clinical usefulness remains to be defined. Among them, caryophyllane sesquiterpenes are
natural compounds widely occurring in nature kingdoms, especially in plants, fungi, and marine
environments. Several structures, characterized by a common caryophyllane skeleton with further
rearrangements, have been identified, but those isolated from plant essential oils, including
[-caryophyllene, (3-caryophyllene oxide, x-humulene, and isocaryophyllene, have attracted the
greatest pharmacological attention. Emerging evidence has outlined a complex polypharmacological
profile of caryophyllane sesquiterpenes characterized by blocking, suppressing, chemosensitizing,
and cytoprotective properties, which suggests a possible usefulness of these natural substances
in cancer chemoprevention for both preventive and adjuvant purposes. In the present review,
the scientific knowledge about the chemopreventive properties of caryophyllane sesquiterpenes and
the mechanisms involved have been collected and discussed; moreover, possible structure—activity
relationships have been highlighted. Although further high-quality studies are required, the promising
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preclinical findings and the safe pharmacological profile encourage further studies to define a clinical
usefulness of caryophyllane sesquiterpenes in primary, secondary, or tertiary chemoprevention.

Keywords: (-caryophyllene; -caryophyllene oxide; a-humulene; isocaryophyllene; apoptosis;
membrane permeability; ABC transporters; genoprotection; STAT3; Nrf2

1. Introduction

Chemoprevention is defined as the use of synthetic or natural compounds known as blocking
and suppressing agents, which are able to inhibit, suppress, or reverse tumor development and
progression by disrupting multiple pathways and processes during carcinogenesis stages (i.e., initiation,
promotion, and progression) [1,2]. Blocking agents are usually effective during initiation, inducing
cellular defenses (i.e., detoxifying/antioxidant enzymes), protecting cells from oncogenic expression
or acting through antimutagenic and anti-inflammatory mechanisms; moreover, they can hinder
the carcinogen uptake and bioactivation to electrophilic species, which are responsible for DNA
damage [3-5]. Suppressing agents are able to stop cancer development and progression through
different mechanisms, including altered gene expression and signaling cascades, the promotion of cell
senescence, an induction of cell differentiation or apoptosis, cell cycle block, or by the activation of
tumor-suppressive signalings [6,7].

Cancer chemoprevention may be usefully exploited not only through using dietary phytochemicals
in healthy people (primary chemoprevention) but also administering suitable pharmacological agents
in high-risk subjects (secondary chemoprevention) in order to prevent the progression of premalignant
lesions and as adjuvant treatments in oncologic or post-treated patients (tertiary chemoprevention)
(Figure 1) [6]. The latter agents are defined as chemosensitizers and can support chemotherapy by
synergistic or additive effects, thus increasing the effectiveness of low-dose anticancer drugs while
lowering the occurrence of intolerable side effects. Moreover, they may restore the responsiveness of
cancer to the pharmacological treatments and improve the rate of relapse-free survival in post-treated
cancer patients by targeting specific mechanisms of chemoresistance, such as alterations in drug fate
(i.e., uptake, export by ATP-binding cassette (ABC) transporters and intracellular biotransformation),
imbalance between pro-apoptotic and pro-survival factors, changes in protein expression, and defective
DNA repair systems [8,9].

CHEMOPREVENTIVE STRATEGIES

~, BLOCKING AGENTS
HEALTH PEOPLE | * Prevention and repair of DNA-damage (dietary genoprotective compounds)
induced by toxicants in normal cells

AND HIGH-RISK SUPPRESSING AGENTS
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SUBJECTS proliferation agents, immunomodulators —

S/ pharmacological compounds)

¢ Potentiation of chemotherapeutic drug
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Figure 1. Role of chemoprevention in healthy people, high-risk subjects and cancer patients.
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In the last few years, there has been a growing interest in the identification of suitable
chemopreventive (or cancer risk-reducing) agents not only to protect healthy people, but also as
adjuvant regimens in oncologic and post-treated cancer patients. A number of drugs with off-target
effects (namely repurposing drugs) along with phytochemicals have been approached as possible
chemopreventive agents, but their efficacy has been found often null or controversial in clinical
trials [10-14]. On the other hand, drugs with documented preventive efficacy that have been approved
for treating precancerous lesions or reducing cancer risk have been scarcely adopted by both physicians
and patients due to several issues, such as the risk of side effects, lacking cancer risk assessment
in primary care, limited knowledge about the guidelines for chemoprevention, and medication
costs [15,16]. Some examples of drugs and natural substances evaluated for their chemopreventive

potential and the major findings achieved in clinical trials are reported in Table 1.

30f48

Table 1. Some examples of drugs and natural substances evaluated as cancer preventive agents in

clinical trials.

Compound
(PubChem Cancer Site Combined Treatment/Subjects Comments References
Compound ID)
Drugs
Tamoxifen (2733526), Significant decrease in cancer risk
raloxifene (5035), . . and recurrence; higher tolerability
lasofoxifene (216416), Breast None/healthy and high-risk women raloxifene, lasofoxifene and [16-18]
arzoxifene (179337) arzoxifene than tamoxifene
Significant decrease in prostate
Finasteride (57363), . . cancer risk; controversial
dutasteride (6918296) Prostate None/low and high-risk men increased risk of high-grade (19,201
disease
Anthracyclines, platinum, taxanes, . L
capecitabine, cyclophosphamide, S1gn1f1ca}nt redu.ctlon n t.h e breast
Breast .. R cancer risk and increase in [21]
doxorubicin/breast cancer patients . .
and high-risk women progression-free survival
Colorectal None/high-risk subjects Lacking effects [22]
. Medroxyprogesterone e .
Metf 4091 ;
etformin (4091) Endometrial acetate/patients with atypical Inhibition Of. dlseasg relapse; [23]
. ; further studies required
endometrial hyperplasia
Lun. Chemotherapy/lung cancer patients  Favorable survival outcome; [24]
8 with diabetes further studies required
Prostate None/prostate cancer patients with ~ Some evidence of reduced cancer [25]
or without diabetes risk; further studies required -
First-line chemotherapy,
Gastric radiotherapy/Patients with Clinical benefits and safety; [26]
metastatic or postoperative further studies required
recurrent advanced gastric cancer
Significant reduction in colorectal
Celecoxib (2662) Colorectal None/high-risk patients adenomas; further studies [27]
required
Significant improvement in
Radiotherapy/patients with radiotherapy efficacy and
Prostate prostate cancer lowering in the relapse rates; (28]
further studies required
. s Preliminary evidence for reduced
Colorectal CNOTgigz?iZ;sczlth first-time colorectal cancer risk; further [29]
Aspiri studies required
spirin (2244) X L. . .
Glioma None/glioma patients Slight reduction in glioma risk; [30]
& p further studies required g
Lovastatin (53232),
atorvastatin (60823), Breast, prostate, . . Controversial evidence of
pravastatin (54687), lung, skin, iitg?;:ggg{:lgh_rmk and reduced cancer risk; further [31-33]
simvastatin (54454), colorectal, liver studies required
fluvastatin (446155)
Natural Substances
None or in combination with Preliminary evidence of
Curcumin (969516) Colorectal avastin-FOLFIRI, irinotecan, synergistic effects and [34]

FOLFQOX, 5-fluorouracil/cancer
patients

chemoresistance reduction;
further studies required
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Table 1. Cont.

Compound
(PubChem Cancer Site Combined Treatment/Subjects Comments References
Compound ID)
. Preliminary evidence of cancer
Resveratrol (445154) Colorectal None/cancer patients reduction; further studies required [35]
Preliminary evidence of cancer
Breast None/high-risk subjects risk reduction; further studies [36]
required
Sulforaphane (5350) Preliminary evidence of cancer
Prostate None/high-risk subjects risk reduction; further studies [37]
required
Preliminary evidence of cancer
-Carotene (5280489) Breast None/healthy or high-risk subjects risk reduction; further studies [38]
required
Preliminary evidence of cancer
Lycopene (446925) Prostate None/healthy or high-risk subjects risk reduction; further studies [39]

required

Despite drawbacks to the development of chemoprevention, its crucial role in reducing the burden
of cancer is recognized worldwide, and several efforts have been made in order to develop suitable
solutions to exploit its lifesaving potential [40]. Ongoing research programs in the cancer preventive
field stimulate further studies aimed at identifying novel bioactive chemopreventive agents to be
considered for clinical trials [41].

Among natural compounds, several sesquiterpenes, a subclass of terpenoids known to mediate
biotic interactions among plants and/or other organisms [42], have been highlighted to possess
interesting pharmacological activities, which include the ability to suppress cancer cell proliferation
and reverse multidrug resistance [43-45].

In the present review, we focused our attention on the chemopreventive properties of caryophyllane
sesquiterpenes, which are characterized by a unique caryophyllane bicyclic skeleton and multiple
biological activities [43].

Although several novel caryophyllane-type molecules (e.g., rumphellatins, cytosporinols,
suberosols, kobusone, isokobusone, rumphellolides, nanonorcaryophyllenes, pestalotiopsins,
pestaloporonins, punctatins, and punctaporins) have been identified in different natural
kingdoms [46-65], because of the limited characterization of their pharmacological properties,
the present overview is focused on the most representative compounds isolated from plants, i.e.,
B-caryophyllene, 3-caryophyllene oxide, a-humulene, and isocaryophyllene.

Among them, 3-caryophyllene and (3-caryophyllene oxide are the most studied, and an interest
in their potential anticancer properties has been hypothesized [45]. However, emerging evidence has
outlined a complex polypharmacological profile of caryophyllane sesquiterpene, characterized by
blocking, suppressing, chemosensitizing, and cytoprotective properties, which suggests their possible
usefulness as chemopreventive agents to be exploited for both preventive and adjuvant purposes.

A literature review has been conducted by searching in PubMed and SCOPUS electronic databases
and selecting English as preferred language, without time period limitations. For more specific
requirements, Google Scholar and ClinicalTrials.gov were considered, too.

The following searching keywords and their combinations through the Boolean logical
operators have been used: “chemoprevention”, “natural substances”, “repurposing drugs”,
“phytochemicals”, “chemosensitizers”, “potentiation”, “anticancer drugs”, “caryophyllane sesquiterpenes”,
“caryophyllene”, “natural occurrence”, “plants”, “essential o0il”, “marine species”, “fungi”,

VZas VZA7i /7] Zs

“B-caryophyllene”, “3-caryophyllene oxide”, “isocaryophyllene”, “a-humulene”, “a-caryophyllene”,

v v VAT 7 i

“y-caryophyllene”, “chemical features”, “preclinical studies”, “chemopreventive”, “in vitro”, “in vivo”,

a:

in silico”, “clinical trials”, “antimutagenicity”, “genoprotection”, “anticlastogenic”, “antioxidant”,

v v 7 i i

“anti-inflammatory”, “protection”, “noncancerous cells”, “cancer cells”, “apoptosis”, “antiproliferative
activity”, “cytotoxicity”, “apoptotic signaling”, “PI3K”, “Akt”, “mTOR”, “Nrf2”, “STAT3”, “NF-kB”,


ClinicalTrials.gov
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“inflammation”, “CB2 receptors”, “endocannabinoid systems”, “FAAH”, “ABC transporters”,
“efflux pumps”, “Pgp”, and “membrane permeability”, “bioavailability”.

Regarding research strategy, the up-to-date studies focused on the effect of caryophyllane
sesquiterpenes on the survival and proliferation of cancer cells and the mechanisms involved,
and those related to the protective/preventive effects against toxicants have been included in the
review. Conversely, those regarding the bioactivities of herbal extracts or essential oils containing
caryophyllane sesquiterpenes, but not the pure compounds, were excluded.

At first, the natural occurrence, chemical features, and general pharmacological properties of
the caryophyllane sesquiterpenes identified in plants have been summarized in order to provide
a comprehensive framework for further comparisons with similar compounds from other natural
kingdoms. Moreover, a deep description of their chemopreventive properties, in terms of blocking,
cytoprotective, suppressing, and chemosensitizing [2,6,8], has been reported. Possible suggestions for
future directions and the development of these substances in cancer chemoprevention are discussed.

This overview provides the pharmacological basis to support a possible therapeutic interest for
caryophyllane sesquiterpenes as chemopreventive agents.

2. Caryophyllane Sesquiterpenes

2.1. Natural Occurrence

Caryophyllane sesquiterpenes are natural substances widely occurring in nature, especially in
plants, although further structures have been highlighted in marine species and fungi [46-65]. In plants,
they occur usually as mixtures of different sesquiterpenes, mainly 3-caryophyllene, 3-caryophyllene
oxide, a-humulene, and isocaryophyllene, with minor metabolites and are involved in biotic interactions
and indirect defense against pathogens (Table 2).

-Caryophyllene is the first identified molecule, being isolated in 1834 as a mixture of
cis-caryophyllene (or isocaryophyllene) and trans-caryophyllene with humulene from the clove oil,
and in 1892 as pure trans-caryophyllene [66]. Moreover, it is one of the mostly emitted sesquiterpenes
by pine tree [67].

The essential oil from Eugenia caryophyllata L. (syn. Syzygium aromaticum (L.) Merr.), also known as
clove oil, has been considered the major natural source for 3-caryophyllene, in which it co-occurs with
isocaryophyllene and a-humulene [68,69]; however, it has been detected in high concentrations in other
essential oils and plants (Table 2). Particularly, an amount higher than 30% was detected in those from
Scutellaria californica A. Gray (up to 56.2% in flower), Copaifera langsdorffi Desf. (16.6% in leaves and
53.3% in balsam from bark), Orthodon dianthera Maxim. (up to 52.9% in aerial parts), Nepeta curviflora
Boiss. (up to 50.2% in the aerial part), Colquhounia coccinea Wall (44.1% in leaves and 53.2% in flowers),
Piper nigrum L. (up to 47.5% in fresh berries), Cinnamomum iners Reinw. ex Blume (up to 35.9% in leaves),
Salvia officinalis L. (up to 31.8% in aerial parts), Helichrysum melaleucum (up to 35.4% in aerial parts),
Uvariodendron calophyllum RE Fries (up to 32.5% in the stem bark), and Zingiber nimmonii (J. Graham)
Dalzell (about 42.2% in rhizomes) [70-80]. Moreover, it has been found to be one of the major volatile
compounds in the rhizomes of Kaempferia parviflora Wall. ex Baker and Harpagophytum procumbens
(Burch.) DC. ex Meisn [81,82].
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Table 2. Co-occurrence of caryophyllane sesquiterpenes in plant essential oils.

6 of 48

Plant Species Plant Part Composition References
Baccharis coridifolia D.C. Aerial parts -Caryophyllene 10.8%, B-caryophyllene oxide 9.8%, a-humulene 0.4%, isocaryophyllene 34.3% [83]
Cachrys alpina Bieb. Aerial parts B-Caryophyllene 2.5%, a-humulene 33.2%, x-humulene epoxide II 2.2% [84]
Callistemon polandii (Bonpl.) DC. Leaves B-Caryophyllene 28.2%, 3-caryophyllene oxide 13.5%, a-humulene 21.7% [85]
Cannabis sativa L. Inflorescences ifi;iz;gggigﬁ:zz Z.%—.gg;%"./zof—caryOPhyllene oxide 0.8-9.5%, a-humulene 2.2-10.1%, (86]
Cinnamomum iners Reinw. ex Blume Leaves B-Caryophyllene 35.9% [76]
Colquhounia coccinea Wall Leaves and Flowers B-Caryophyllene 44.1% in leaves and 53.2% in flowers [74]
Copaers Ingsdori Dest Balsam ol from bark Leaves 0 ORL T B caryophylon oxide 1%, humulene 29% 1
Eugenia caryophyllata (syn. Syzygium aromaticum (L.) Merr.)  Floral buds and leaves B-Caryophyllene 17.4%, 3-caryophyllene oxide 0.4%, c-humulene 2.1%, isocaryophyllene 0.5% [68,69]
Eugenia rocana Britt. et Wils. Leaves f ;i?gf&;giﬁ?ﬁ%j;}g:;gﬁgr}glllggi/:))dde 57.7%; echumulene epoxide I1.9%, [87]
Helichrysum melaleucum Rchb. ex Holl. Aerial parts B-Caryophyllene 35.4% [78]
Helichrysum stoechas ssp. barrelieri var. spathulatum Aerial parts B-Caryophyllene 27.9-33.6%, 3-caryophyllene oxide 1.6-6.5%, a-humulene 13.4-21.1% [88]
Hippomarathrum microcarpum (M. Bieb.) B. Fedtsch. Aerial parts B-Caryophyllene 15.8%, B-caryophyllene oxide 2.7%, c-humulene 3.2% [89]
Humulus lupulus L. Inflorescences B-Caryophyllene 4.8-28.8%, 3-caryophyllene oxide 2.3-8.6%, a-humulene 2.6-23.0% [90]
Hypericum heterophyllum Vent. Aerial parts B-Caryophyllene 4.5%, x-humulene 2.4%, isocaryophyllene 17.1% [91]
Jasminum sambac (L.) Aiton Flowers B-Caryophyllene 0.3%, a-humulene 0.2%, isocaryophyllene 13.7% [92]
Lantana achyranthifolia Desf. Aerial parts «-Humulene 10.7%, isocaryophyllene 16.7% [93]
Lantana camara L. Leaves «-Humulene 3.8%, isocaryophyllene 10.7% [93]
Lavandula angustifolia M. Essential oil from flowers -Caryophyllene 4.9%, B-caryophyllene oxide 0.5%, a-humulene 0.4% [94,95]
Lophostemon suaveolens Fresh leaves B-Caryophyllene 2.5%, a-humulene 1.5% [96]
Lycopus australis R.Br. Leaves B-Caryophyllene 10.2%, B-caryophyllene oxide 1.8%, a-humulene 19.5% [97]
Marlierea obscura O. Berg. Leaves -Caryophyllene oxide 37.20% [98]
Marrubium astracanicum Jacq Leaves B-Caryophyllene 13.1%, B-caryophyllene oxide 35.8, a-humulene 0.9% [99]
Micromeria hedgei L. Aerial parts B-Caryophyllene 6.5%, 3-caryophyllene oxide 4.7%, a-humulene 3.3% [100]
Nepeta curviflora Boiss. Aerial parts B-Caryophyllene 50.2% [73]
Nepeta graciliflora B. Aerial parts B-Caryophyllene 5.3, 3-caryophyllene oxide 12.2% [101]
Ocimum basilicum L. Aerial and wooden parts B-Caryophyllene 1.9%, 3-caryophyllene oxide 0.7%, a-humulene 0.4% [102,103]
Origanum vulgare L. Leaves and stems B-Caryophyllene 1.1-1.5%, B-caryophyllene oxide 0.1-2.5% [104,105]
Orthodon dianthera Maxim. Aerial parts B-Caryophyllene 52.9% [72]
Physospermum cornubiense (L.) DC. Aerial parts B-Caryophyllene 15.4% and f-caryophyllene oxide 24.5% [89]
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Plant Species Plant Part Composition References
Pimpinella spp. Aerial parts B-Caryophyllene 0.1-3.6%, -caryophyllene oxide 2.5%, c-humulene 1-1.6% [106]

Piper nigrum L. Berries B-Caryophyllene 47.5%, B-caryophyllene oxide 4.0%, c-humulene 0.4% [75]

Plinia dermatodes Urb. Leaves B-Caryophyllene 0.9%, 3-caryophyllene oxide 62.1%, a-humulene 0.1% [107]
Psidium salutare (HBK) Berg. Leaves B-Caryophyllene 4.8%, 3-caryophyllene oxide 39.8% [108]

Salvia glutinosa L. Leaves B-Caryophyllene 5-9%, 3-caryophyllene oxide 24.3-28.9%, x-humulene 5.9% [109]

Salvia officinalis L. ssp. altissima Aerial part E:}f;cll‘fgf;g?;?(g—EZ:;IE;}?;ﬁZE?(’)Hée"Z?}(1):1(;:5133?13 Z;g&trﬁuéé;; 10%1 [77]
Scutellaria californica A. Gray Flowers B-Caryophyllene 56.2% [70]

Stachys lanata K. Koch Aerial parts B-Caryophyllene 12.6%, c-humulene 24.9%, 3-caryophyllene oxide 0.3% [110]
Syzygium gardneri Thw. Leaves B-Caryophyllene 5.3%, 3-caryophyllene oxide 49.6%, a-humulene 1.7% [111]
Tagetes patula L. Flower B-Caryophyllene 0.3%, 3-caryophyllene oxide 48.4% [112]
Tephrosiacinerea Pers. Aerial parts -Caryophyllene oxide 63.9% [113]
Tephrosiadensiflora (Hook. f.) Aerial parts B-Caryophyllene 45.0%, B-caryophyllene oxide 5.2%, [113]
Tephrosiapersica Boiss. Aerial parts B-Caryophyllene 6.8%, 3-caryophyllene oxide 7.0%, [113]
Teucrium orientale L. Aerial parts B-Caryophyllene 9.3%, 3-caryophyllene oxide 33.5%, a-humulene 1.7%, isocaryophyllene 0.7% [114]
Uvariodendron calophyllum RE Fries Stem bark B-Caryophyllene 32.5% [79]

Zingiber nimmonii (J. Graham) Dalzell

Rhyzomes

B-Caryophyllene 42.2%, a-humulene 27.7%

[80]
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-Caryophyllene oxide is an oxygenated sesquiterpene that is often found to co-occur as a
metabolite of B-caryophyllene in the essential oils (Table 2). Usually, it is considered a minor
caryophyllane sesquiterpene compared to 3-caryophyllene, although an opposite trend (higher than
30% amount) was registered in the essential oils of Tephrosia cinerea Pers., Plinia dermatodes Urb.,
Eugenia rocana Britt. et Wils., Syzygium gardneri Thw., Tagetes patula L., Psidium salutare (HBK) Berg.,
Marlierea obscura O. Berg., Marrubium astracanicum Jacq, and Teucrium orientale L. (Table 2).

Similarly, a-humulene co-occurs with 3-caryophyllene in clove oil, although in lower amounts,
while it is more abundant (at least a 20% amount) in the essential oils from Cachrys alpina Bieb.,
Callistemon polandii (Bonpl.) DC., Helichrysum stoechas ssp. barrelieri var. spathulatum, Lycopus australis R.
Br., Stachys lanata K. Koch, and Zingiber nimmonii (J. Graham) Dalzell (Table 2).

Isocaryophyllene (or y-caryophyllene) is usually found as a mixture with 3-caryophyllene and/or
a-humulene in the essential oils from the inflorescences of Cannabis sativa L., buds of E. caryophyllata,
and aerial parts of Lantana achyranthifolia Desf. and Teucrium orientale L., in which it represents
a minor compound (Table 2). Conversely, it was the major caryophyllane sesquiterpene (higher
than 10% amount) in the essential oils from aerial parts of Baccharis coridifolia D.C. and Hypericum
heterophyllum Vent., flowers of Jasminum sambac (L) Aiton, and leaves of Lantana camara L. (Table 2).
14-Hydroxy-9-epi-P-caryophyllen and humulene epoxide II have been sometimes reported in essential
oils as possible metabolites of 3-caryophyllene and a-humulene [77,84,87].

2.2. Chemical Features

Caryophyllane sesquiterpenes are characterized by a unique bicycle[7.2.0Jundecane ring system,
namely caryophyllane skeleton (Figure 2), in which a dimethylcyclobutane and a nine-membered rings
are fused. Including a trans-endocyclic (4-5) double bond in the nine-membered ring of caryophyllane
system leads to the generation of the caryophyllene skeleton [115]. This structure is susceptible to
rearrangements and cyclization reactions, thus allowing the formation of various polycyclic derivatives,
such as pestaloporins, highly oxygenated caryophyllene-type sesquiterpenes, bicyclohumulenone,
and bicyclohumuladiol [46-65].

12

Figure 2. Chemical structures of caryophyllane skeleton.

Chemical features of caryophyllane sesquiterpenes have been deduced from extensive
degradative and structural studies on (-caryophyllene (syn. (1R,4E,95)-4,11,11-trimethyl-8-
methylidenebicyclo[7.2.0Jundec-4-ene), the first one identified (Figure 3) [116]. Particularly, these studies
highlighted an 1R,9S configuration of 3-caryophyllene and the presence of a vinyl methyl group linked to
the trans-endocyclic double bond (E configuration) and an exocyclic methylene group [117].
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Figure 3. Chemical structures of widely occurring caryophyllane sesquiterpenes in plants.
(A) B-Caryophyllene; (B) Isocaryophyllene or y-caryophyllene; (C) -Caryophyllene oxide or
43,50-epoxycaryophyll-8(13)-ene; (D) a-Humulene or x-caryophyllene.

[3-Caryophyllene is characterized by conformational mobility, due to the flexibility of the
nine-membered ring, and by a higher reactivity of the endocyclic 4,5-double bond than that of
the exocyclic 8(13) one [116]. Four possible conformations (i.e., fot-, xx-, 3, and of3-conformers)
distinguished by the relative disposition of the exocyclic methylene and olefinic methyl groups
were identified.

Along with p-caryophyllene, its cis-isomer isocaryophyllene or vy-caryophyllene
(syn. (1R,4Z,95)-4,11,11-trimethyl-8-methylidenebicyclo[7.2.0Jundec-4-ene), carrying an endocyclic Z
double bond (Figure 3), has been also identified [116].

Both trans-caryophyllene and isocaryophyllene can be epoxidized to form the epimeric endocyclic
epoxides, among which 3-caryophyllene oxide (Figure 3), or 43,5x-epoxycaryophyll-8(13)-ene, is the
most abundant naturally occurring one [116].

a-Humulene or x-caryophyllene (syn. (1Z,4Z,82)-2,6,6,9-tetramethylcycloundeca-1,4,8-triene) is
a biogenetic relative of -caryophyllene, which is characterized by an eleven-membered-ring with
three trans-endocyclic (1-2, 4-5, 8-9) double bonds (Figure 3), whose planes are almost perpendicular to
the plane of the ring [118].

In plants, the probable biosynthetic pathway for both (3-caryophyllene and a-humulene is based
on the cyclization of a farnesyl pyrophosphate precursor (FPP) to a (E,E)-humulyl carbocation (Figure 4),
which is catalyzed by sesquiterpene cyclase [119,120]. After cyclization, a-humulene originates directly
from the humulyl carbocation as an 11-membered ring compound, whereas (E)-f3-caryophyllene
requires a further conversion into a caryophyllenyl cation, which is characterized by a bicycle structure
with 4- and 9-membered rings [120]. Isocaryophyllene is obtained by an anticlockwise rotation of
-caryophyllene (enzymatic E-Z isomerization), whereas (3-caryophyllene oxide derives from the 4-5
oxidation of 3-caryophyllene (Figure 4) [120-122].



Cancers 2020, 12, 3034 10 of 48

MEVALONIC ACID PATHWAY

PPi
o} e] Rearrangement
TR N —L. e,

HO—F—0—P—0 Cyclization \ \
OH OH
Farnesyl pyrophosphate (FPP) Humulyl
carbocation a-Humulene
+
Caryophyllenyl
cation
Rearrangement

E-Z
Oxidation isomerization

—

B-Caryophyllene oxide p-Caryophyllene Isocaryophyllene

Figure 4. Biosynthetic pathway for 3-caryophyllene and its structural analogs in plants [120-122].
Sesquiterpenes are synthesized in nature through the mevalonic acid (MVA) pathway, which supplies
the central metabolic C15 intermediate (E,E)-farnesyl pyrophosphate precursor (FPP); caryophyllane
sesquiterpenes are synthetized from FPP as described above.

2.3. General Pharmacological Activities

Caryophyllane sesquiterpenes from plants have attracted a great attention in the years for their
biological activities, although (3-caryophyllene represents the most studied compound in several
preclinical models of diseases. Indeed, it has been characterized by a plethora of biological activities,
among which analgesic, anti-inflammatory, antioxidant, neuroprotective, and antiproliferative were the
most investigated; moreover, it has been reported to affect phospholipid cooperativity and membrane
permeability (Table 3). These properties have provided benefits in several experimental models of
disease, such as neurodegeneration, inflammation, pain, anxiety, depression, autoimmune diseases,
metabolic ailments, osteoarthritis and some cancer models [123-194].
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Table 3. Pharmacological activities found for the caryophyllane sesquiterpenes identified in plant

essential oils.

. Type of
Compound I();eneral. Pharmacological P{"ll;rmacological References
roperties .
Evidence
Analgesic in vitro and in vivo [123,124]
Antiallergic in vitro and in vivo [125,126]
Antiarthritic in vitro and in vivo [127-129]
Antibacterial in vitro [130-132]
Anticonvulsant in vivo [133]
Antifungal in vitro [91]
Anti-inflammatory in vitro and in vivo [123-125,129,134-149]
Antioxidant in vitro and in vivo [123,132,135,138,147-151]
p-Caryophyllene (syn. Antiproliferative in vitro and in vivo [45,123,124,152-163]
trans-caryophyllene, Anxiolytic/antidepressant in vivo [164-166]
E-caryophyllene) Antispasmodic in vivo [167]
Chemosensitizing in vitro [160-163,168-170]
Genoprotective in vitro and in vivo [163,171-176]
Hypoglycemic in vitro and in vivo [135,177-179]
Hypolipidemic in vitro and in vivo [180,181]
Immunomodulatory in vitro and in vivo [125,136,145]
Local anesthetic in vitro and in vivo [184]
Membrane permeability modulation  in vitro [123,185,186]
Neuroprotective in vitro and in vivo [123,187-194]
Analgesic in vivo [129,195]
Antibacterial in vitro [196]
Antifungal in vitro [197]
B-Caryophyllene oxide Anti-inflammatory in vitro and in vivo [149,195,198]
Antiproliferative in vitro [124,198-204]
Chemosensitizing in vitro and in vivo [160,162,169,199,200]
Genoprotective in vitro [161,174]
Antibacterial in vitro [205]
Antifungal/Antiparasitic in vitro [206,207]
a-Humulene Anti-inflammatory in vitro [134,208]
Antiproliferative in vitro and in vivo [45,168,209-211]
Chemosensitizing in vitro [169,200]
Isocaryophyllene (syn. Antiproliferative in vitro [168,211,212]
y-caryophyllene) Antifungal in vitro [206]

Such benefits have been usually ascribed to the ability of 3-caryophyllene to selectively
activate the cannabinoid CB2 receptors (CB2Rs) [123,124,128,139,149,153,213], and to modulate
further targets in the endocannabinoidome (i.e., the endogenous lipid signaling system including
several fatty acid-derived mediators and their receptors, and their metabolic enzymes), such as
the peroxisome proliferator-activated receptors (PPARs) and the fatty acid amide hydrolase
(FAAH), which is a degrading enzyme of the endocannabinoid neurotransmitters [123,124,
128,214].  Interestingly, a peripheral release of endogenous opioids seems to mediate the
antinociceptive effects of 3-caryophyllene, although nonpsychoactive responses have been also
described [124]. Among further targets, -caryophyllene has shown to inhibit the expression of
pro-inflammatory factors and to potentiate the antioxidant cell defenses in different in vitro and in vivo
models [123,124,144,155,162,189,193].

-Caryophyllene oxide was reported to possess antifungal, genoprotective, antioxidant,
anti-inflammatory, chemosensitizing, and antiproliferative properties [124,195-204], while antibacterial,
antifungal, antiproliferative, and chemosensitizing effects were highlighted for a-humulene [205-211]
(Table 3). The antiproliferative activity of some «-humulene derivatives has been described,
too [215,216]. Conversely, the pharmacological activities of isocaryophyllene have been scantily
characterized, and only preliminary evidence of antifungal and antiproliferative effects are now
available [168,206,211,212] (Table 3).
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2.4. Safety Profile

Caryophyllane sesquiterpenes are considered to possess a safe toxicity profile. Due to their
low toxicity, those from plant kingdom are widely approved as food additives, fragrances, and as
cosmetic ingredients.

Particularly, 3-caryophyllene has been classified by the Food and Drug Administration (FDA) as
a flavoring substance and adjuvant to be used in food either alone or in flavouring mixtures. It is also
designated as a substance Generally Recognized As Safe (GRAS) for human consumption by the US
Food and Drug Administration (USFDA) and other regulatory agencies such as the European Food
Safety Autority (EFSA) [217-220]. It is the most characterized sesquiterpene for its toxicity profile,
resulting nonmutagenic in bacteria (Ames test; pre-incubation method) and devoid of clastogenic and
aneugenic effects in eukaryotic cells (micronucleus assay; histone 2AX phosphorilation assay) [171-173].
Furthermore, toxicity studies on (3-caryophyllene reported an acute oral lethal dose (LDsg) higher than
5000 mg/kg body weight [221], while subchronic and repeated exposures produced nontoxic effects up
to 700 and 2000 mg/kg/d [222,223].

Taking into account the results of a subchronic toxicity study carried out according to OECD
(Organization for Economic Cooperation and Development) testing guidelines, the European
Food Safety Authority (EFSA) established the doses of 222 and 109 mg/kg body weight/day
as no-observed-adverse-effect level (NOAEL) for p-caryophyllene and f-caryophyllene oxide,
respectively [224]. As concluded by EFSA, these values provide adequate margins of safety for
the tested caryophyllane sesquiterpenes and structurally similar compounds relative to estimated daily
intakes in Europe [218,219].

-Caryophyllene oxide was found also devoid of genotoxic risk, despite the presence of a
potentially hazardous epoxide group in its structure [225]. Epoxides are not all equally hazardous,
and their reactivity can be affected by several factors. The epoxide function of (3-caryophyllene oxide
is the only reactive site in the molecule, and it is included in an inflexible structure with a vicinal
methyl group that may hinder its reactivity by electron release; also, the epoxide ring may open in
the biological medium, so forming derivatives that are not DNA-reactive [225]. All these structural
features can justify the lack of genotoxicity of 3-caryophyllene oxide. Genotoxicity evaluations for
the other caryophyllane sesquiterpenes are lacking, although Legault et al. [212] suggested the need
to evaluate this risk for isocaryophyllene because of its ability to induce lipid peroxidation, with the
possible release of mutagenic lipid products.

3. Caryophyllane Sesquiterpenes in Cancer Chemoprevention
3.1. Blocking/Protective Properties

3.1.1. Antimutagenicity and Genoprotection

The exposure to various exogenous and endogenous agents is responsible for the induction
of multiple genetic changes such as gene mutations, chromosomal aberrations, and genomic
instability: when DNA damage cannot be repaired by cell, it can be accumulated, thus leading
to the carcinogenesis initiation [226]. Moreover, a genetic damage in cancer cells by anticancer
drugs has been found able to induce the release of prosurvival factors from cancer-adjacent cells,
thus leading to chemoresistance development [227-229]. Therefore, combining cytotoxic agents and
suitable inhibitors of prosurvival signalings has been proposed as a reasonable strategy to improve
chemotherapeutic regimens [227]. This evidence highlights the interest for genoprotective agents,
especially natural substances, in the field of predictive, preventive, and personalized medicine (or 3P
medicine), to prevent both carcinogen-mediated damages and chemotherapy failure [230].

Caryophyllane sesquiterpenes from the plant kingdom were studied for their ability to counteract
DNA damage induced by different toxicants, including environmental pollutants, such as cigarette
smoke and butts, carcinogens, and drugs [163,171-176]. Particularly, in the Salmonella reverse mutation
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assay (pre-incubation method), 3-caryophyllene strongly inhibited the mutagenicity of 2-nitrofluorene
in Salmonella typhimurium TA98 strain [171]. Accordingly, both B-caryophyllene and 3-caryophyllene
oxide prevented the DNA damage induced by cigarette butts and condensed smoke cigarette (CSC)
in S. typhimurium TA98 and TA100, and in Escherichia coli WP2uvrA and WP2uvrA/R strains both
in the absence and presence of the S9 exogenous metabolic activator under different pre-, co- and
post-treatment protocols [161,172]. In these conditions, 3-caryophyllene oxide exhibited the higher
antimutagenic potency in reversing the CSC mutagenicity.

The genoprotective effects of 3-caryophyllene and f3-caryophyllene oxide were also found in
eukaryotic cells, wherein they counteracted the CSC genotoxicity in the micronucleus assay and
lowered the intracellular oxidative stress (Figure 5) [161].
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Figure 5. Genoprotective effects of 3-caryophyllene and 3-caryophyllene oxide against the damage
induced by condensed smoke cigarette (CSC) [161]. Both sesquiterpenes were able to counteract the
DNA damage (1) and oxidative stress (2) induced by CSC, thus preventing cell mutations and the
possible initiation of carcinogenesis. Moreover, 3-caryophyllene was able to inhibit the activation of
prosurvival STAT3 signaling (3), which is involved in chemoresistance development.

These genoprotective and antioxidant effects of -caryophyllene against CSC damage were
associated with an inhibition in the prosurvival signaling of signal transducer and activator of
transcription 3 (STAT3) [161], thus strengthening its potential role as a multitarget chemopreventive
agents to be exploited to block toxicant injury and to prevent chemoresistance development.

Moreover, 3-caryophyllene inhibited the clastogenic effects of ethyl methanesulfonate, which is a
mutagenic agent that causes DNA alkylations and chromosomal aberrations in human lymphocytes in
both pre- and co-treatment protocols [173].

The sesquiterpene displayed genoprotective properties also in vivo, being able to inhibit the
genotoxic damage induced by adriamycin and benzo(a)pyrene (i.e., sister chromatid exchange and
chromosomal aberrations) in mice: this last effect was found associated with an increase in the
glutathione S transferase levels, thus suggesting that antioxidant mechanisms could be involved in the
genoprotection of 3-caryophyllene [174,175].

Recently, we have highlighted the ability of 3-caryophyllene to inhibit the genotoxic damage of the
anticancer drug doxorubicin in cholangiocarcinoma cells and especially in noncancerous cholangiocytes
as evidenced by the lowering in the levels of phosphorylated (Ser139) histone 2AX (namely YH2AX),
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which is an early biomarker of DNA double-strand breaks [163]. This effect was found associated with
an increased cell cycle arrest in G2/M phase, thus suggesting that as a consequence of the increased
YH2AX by doxorubicin, 3-caryophyllene stimulates G2/M checkpoint and DNA repair systems in order
to block the cell cycle and enable restoring the genome integrity. This hypothesis is also supported by
the evidence of a lower genoprotective effect in cholangiocarcinoma cells, which is likely due to the
presence of defective DNA repair systems, as found in different cancer cells [163].

This suggests that both bioantimutagenic and desmutagenic mechanisms could be involved in the
antimutagenic activity of the tested sesquiterpenes (Figure 6). Particularly, bioantimutagens act within
the cell by blocking DNA-damage fixation (i.e., DNA replication and/or repair) and/or by stimulating its
repair [226,231], whereas desmutagenic agents are known to interfere with mutagens (or its precursor)
in the intra- or extracellular compartments, thus preventing the induction of DNA damage.
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. Membrane
Desmutagenic -
: permeability
mechanisms .
alteration INHIBITION
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systems

Figure 6. Mechanisms accounting for the genoprotective properties of f-caryophyllene and
[3-caryophyllene oxide.

Inside the cell, a desmutagenic agent can inactivate the mutagen through chemical reactions,
enzyme-catalyzed competition, modulation of metabolism by Phase I or Phase Il enzyme induction, or by
antioxidant and radical scavenging protective effects; moreover, the occurrence of physical-chemical
or enzyme-catalyzed reactions have been hypothesized [161,226,231].

Inhibiting transporters, stimulating the extrusion mechanisms, or altering and destabilizing
the cell membrane structure, which hinder the mutagen uptake into cell, can be also considered as
desmutagenic mechanisms [226,231].

Under the tested conditions, the genoprotective effects of both p-caryophyllene and
-caryophyllene oxide were usually ascribed to desmutagenic mechanisms, although the involvement
of bioantimutagenic ones has been not excluded [161,171-174]. Particularly, their ability to counteract
the mutagenicity of cigarette butt and condensed smoke has been partly ascribed to a possible enzyme
inhibition, being the mutagens activated in the presence of the metabolic activator 59 [161,174].
Accordingly, the ability of 3-caryophyllene, x-humulene, and especially 3-caryophyllene oxide to
inhibit cytochrome CYP3A has been reported [232].

Furthermore, the strong antimutagenicity of -caryophyllene and (-caryophyllene oxide
highlighted in E. coli WP2uvrA/R strain, which is sensitive to oxidative DNA damage, suggested
the involvement of antioxidant mechanisms [161,174]. In support, both compounds reduced the
intracellular oxidative stress induced by CSC and doxorubicin [161,163]. Moreover, [3-caryophyllene,
but not 3-caryophyllene oxide, inhibited lipoperoxidation, likely acting as an electron acceptor [175,185].
Antioxidant mechanisms along with the activation of CB2R-dependent pathways by 3-caryophyllene
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seem to be also responsible for the reduced DNA oxidation highlighted in d-galactose-induced aged
BALB/c mice [176].

A further hypothesis is that 3-caryophyllene, due to its great capacity to alter phospholipid
cooperativity, can affect membrane permeability and transporter function [185], thus interfering with
mutagen uptake into cells. At last, the ability of 3-caryophyllene to promote cell cycle checkpoints
suggests that it can also act by bioantimutagenic mechanisms, including the induction of DNA repair
systems or activation of specific signalings, leading to genome reparation.

This evidence suggests that the caryophyllene skeleton is responsible for the genoprotective
properties of the tested sesquiterpenes; however, the lacking studies about the structural analogs
a-humulene and isocaryophyllene enable making structure-activity relationship hypotheses.
More specific studies are required to clarify the mechanisms involved in the genoprotection by
caryophyllane sesquiterpenes.

3.1.2. Cytoprotection against Anticancer Drug Toxicity

Chemotherapy regimens are usually associated with severe side effects (i.e., acute and reversible
or delayed and irreversible) to the normal tissues due to a low therapeutic index and the need to apply
high therapeutic doses and long-term schedules to achieve the clinical efficacy [233]. Toxicity mainly
affects rapidly proliferating tissues, such as those in the hair follicle, liver, gastrointestinal tract,
and bone marrow, and it often represents a major cause of chemotherapy suspension [234].

Reducing chemotherapy-induced toxicity through suitable strategies is an important goal in
cancer research. Among them, cytoprotective agents have been approached as promising adjuvant
chemotherapy strategies for the management of anticancer drug toxicity, being able to counteract their
side effects, thereby improving the treatment tolerability and quality of life of oncologic patients [235].
As a result of these beneficial healing effects and a high safety profile [235], they can be considered as
chemopreventive agents.

Cytoprotective properties against the damage of some chemotherapeutic agents and other toxicants
have been highlighted for 3-caryophyllene and 3-caryophyllene oxide in several preclinical models.
These properties were mainly mediated by antioxidant and anti-inflammatory mechanisms.

Particularly, B-caryophyllene was found able to relieve the kidney dysfunction and the
morphological damage induced by cisplatin, thus reducing the renal inflammatory response and
oxidative stress [146]. Indeed, it lowered the mRNA expression of several chemokines, cytokines,
and adhesion molecules along with neutrophil and macrophage infiltration [146]. Furthermore,
it counteracted cisplatin-induced lipid peroxidation and cell death by inhibiting the reactive oxygen
species (ROS) and reactive nitrogen species (RNS) formation. Intriguingly, these anti-inflammatory
and antioxidant protective effects were lacking in CB2 knockout mice, allowing hypothesizing
the involvement of CB2R-mediated mechanisms [146]: this is in line with the CB2R agonism of
-caryophyllene, which mediates its anti-inflammatory effects [213].

The antioxidant and anti-inflammatory power of (3-caryophyllene has been found also to be involved
in its cardioprotective effects toward the injury of doxorubicin [147]. Indeed, the sesquiterpene scavenged
superoxide anion and hydroxyl radicals and possessed reducing power. Moreover, it significantly
downregulated the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and the
pro-inflammatory cytokine levels [147]. Therefore, it has been hypothesized that 3-caryophyllene
protects from oxidative stress-induced injury, being a highly effective chain-breaking antioxidant agent and
possessing scavenging activities against reactive oxygen species [147].

Accordingly, we highlighted the cytoprotective effects of 3-caryophyllene toward the damage
induced by doxorubicin in H69 cholangiocytes [163]. Indeed, the compound was able to significantly
reduce the cytotoxicity and DNA damage of the anticancer drug; moreover, it raised a G2/M checkpoint,
which likely allowed the cell to repair damaged DNA. These effects were also associated with lowered
levels of phospho(Tyr705)STAT3 and apoptosis inhibition [163].
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Similarly, -caryophyllene oxide produced cytoprotective effects against doxorubicin-induced
cytotoxicity in noncancerous hepatocytes, likely owing to its antioxidant properties [169]. However,
its cytoprotective activity remains to be better characterized.

[3-Caryophyllene showed the ability to counteract both in vitro and in vivo the damage induced by
other toxicants (i.e., carbon tetrachloride, 1-methyl-4-phenylpyridinium, glutamate, and d-galactose),
too [136,151,181,182]. Chang et al. [188] highlighted that the cytoprotective power of 3-caryophyllene
was higher than that of the epoxide metabolite.

According to what was highlighted against anticancer drugs, these cytoprotective effects were
ascribed to CB2R-mediated antioxidant and anti-inflammatory mechanisms [136,150,181,182,190].
Particularly, it was able to scavenge radical species and inhibited lipoperoxidation [150,182]; moreover,
a downregulation of Toll-like receptor (TLR)4 and receptor for advanced glycation end products
(RAGE), which are implicated in the activation of pro-inflammatory intracellular cascades, has been
highlighted [182]. An activation in the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) cascade,
associated with increased glutathione (GSH) defenses and antioxidant effects, and an inhibition in the
nuclear factor kappa B (NF-kB) signaling were reported, too [148,190].

Regarding the other caryophyllane sesquiterpene, evidence for cytoprotective properties against
anticancer drug toxicity are lacking. a-Humulene has been reported to induce antioxidant effects,
although with a lower potency than f3-caryophyllene [150].

3.2. Suppressing Properties

3.2.1. Antiproliferative Activity

Antiproliferative agents, also known as suppressing agents, are able to effectively block or retard
carcinogenesis progression, acting through different mechanisms, such as the alteration of metabolic
function of cancerous clones, apoptosis induction, inhibition of prosurvival signalings, modulation of
growth hormone activity, block of DNA synthesis, and stimulation of terminal differentiation,
thus leading to the arrest of proliferation and cell death [236]. As several inflammatory factors
are dysregulated in cancers, anti-inflammatory agents have been approached as possible alternative
strategies to suppress cancer progression [237,238]. Moreover, targeting the prosurvival signalings of
cytokines and immune response has been highlighted as a promising antiproliferative strategy, too [238].
Exploiting the suppressing potential of these agents represents an important approach for both blocking
cancer progression in the earliest stages and invasiveness at later stages, thus strengthening the interest
in chemoprevention [236].

Several preclinical studies focused on the antiproliferative properties of caryophyllane
sesquiterpenes (Table 3). Legault et al. [209] found that x-humulene and isocaryophyllene were able
to inhibit the growth of different tumor cells, with the highest potency in human M4BEU melanoma
and in mouse CT-26 colon carcinoma and L-929 fibrosarcoma cells. Conversely, 3-caryophyllene
and f3-caryophyllene oxide were ineffective in the experimental conditions [209]. The cytotoxicity of
a-humulene and isocaryophyllene was further confirmed in MCF-7, DLD-1, and L-929 [168].

Interestingly, cancer cells were more sensitive to the cytotoxicity of both a-humulene and
isocaryophyllene than noncancerous fibroblasts (almost 2- and 4-folds, respectively), thus suggesting
safe effects in normal tissues [209]. «-Humulene also produced cytotoxic effects in liver cancer cells
with minimal cytotoxicity to normal hepatocytes (about 10-fold lower cytotoxicity) [210]. Similarly,
its derivatives were cytotoxic in different cancer cell lines [215,216].

Regarding the mechanisms of cytotoxicity, Legault et al. [209] highlighted that «-humulene
induced glutathione depletion and increased ROS production, thus suggesting that a pro-oxidant
damage could be responsible for cell damage and death. These effects have been further confirmed
in vitro and in a HepG2-bearing nude mouse model, in which the substance (10 mg/kg or 20 mg/kg)
has been administered intraperitoneally (i.p.) every 2 days for 4 weeks, and it was found to be
mediated by the inhibition of the protein kinase B (Akt or PKB) pathway [210]. However, the treatment
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induced alterations in the physiological parameters of mouse, thus suggesting the risk of possible side
effects [239].

Similarly, isocaryophyllene strongly induced oxidative stress, lipid oxidation, and membrane
permeability alteration in L-929 cancer cells, which were correlated with its cytotoxic effects [212].
Indeed, lipid oxidation has been shown to be responsible for alteration in membrane permeability
and cell death [240]. Moreover, a possible block of the mitochondrial electron transport chain by
isocaryophyllene with a consequent increase in the levels of intracellular reactive oxidative species has
been hypothesized [241].

Interestingly, the authors discussed the differences between the higher cytotoxicity of
isocaryophyllene and the lacking effects of (3-caryophyllene, as found by Legault et al. [209].
This different behavior could be due to the marked reactivity of the exocyclic double bond of
isocaryophyllene, despite the more stable endocyclic double bond of its trans-analogue [241].

Comparing caryophyllane sesquiterpenes displaying in vitro cytotoxic activities against
cancer cells, such as nanonorcaryophyllenes, suberosols, pestalotiopsin A, cytosporinols,
and punctaporonins [48,54,56,59,62,63], the most potent antiproliferative compounds usually shared
a common cis configuration of the caryophyllane skeleton. For instance, nanonorcaryophyllene
B produced strong cytotoxicity in liver and colorectal cancer cells, despite a null activity of its
trans-isomer [48]. This evidence suggests that the cis configuration of the caryophyllane skeleton can
represent a key chemical feature for better targeting specific factors in cancer cells, thus blocking their
growth and proliferation. Anyhow, this hypothesis along with that of Legault et al. [209] needs more
confirmation studies.

Regarding [3-caryophyllene and 3-caryophyllene oxide, some studies have highlighted their
ability to moderately affect the viability of different cancer cell lines [124,151-158,160,163,198-204],
being usually cytotoxic at high concentrations (Table 4).

Particularly, we highlighted that 3-caryophyllene oxide was more cytotoxic than 3-caryophyllene
in Caco-2 cells (Table 4), despite a similar behavior in leukemic cells [160].

In HepG2 cells, 3-caryophyllene and 3-caryophyllene oxide produced similar cytotoxic effects in
all the experimental conditions, being more toxic after long-term exposures than metronomic schedules.
B-Caryophyllene was slightly more potent than the epoxide metabolite after long-term exposures of 48
and 72 h [162].

In cholangiocarcinoma Mz-ChA-1 cells, the antiproliferative activity of p-caryophyllene was
evaluated, applying both long-term protocols (24 h and 72 h exposures) and a metronomic schedule
(a single and repeated exposure of 2 h), resulting in cytotoxicity at high concentrations [163]. The effect
of B-caryophyllene under the metronomic treatments was lower than that found after the long-term
exposures; conversely, the cytotoxicity of 3-caryophyllene was found to be only slightly affected by
time exposure in noncancerous cholangiocytes [163].

According to our evidence, 3-caryophyllene was recently reported to be cytotoxic in human U-373
and U87 glioblastoma cell lines at high concentrations along with glioma-derived stem-like cells [154].
Similarly, it inhibited at high concentrations the proliferation of oral KB cancer cells [155].
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Table 4. Evidence about the ability of caryophyllane sesquiterpenes to affect cancer growth and proliferation.

18 of 48

Compound IC5 [uM]/Time Exposure Cancer Cells/Type ? Outcome Mechanisms References
In vitro studies
18.6-23.5 uM/nr HelLa, BT-20, B-16, HIB Cytotoxicity nr [151]
0.02 uM/2 h BS-24-1, MoFir Cytotoxicity and apoptosis DNA ladder and T caspase-3 activity [152]
A549 AsPC-1. HT-29 G1 cell cycle arrest, | cyclin D1, cyclin E, cyclin-dependent protein
137-270 uM/48 h NCI—i{358 ! ’ Cytotoxicity kinase (CDK) -2, -4, and -6, RB phosphorylation, [153]
T leclPl/WAFl and p27KIPl
Cytotoxicity, switch of Cell cycle inhibition, T caspases 3 and 9 activity, | Beclin-1, LC3 and
~122-150 ® uM/24 h U-373 MG, U-87 MG e o p62/SQSTM1, CB2-mediated anti-inflammatory effects [154]
phagy to apop (I NF-kB, TNF-« and Jun N-Terminal Kinase, T PPARy)
.. . Apoptosis induction, inhibition of metastasization, |NF-kB and -
~ b pop ; ,
~196 ° uM/24 h KB Cytotoxicity and apoptosis PI3K/Akt signalings [155]
Cytotoxicity, apoptosis and
~20b N y Y, apop : : : : -
~20° uM/24 h MG-63 inflammation Induction via ROS and JAK1/STATS3 signaling pathway [156]
Cytotoxicity, apoptosis, . . . .
19-285 uM/24 h HCT 116, HT29, PANC-1  inhibition of clonogenicity, Nuclear condensation and fragmentation pathways, disruption of 1, ;)
o - . mitochondrial membrane potential
migration and invasion
>250 UM/24 h oy MCE7, ME-E0, Lack of cytotoxicity [158]
5and 10 uM /9 days HCT 116 spheroid ?‘hlbfon of spheroid [132,158]
B-Caryophyllene ormation
1103.3 uM/24 h Caco-2 Cytotoxicity [160]
CCRF/CEM, -
311.2-368.5 uM/24 h CEM/ADR5000 Cytotoxicity [160]
379.5 uM/2 h HepG2 Cytotoxicity [162]
251-265 1M/2 h double and triple 4
197 uM/24 h
121 uM/48 h
113 uM/72 h
171.5 uM/2 h Mz-ChA-1 Cytotoxicity [163]
139.5 uM/2 h double 4 and apoptosis
124 uM/24 h
90 uM/72 h
MCF-7, PC-3, A-549, ‘.
>250 uM/nr DLD-1, MABEU and CT-26 Lack of cytotoxicity [209]
93 uM/24 h MDA-MB468 Cytotoxicity [242]
220 uM/24 h HepG2 Cytotoxicity [242]
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Compound IC5 [uM]/Time Exposure Cancer Cells/Type ? Outcome Mechanisms References
12.3 uM/nr HeLa Cytotoxicity [151]
CCRF/CEM, -
235.2-297.8 uM/24 h CEM/ADR5000 Cytotoxicity [162]
332.3 uM/24 h Caco-2 Cytotoxicity [160]
379.5 uM/2 h HepG2 Cytotoxicity [162]
251-265 uM/2 h
double and triple 4
195 uM/24 h
162 uM/48 h
152.5 uM/72 h
up to 100 M/4 h followed by 72 h A%exander or PCL/PRF/5 ..
B-Caryophyllene oxide restoring wild-type and MDR Lack of cytotoxicity [199]
phenotype (Alexander/R)
30-50 uM © PC-3, MCF-7 Apoptosis | PI3K/Akt/mTOR/S6K1 pathways and TROS-mediated MAPKs [201]
30 LM € U266, MM1.S, DU145, Apoptosis and inhibition of Inhibition of constitutive and inducible STAT3 signaling, induction [202]
K MDAMB-231 proliferation and invasiveness ~ of SHP-1 Protein Tyrosine Phosphatase
HepG2, HeLa, AGS, ..
3.7-29.4 uM/96 h SNU-1, SNU-16 Cytotoxicity [203]
50 uM ¢/6 h PC-3 Apoptosis Inhibition of Akt/mTOR/S6K1 signaling [204]
MCE-7, PC-3, A-549, -
>250 uM/nr DLD-1, MABEU and CT-26 Lack of cytotoxicity [209]
41 uM/48 h A-2780 Cytotoxicity [243]
MCE-7, PC-3, A-549, - .
50-73 uM/nr DLD-1, M4BEU and CT-26 Cytotoxicity Pro-oxidant effects [209]
a-Humulene ~32° uM/48 h MCF-7, DLD-1and L-929  Cytotoxicity nr [168]
Huh7, SMMC-7721, - - . . o . R
~53.8-83.1 uM/12 h HepG?2 and Hep3B Cytotoxicity Inhibition of Akt signaling and apoptosis signaling activation [210]
MCE-7, PC-3, A-549,
34-87 uM/nr DLD-1, M4BEU, L-929 Cytotoxicity nr [209]
Isocaryophyllene and CT-26
<32 uM/48 h MCF-7, DLD-1and L-929  Cytotoxicity nr [168]
~100 P uM/48 h L-929 Cytotoxicity Pro-oxidant effects, membrane permeabilization and cell shrinking ~ [222]
In vivo studies
Inhibition of solid tumor growth, metastasis, angiogenesis and
| High-fat diet (HFD) supplemented B16F10-bearing . lymphangiogenesis, apoptosis induction, activation of Bax and -
p-Caryophyllene with 0.15 and 0.3% of sesquiterpene C57BL/6N mice Anticancer effects caspase-3, | mRNA expressions of HIF-1a, VEGF-A, CD31 and (1571
VE-cadherin induced by HFD
50, 100, and 200 mg/kg/day/nr Orthotopically xenograft Anticancer effects Reduction in tumor growth and vascularization [158]

model of colon cancer
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Table 4. Cont.

Compound IC5p [uM]/Time Exposure Cancer Cells/Type ? Outcome Mechanisms References

. f _ - g . . . . . . . .
10-20 mg/kg i.p. '/every 2 days for HepG2-bearing nude Anticancer effects Inhibition of Akt signaling and apoptosis signaling activation;

4 weeks mouse evidence of side effects in mice [210,239]

o-Humulene

2 MCF-7, human breast cancer adenocarcinoma; PC-3, human prostatic adenocarcinoma; A-549, human lung carcinoma; DLD-1, human colon adenocarcinoma; M4BEU, human melanoma;
CT-26, muse colon carcinoma; L-929, murin fibrosarcoma cells; Huh7, human hepatoma; Hep3B, human hepatoma; HepG2, human hepatoblastoma; SMMC-7721, human hepatocellular
carcinoma; BS-24-1, mouse lymphoma cell line; MoFir, Epstein-Barr virus-transformed human B lymphocytes; A549, human lung carcinoma; NCI-H358, human lung adenocarcinoma;
AsPC-1, pancreatic adenocarcinoma; HT-29, colon adenocarcinoma; U-373 MG (Uppsala; p53 mutant) and U-87 MG (p53 wild type), human glioblastoma astrocytoma cell lines;
GSCs, human glioma stem-like cells; KB (Ubiquitous keratin-forming tumor cell line HeLa), human oral; MG-63, human osteosarcoma; B16F10s, human melanoma; HCT 116, human colon
carcinoma; PANC-1, human pancreatic; ME-180, human uterine cervix; K562, human myelogenous leukemia; Caco-2, human colorectal adenocarcinoma; CCRF/CEM, T-cell leukemia;
CEM/ADRS5000, T-cell leukemia subline; MDA-MB-468, triple negative breast carcinoma; Alexander or PCL/PRF/5 wild-type and MDR phenotype (Alexander/R), hepatocellular carcinoma;
COR-L23/R, human lung carcinoma; Hepa 1-6/R, mouse hepatoma; MM U266, human multiple myeloma; MM1.S, melphlan-sensitive human multiple myeloma; DU145, human prostate
carcinoma; MDA-MB-231, human breast carcinoma; HeLa, human cervical adenocarcinoma; AGS, human gastric cancer; SNU-1 and SNU-16 human stomach cancers; A-2780, human ovarian
carcinoma. P Value represents the concentration that induces about a 50% inhibition of cell survival as calculated from the displayed graph, being the ICsy not reported. ¢ About IC20
and IC70 as estimated by data displayed in the graph. ¢ Metronomic schedule: the cells were subjected to a short and/or repeated exposure of 2 h followed by a recovery time of 72 h.
¢ Concentration at which a biological effect was highlighted. f Administered intraperitoneally (i.p.) every 2 days for 4 weeks. nr, not reported. 1 increase; | lowering.
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Chung et al. [153] found that 3-caryophyllene was the major bioactive constituent of the essential
oil from Chrysanthemum boreale and produced cytotoxic effects in A549 and NCI-H358 cells. We have
also reported that the triple negative MDA-MB-468 breast cancer cells were about 2-fold more sensitive
to B-caryophyllene cytotoxicity than HepG2 cells [242].

Conversely, Dahham et al. [132] reported that the sesquiterpene strongly inhibited the proliferation
of human HCT116 colon, PANC-1 pancreatic, and HT29 colon cancer cells (Table 4), with lower potency
in ME-180 invasive squamous, PC3 prostate, K562 leukemic, and MCF-7 breast cancer cells. Moreover,
a low toxicity toward noncancerous 3T3-L1 fibroblasts and retinal ganglion RGC-5 cells was found [132].
Similarly, 3-caryophyllene produced cytotoxic effects in human MG-63 osteosarcoma cells without
affecting the proliferation of normal fibroblast [156].

This evidence underlines that 3-caryophyllene was usually well tolerated in noncancerous cells
(i.e., cholangiocytes, fibroblasts, and retinal ganglion cells), while it promoted cell death, usually at
high concentrations, in cancer cells. A similar behavior was also highlighted for a-humulene,
although only a few studies are available to date [210]. Therefore, it can be hypothesized that
caryophyllane sesquiterpenes could affect specific targets in cancer cells rather than in noncancerous
ones, thus possessing a dual chemopreventive and antiproliferative profile. Further instigations are
needed to confirm this hypothesis and to characterize the mechanisms involved.

The antiproliferative activity of caryophyllane sesquiterpenes has been often associated with
the activation of pro-apoptotic signalings. Particularly, a-humulene induced apoptosis in liver
cancer cells [210], while B-caryophyllene in different in vitro cancer models, including neuroblastoma,
lymphoma, glioblastoma, osteosarcoma, and oral cancer cells [128,154-156,158]. The apoptotic cell
death induced by the sesquiterpene in oral KB cancer cells was associated with morphological changes,
lowered cell growth, and reduced metastasizing abilities, which was likely due to the activation of
a mitochondrial-mediated apoptotic pathway [155]. Similarly, Dahham et al. [158] suggested that
B-caryophyllene can induce apoptosis in human HCT116 colon cancer cells via DNA fragmentation
and mitochondrial-mediated pathways. The pro-apoptotic power of 3-caryophyllene was found
associated with its anti-inflammatory effects in MG-63 osteosarcoma cells [156]. In glioblastoma cells,
[-caryophyllene has been shown to trigger a switch from autophagy to apoptosis, which is likely due
to a CB2R activation and a modulation of Jun N-Terminal Kinase (JNK) [154].

An in silico docking study also highlighted that 3-caryophyllene and 3-caryophyllene oxide can
bind 15-lipoxygenase (15-LOX), thus suggesting their ability to modulate its activity [149]. 15-LOX is an
enzyme involved in the conversion of arachidonic acid to 15-(S)-hydroxyeicosatetraenoic acid, which is
known to act as a kinase activator, thus promoting cancer cell proliferation and metastatization [244].
Moreover, it seems to be associated with DNA-dependent protein kinase, which plays an important role
in cell cycle control and could represent an upstream target to promote apoptosis in cancer cells [245].
The authors hypothesized that an inhibition of 15-LOX can be involved in the pro-apoptotic effects
highlighted for 3-caryophyllene and 3-caryophyllene oxide-enriched fractions of Aegle marmelos extract
in lymphoma and neuroblastoma cells, and suggest better characterizing the possible role of these
compounds as 15-LOX modulators [149].

In the studies described above, the pro-apoptotic effects of 3-caryophyllene and 3-caryophyllene
oxide usually occur at high concentrations (higher than 100 uM) [128,154-156,158,198,201,202].
In contrast, a low concentration of the 3-caryophyllene (50 uM) did not induce apoptotic cell death
in Mz-ChA-1 cholangiocarcinoma cells, although it markedly potentiated the pro-apoptotic effect of
doxorubicin [163]. Similarly, a low dose of 3-caryophyllene oxide (30 uM) was able to enhance the
apoptosis rate of tumor necrosis factor « (TNF«), paclitaxel, and doxorubicin [198]. This evidence
suggests that the regulation of apoptosis by caryophyllane sesquiterpenes is strictly dependent on their
concentration, acting as coadjuvant agents at low concentrations and as direct pro-apoptotic agents at
high concentrations.
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The high concentrations of 3-caryophyllene and (3-caryophyllene oxide required for suppressing
cancer cell proliferation could be a consequence of their poor solubility and stability in biological fluids,
which can limit bioavailability and effectiveness [121].

Indeed, we have found that administering liposomal formulations of 3-caryophyllene in triple
negative MDA-MB-468 breast cancer cells, the cytotoxic power of the sesquiterpene was increased (up to
4-fold) significantly [242]. Di Sotto et al. [242] also highlighted that the lipid-to-drug ratio should be
considered as a critical parameter for enabling (3-caryophyllene release from a lipid-based nanocarrier,
in order to avoid the substance condensing effect on the bilayer, and for increasing its cytotoxic
power in cancer cells. According to previous pharmaceutical studies [246-249], this evidence suggests
that improving the bioavailability of these sesquiterpenes is an important goal for exploiting their
pharmacological potential and strengthens the need of developing optimized delivery formulations.

3.2.2. In Vivo Anticancer Activity

According to what was previously highlighted by Fidyt et al. [124], only a few studies relative to
the anticancer activity of caryophyllane sesquiterpenes in animal models have been performed to date.

Regarding [3-caryophyllene, its anticancer effects, in terms of inhibition of solid tumor growth and
lymphode (LN) metastasis, have been evaluated in an allograft model of B16F10 melanoma induced in
high-fat diet (HFD; containing 60 kcal% as fat) fed C57BL/6N mice [157].

In this study, -caryophyllene was administered as 0.15 or 0.3% HFD supplementation for
21 weeks [157]. As stated by the authors, 0.15 and 0.3% (3-caryophyllene should correspond to a
daily intake of 150 and 300 mg/kg body weight (calculated for a 30 g body weight mouse, consuming
3 g/day of diet supplemented with 0.15 or 0.3% [-caryophyllene) [157]. Under these experimental
conditions, HFD was found to markedly increase tumor growth, LN metastasis, tumor cell proliferation,
angiogenesis, and lymphangiogenesis, and to decrease cell apoptosis with respect to a normal diet.
Conversely, 3-caryophyllene was able to block the HFD procancerogenic effects and normalized the
fasting blood glucose levels and body weight gain: an inhibition in lipid accumulation induced by
HEFD has been hypothesized to be an anticancer mechanism of the sesquiterpene in this model [157].
However, no data have been reported in control diet-fed allograft mice, nor standard anticancer agents
were included in the study. Further limitations of the study, including the number of treated animals
and assignment to groups, should be considered.

A further in vivo study on the anticancer activity of 3-caryophyllene has been performed in an
orthotopic xenograft mice model of colon cancer, in which the substance was administered at doses of
50, 100, and 200 mg/kg/day [158]. Treatment showed to dose-dependently inhibit the tumor growth
and vascularization, and the effect was associated with pro-apoptotic effects of the sesquiterpene
in colon cancer cells [158]. Despite this promising evidence, several methodological limitations,
including treatment duration and administration route, number of treated animals, assignment to
groups, standard anticancer controls, origin, and purity of the test substance, limit the reliability of
the study.

Other available studies focused on the anticancer activity of a-humulene in xenograft models
of liver cancer. Particularly, Chen et al. [210] performed a study in HepG2-bearing nude mice,
randomly assigned to four groups (five mice per group) and treated intraperitoneally (i.p.) with
the sesquiterpene at doses of 10 and 20 mg/kg every 2 days for 4 weeks. Under these conditions,
the treatment with «-humulene induced a dose-dependent increase in apoptotic rate along with tumor
chromatin condensation and loss of tumor structure: these effects were associated with a stimulation
of intrinsic apoptotic pathway and an inhibition in Akt signaling [210]. However, no data about a
reduction in tumor volume and on liver function parameters were reported.

The same authors also highlighted that c-humulene, administered under the same experimental
conditions in HepG2-bearing nude mice, produced a marked animal weight loss along with a slight
but significant reduction in the spleen and liver index without changes in the blood biochemical
parameters; the positive control cisplatin similarly affected organ indices, with more intense effects on
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body weight and blood parameters [239]. Based on this evidence, the authors suggested a possible
safety issue for this substance.

Altogether, the few available studies and the methodological limitations make it difficult to
establish with certainty if these compounds could be approached as alternative anticancer compounds.
Further high-quality studies are required to clarify this issue.

3.2.3. Modulation of Pro-Apoptotic Intracellular Signalings in Cancer Cells

Apoptosis (or programmed cell death) represents a gene regulated process by which all
multicellular organisms control cell proliferation and maintain tissue homeostasis by eliminating
damaged or useless cells in an orderly and efficient way [250]. A disruption in the extrinsic and intrinsic
apoptotic pathways has been found associated with cancer development and drug resistance [251].
It is finely regulated by different signalings, which are activated under permissive apoptotic conditions
and altered redox homeostasis [252].

Central regulatory proteins of both intrinsic and extrinsic apoptotic pathways are cysteine-
dependent aspartate-specific proteases, namely caspases, which are involved in the cleavage of a
variety of proteins involved in cell survival, such as cytoskeletal proteins and DNA repair proteins,
thus resulting in cell death [253].

Apoptotic caspases are classified as upstream initiators (e.g., caspases-8, -10, -2, and -9) and
downstream effectors (e.g., caspases-3, -6, and -7); however, caspase-2 is known to act in both the
initiation and execution of apoptosis [254]. Caspase activation can be mediated by mitochondria,
death receptors (e.g., tumor necrosis factor receptor 1 or TNF-R1) and endoplasmic reticulum (ER) stress.
A marked oxidative stress has been found usually associated with the activation of the mitochondrial
pathway or death receptors [254]. The pro-apoptotic B-cell-lymphoma protein 2 (Bcl-2) is reported
to mediate mitochondrial apoptosis [254]. In addition, ER perturbations induce an unfolded protein
response (UPR), which can lead to an apoptotic output when the stress is excessive or prolonged [255].

In the attempt to restore cell homeostasis during low ER stress, cells can recruit some effectors,
among which the protein RNA (PKR)-like ER kinase (PERK), which is able to phosphorylate the
eukaryotic initiation factor 2« (elF2c) and Nrf2, thus inhibiting the initiation of mRNA translation
and increasing the expression of genes containing antioxidant response elements [254]. An aberrant
activation of Nrf2 in various cancers contributes to chemoresistance development and inflammation,
and is associated with a poor prognosis [256]. Similarly, GSH, which detoxifies xenobiotics and ROS,
has been found to be upregulated in malignant cells, thus inhibiting apoptosis and underpinning cell
resistance to many stressors, such as anticancer drugs. The increased levels of GSH also allow the
conjugation and further excretion of anticancer drugs through the membrane transporters [257].

Caryophyllane sesquiterpenes, especially (3-caryophyllene, 3-caryophyllene oxide, and o-humulene,
have been found to induce apoptotic cancer cell death through the regulation of different pathways
(Figure 7).

A modulation in Akt (cellular homolog of murine thymoma virus Akt8 oncogene) signaling
has been found associated with apoptosis induced by «-humulene in liver cancer cells [210].
Indeed, a lowering in Akt phosphorylation along with increased p21 and decreased cyclin D1
levels, likely due to a downregulation of murine double minute 2 (MDM2) oncoprotein through the
phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis inhibition,
has been found [210]. Akt is a serine/threonine kinase (also known as PKB) that regulates several
cell functions, including cell survival and proliferation, migration, gene transcription, and protein
synthesis [258].

It is a downstream effector of the PI3K pathway and was initially considered as a component of
the insulin receptor signaling [258]. Upon PI3K activation, Akt is phosphorylated at Ser473 residue by
PDK]1, thus leading to the inactivation of several pro-apoptotic proteins (e.g., Bcl-2-associated death
promoter and caspase-9) and apoptosis inhibition. Particularly, Akt is able to activaty the mammalian
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target of rapamycin complex 1 (mTORC1), which regulates different downstream targets to increase
protein and nucleic acid synthesis, thus supporting cell growth and proliferation [259].
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Figure 7. Major intracellular signalings involved in the antiproliferative and pro-apoptotic effects of
-caryophyllene, 3-caryophyllene oxide, and a-humulene in cancer cells.

PIBK/Akt/mTOR axis has been classified as one of the most frequently activated pathways in
cancer and Akt is found frequently upregulated in tumor cells to resist cell stress and apoptosis;
particularly, an upregulation of Akt2 has been associated with aggressiveness and poor prognosis in
ovarian, breast, colorectal, and pancreatic cancers [258]. In line with this evidence, PI3K/Akt/mTOR
inhibitors have been evaluated as possible anticancer treatments [260].

[3-Caryophyllene was found to induce apoptosis in human oral cancer KB cells through the
suppression of PI3K/Akt protein expression (Figure 7) [155]. An antiapoptotic effect of 3-caryophyllene,
which is partly mediated by the activation of PI3K/Akt signaling, was also highlighted in a model of
focal cerebral ischemia—reperfusion injury [261].

Similarly to a-humulene, a suppression in the PI3K/Akt/mTOR/S6K1 signaling by 3-caryophyllene
oxide, associated to a ROS-mediated activation of mitogen-activated protein kinases (MAPKS) in
breast MCF7 and prostate PC3 cancer cells, was reported [201]. Moreover, a hexane fraction of guava
leaves (Psidium guajava L.), characterized to contain 3.63% (3-caryophyllene oxide induced apoptosis
through the inhibition of the Akt/mTOR/S6K kinase signaling in human prostate cancer cells [204].
f3-Caryophyllene induced apoptotic cell death in human oral cancer KB cells through the suppression
of the PIBK/Akt cascade, too [155]. An antiapoptotic effect of 3-caryophyllene in a model of focal
cerebral ischemia—reperfusion injury, partly mediated by the activation of PI3K/Akt signaling, was also
reported [193], thus supporting our hypothesis about a dual role of this sesquiterpene in cancer and
noncancerous cells [163].

In KB oral cancer cells, the pro-apoptotic activity of 3-caryophyllene is also associated with
anti-inflammatory effects, which are likely due to a suppression of NF-kB signaling (Figure 7) and
a lowered expression of inflammatory markers (tumor necrosis farctor-o or TNF-c¢, iNOS, COX-2
and interleukin-6 or IL-6) [155]. This evidence was also supported by docking studies, showing
the sesquiterpene to possess a marked binding affinity to NF-kB, PI3K, and Akt proteins [155].
An anti-inflammatory potential, due to the suppression of NF-kB signaling, has been also reported
for a-humulene in an experimental model of airways allergic inflammation, although no evidence is
available in cancer models [208].
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NF-kB signaling is known to regulate inflammation and cancer development through two
different canonical and noncanonical pathways: the first one plays a prominent role in inflammation,
due to the increased transcription of several pro-inflammatory genes, whereas an exacerbation of the
noncanonical pathway seems to be potentially associated to theumatoid arthritis, ulcerative colitis,
or B cell lymphomas [261,262]. NF-kB has been also linked to tumor chemoresistance, thus suggesting
a possible interest for the inhibitors of this signaling to resensitize cancer cells to chemotherapy.

Some evidence of the NF-kB-mediated anti-inflammatory effects of 3-caryophyllene has been
highlighted in microglia cells [144]. CB2-mediated anti-inflammatory effects of 3-caryophyllene have
been also reported in other cell models [213]. Moreover, the sesquiterpene inhibited the TNF-a-induced
matrix metallopeptidase (MMP)-13, COX-2, and prostaglandin E2 (PGE2) production in human
chondrocytes [263], thus supporting its multitarget anti-inflammatory power.

A similar behavior was also highlighted for 3-caryophyllene oxide, which suppressed both
inducible and constitutive NF-kB activation in myeloid leukemia cells through blocking the nuclear
factor kappa B alpha inhibitor (IkBa) degradation, p65 phosphorylation, and translocation to the
nucleus [198]. The inhibition of this signaling leads to the downregulation of most of the gene products
involved in cancer cell survival and invasion, especially cyclin D1, COX-2, and c-Myc along with
vascular endothelial growth factor (VEGF), MMP-9, and intercellular adhesion molecule-1 (ICAM-1),
thus suggesting their involvement in the TNFx-induced tumor cells invasion [198].

In several cancers, apoptosis is downregulated by the cytosolic transcription factor STAT3 [264].
It has been originally identified to be a mediator of the IL-6-type cytokine pathway and of the acute
phase response, which is activated by the phosphorylation at tyrosine 705 (Tyr705) or serine 727 (Ser727)
in response to different stimuli; after activation, it can be transferred to the nucleus, thus acting as a
control factor for genes involved in cell proliferation, survival, and self-renewal [265]. In addition,
STAT3 has been reported to act as an epigenetic factor, thus modulating DNA methylation and
chromatin [265]. In damaged tissues, increased levels of ROS and y-H2AX along with activated STAT3
have been highlighted, thus suggesting a potential control role in the DN A-repair process [228].

An aberrant activation of STAT3 has been also found in cancer cells, wherein this factor regulates
cell cycle progression, apoptosis, angiogenesis, and immune evasion and contributes to tumor
proliferation and survival along with immune cells recruitment in the tumor microenvironment for
tumor invasion [264]. In addition, increased STAT3 levels in cancer contribute to chemoresistance and
poor prognosis [228,265]. Lee et al. [266] found that STAT3 activation occurred during the treatment with
doxorubicin, that is likely to support cell survival and drug resistance. Similarly, we highlighted a STAT3
phosphorylation at Tyr705 due to doxorubicin treatment in cholangiocarcinoma cells, thus confirming
its role as a chemoresistance mediator [163].

At the moment, although it is known that complex and not entirely understood mechanisms
regulate STAT3 signaling in normal and cancerous cells, inhibiting STAT3 activation seems to represent
an interesting novel strategy for cancer treatment.

Both 3-caryophyllene and 3-caryophyllene oxide have been reported able to affect STAT3 signaling
(Figure 7). Kim et al. [202] highlighted that 3-caryophyllene oxide (30 pM) reduced both the constitutive
and IL-6-induced phospho(Tyr705)STAT3 along with a lowering in the levels of Janus Kinase 1-2
(JAK1-2) and proto-oncogene tyrosine-protein kinase Src in multiple melanoma, breast, and prostate
cancer cell lines, thus resulting in the apoptotic cell death and inhibition of proliferation and invasion.
The down-regulation of the constitutive STAT3 activation was correlated with the increased expression
of a Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1); indeed, the activation of
phospho(Tyr705)STAT3 was abolished through a small interfering RNA (siRNA)-knockdown of SHP-1.

By contrast, an activation of JAK1 and STAT3 by (3-caryophyllene (20 uM) in MG-63 osteosarcoma
cells, which is associated with increased ROS levels and DNA damage, and a downregulated expression
in the proinflammatory IL-6, TNF-&, Cox-2, and NF-kB genes, were reported [156].

We found a similar behaviour in cholangiocarcinoma cells, wherein (3-caryophyllene significantly
increased the Tyr705 phosphorylation of STAT3, although the effect were at least 30-fold lower than that
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of doxorubicin: the STAT3 activation was also associated with enhanced ROS levels, without affecting
DNA integrity [163]. Increased ROS accumulation and DNA fragmentation were reported in KB oral
cancer cells treated with the sesquiterpene, too [155]. Moreover, Pavithra et al. [170] showed that
the apoptosis induced by this sesquiterpene in skin epidermoid cancer cells occurred through ROS
accumulation, caspase activation, and PARP cleavage.

Interestingly, 3-caryophyllene (50-100 M) was found able to inhibit the activation of STAT3
along with the oxidative stress and DNA damage induced by the anticancer drug doxorubicin
and by a condensed smoke from 3R4F cigarettes in both cancer and noncancerous cells [161,163].
These apparently conflicting results suggest that the compound possesses a dual power as a both
protective and anticancer agent that requires better clarification by further studies.

The antiproliferative activity of -caryophyllene in KB oral cancer cells was found to be also
mediated by a reduced expression of PCNA (proliferating cell nuclear antigen) and cyclin D1 (Figure 7),
which are required for tumor cell growth and survival [155].

D-type cyclins are involved in the regulation of G1/S-phase transition bind, acting through cyclin
dependent kinases. Among them, cyclin D1 is reported to affect some major cascades, including
MAPKs, PI3K/Akt, IKK (IkB kinase)/IxkB/NF-kB, Wnt (Wingless-related integration site)/[3-catenin,
and STAT signalings, and nuclear hormone receptors; also, it has been reported able to inhibit the
ligand-mediated PPARYy activation and to regulate the expression of microRNAs, especially the
MiR17/20 gene, thus leading to the inhibition of cell growth, migration, and invasion [267]. After a
genomic injury, the cyclin D1 protein is accumulated, thus preventing cell cycle progression in the
presence of DNA damage [268]. An overexpression of cyclin D1 has been found in several malignancies,
wherein it accelerates the G1 phase progression [267]; in contrast, its inhibition has been associated
with the cell cycle arrest [269]. PCNA is a cyclin D1-associated protein, whose expression allows DNA
repair during cell cycle checkpoints [269]. On the basis of this evidence, the antiproliferative activity of
-caryophyllene appears to be strictly related to its ability to inhibit the cell cycle progression through
a lowered expression of PCNA and cyclin D1. Accordingly, it induced an arrest in the G1 phase of
cell cycle in human lung cancer cells, which was mediated by a downregulation of cyclins D1 and E,
cyclin-dependent protein kinase (CDK)-2, -4, and -6, and by the upregulation of G1 cell cycle negative
regulators (i.e., p21 lPYWAFL and p27KIPL); also, lowered levels of phosphorylated retinoblastoma (p-RB)
protein by the sesquiterpenes were found [153]. Recently, we also demostrated that 3-caryophyllene
(50 uM) produced a block in the GO/G1 and in G2/M phases in Mz-ChA-1 cholangiocarcinoma cells;
moreover, when assessed in combination with doxorubicin, it increased the S-phase and G2/M cell cycle
arrest induced by the anticancer drug [163]. G2/M was significantly lower in cancer cholangiocytes
with respect to the noncancerous cells, thus suggesting that an arrest in this phase can favor the
progression of cholangiocarcinoma cells [163]. Therefore, the modulation of cell cycle phases in cancer
cells can represent a novel kind of chemopreventive mechanism.

3.3. Chemosensitizing Properties

The safety profile of caryophyllane sesquiterpenes from plants, mainly p-caryophyllene,
B-caryophyllene oxide, and o-humulene, along with their multitarget and pleiotropic bioactivities
strengthen the interest as chemosensitizing agents to be exploited as adjuvant agents in secondary
or tertiary chemoprevention. Particularly, research has focused on the ability of these compounds to
potentiate the effectiveness of low-dose anticancer drugs, thus lowering the chemotherapy side effects.
Moreover, their ability to resensitize cancer cells, thus overcoming multidrug resistance (MDR), has been
demonstrated [9]. In the following paragraphs, the up-to-date knowledge about the chemosensitizing
power of caryophyllane sesquiterpenes and the involved mechanisms has been reported.
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3.3.1. Potentiation of Anticancer Drug Activity

Combination studies, in which a drug was assessed in the presence of nontoxic concentrations of
a chemosensitizer, highlighted that 3-caryophyllene, 3-caryophyllene oxide, and a-humulene were
able to synergistically potentiate the activity of different anticancer agents.

The chemosensitizing effects of 3-caryophyllene (50-100 uM) have been mainly highlighted in
combination with the chemotherapeutic drugs paclitaxel and doxorubicin.

Particularly, Legault and Pichette [168] showed that -caryophyllene was able to potentiate
its cytotoxicity of paclitaxel in different in vitro models, including L-929 fibroblasts, DLD-1 colon
adenocarcinoma, and MCF-7 breast cancer cells, by increasing its intracellular accumulation through
an enhancement of membrane permeability. Conversely, the paclitaxel cytotoxicity was not increased
by B-caryophyllene in HepG2 cells [162].

A similar behavior was also found in combination with doxorubicin; indeed, the sesquiterpene
significantly increased its cytotoxicity in human colorectal adenocarcinoma Caco-2, T cell leukemia
CCRF/CEM, and T cell leukemia doxorubicin-resistant CEM/ADR5000 cells, likely acting as a modulator
of membrane permeability and transporters [160]. Moreover, 3-caryophyllene potentiated low-dose
doxorubicin in human liver HepG2 and cholangiocarcinoma Mz-ChA-1 cells. In all the described
conditions, the doxorubicin chemosensitization by 3-caryophyllene was mainly ascribable to synergistic
mechanisms of interaction [160,162,163].

This chemosensitization has been highlighted both after a single long-term exposure of 24 h and
under metronomic conditions, which is characterized by a short and/or repeated exposure of 2 h to the
test substance [163].

Metronomic regimens, wherein the anticancer drug is administered at low doses and more
frequent intervals, has been proposed as an alternative strategy to retain chemotherapy efficacy but
limiting the occurrence of side effects and complications [270]. In line with this evidence, although
further studies are required, combining the chemosensitizing properties of 3-caryophyllene and the
metronomic schedule could allow achieving both drug potentiation and lowering in the chemotherapy
side effects.

In Mz-ChA-1 cells, Di Sotto et al. [163] found that 3-caryophyllene in combination with doxorubicin
enhanced both mitochondrial and apoptotic cell death, which is likely due to the multitarget and
pleiotropic activities of this sesquiterpene (Figure 8).

Moreover, this effect was found associated with a partly reduced oxidative stress and a marked
GSH depletion, without affecting the oxidized glutathione (GSSG) amount [169]. It is known that ROS
and GSH levels are highly expressed in cancer cells and this redox state underpins chemoresistance
and inhibits programmed cell death; indeed, a GSH upregulation allows a conjugation of the anticancer
drugs and excretion through the membrane transporters, thus lowering the chemotherapy efficacy [257].

It has been hypothesized that after the combined p-caryophyllene/doxorubicin treatment,
GSH conjugates of doxorubicin can be formed and accumulated in cholangiocarcinoma cells, due to
a possible membrane transporter inhibition by 3-caryophyllene, thus promoting the activation of
pro-apoptotic cell signalings (Figure 8). This hypothesis is supported by the constant levels of GSSG
found after treatment, which suggest that GSH is mainly utilized for doxorubicin detoxification.
Accordingly, the compound blocked the increased levels of phosphor (Tyr705) STAT3 induced by
doxorubicin in both cholangiocarcinoma and noncancerous cholangiocytes [163].

Regarding [3-caryophyllene oxide, it synergistically enhanced doxorubicin cytotoxicity in several
cancer cell lines by increasing its intracellular accumulation and oxidative stress [160,271].

Kim et al. [198] showed that 3-caryophyllene oxide potentiated both doxorubicin and cisplatin
cytotoxicity in human chronic myeloid leukemia (KBM-5), human multiple myeloma (U266),
and human prostate cancer (DU145) cells, likely through an increase in apoptotic cell death. Moreover,
-caryophyllene oxide induced doxorubicin chemosensitization in HepG2 cells without the potentiation
of cisplatin [162], and in Caco-2, CCRF/CEM, and CEM/ADR5000 cells, being more potent than the
parent compound [160].
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Figure 8. Possible mechanisms involved in the chemosensitizing effects of 3-caryophyllene [163].
Doxorubicin increases reactive oxygen species (ROS) and YH2AX levels, thus leading to S-phase cell
cycle arrest and activation of STAT3 as chemoresistance responses; moreover, the drug can be conjugated
with glutathione (GSH) and extruded by the efflux pumps. When doxorubicin is administered in
combination with 3-caryophyllene, the sesquiterpene stimulates cell cycle checkpoints (both G0/G1 and
G2/M phases), partly lowers DNA damage (1), and inhibits the STAT3 activation (2), thus increasing the
apoptosis rate. Moreover, it can block the efflux pumps (3), thus allowing the intracellular accumulation
of doxorubicin-GSH conjugates (4), which in turn lead to cytotoxic and pro-aptotic effects.

Di Giacomo et al. [199] highlighted the ability of -caryophyllene oxide to synergize the
sorafenib cytotoxicity in different sensitive and chemoresistant cells, including the wild-type and MDR
phenotype of hepatoma Alexander and Hepa 1-6 cells, and the lung carcinoma doxorubicin-resistant
COR-L23/R cells. Sorafenib chemosensitization was particularly marked in MDR phenotypes,
wherein (3-caryophyllene oxide induced an increased intracellular accumulation of the drug,
thus leading to an improvement in its antiproliferative activity [199].

Moreover, 3-caryophyllene oxide potentiated the antiproliferative power of fluorouracil and
oxaliplatin in Caco-2 and SW-620 cells through a disruption of the mitochondrial membranes,
which leads to the release of cytochrome c and increase of oxidative stress [200].

As regards o«-humulene, its combination with doxorubicin determined additive effects in Caco-2
cells, while a strong synergism was highlighted in SKOV3 cells; moreover, the compound was able to
improve the antiproliferative effects of fluorouracil and oxaliplatin in Caco-2 and SW-620 cells [160,271].
An increased intracellular accumulation of the anticancer drug along with enhanced ROS levels have
been hypothesized as mechanisms of action [200].

3.3.2. Inhibition of ATP-Binding Cassette (ABC) Transporters

The ability of caryophyllane sesquiterpenes to affect the function of ATP-binding cassette (ABC)
transporters, as possible chemosensitizing agents, has been investigated by several studies.

The overexpression of ABC transporters is one of the most involved events in MDR: these proteins
actively pump out of the cell lipophilic molecules and their conjugates, thereby increasing drug
efflux [272]. Consequently, their inhibition or downregulation in MDR cancer cells, by chemosensitizing
agents, represents a promising approach for restoring drug sensitivity, as it blocks the extrusion of drugs
from the cell, enables drug accumulation, and in consequence, results in chemotherapy success [273].
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Among caryophyllane sesquiterpenes, 3-caryophyllene, 3-caryophyllene oxide, and o-humulene
are the most studied ABC-transporter inhibitors in line with the evidence of the previous described
synergistic interactions with chemotherapeutic drugs.

Particularly, p-caryophyllene and (3-caryophyllene oxide showed an increase in the content of
rhodamine (Rho) 123, a substrate of the P-glycoprotein (Pgp), in Caco-2 and CEM/ADRS5000 cells,
both lines expressing this transporter; conversely, in CCRF/CEM, which were lacking Pgp, the Rho123
efflux was not affected by the sesquiterpenes and the known Pgp-inhibitor verapamil [160].

Accordingly, 3-caryophyllene and its oxide derivative increased both doxorubicin (+60%) and
Rho123 accumulation (+50%) in HepG2 cells, with a similar potency of verapamil, thus suggesting a
Pgp inhibition [162]. Similar results were reported for 3-caryophyllene oxide in different cancer cell
lines expressing Pgp [160,271]. As regards a-humulene, it inhibited the doxorubicin and rhodamine
123 efflux in CEM/ADR cells, which express a high level of Pgp [271].

Di Giacomo et al. [199] highlighted that 3-caryophyllene and (3-caryophyllene oxide were able
to also inhibit the function of the multidrug resistance-associated proteins 1 (MRP1) and 2 (MRP2).
Particularly, p-caryophyllene oxide enhanced the antitumor effect of sorafenib both in vitro and
in a xenograft model, in which tumor formation was induced by the subcutaneous injection of
chemoresistant MRP1 and MRP2 overexpressing Hepa 1-6 cells [199]. In the xenograft model,
it potentiated the efficacy of sorafenib and produced a 58% reduction in tumor volume, probably owing
to the 3-fold increased sorafenib accumulation in the tumors, as revealed by HPLC-MS/MS analysis.
This evidence allows speculating that 3-caryophyllene oxide enhances the efficacy of sorafenib through
the increase of its intracellular accumulation, which is mediated by the inhibition of the MRP1/MRP2
function [199].

A mechanistic analysis revealed that along with inhibiting the transporters function,
-caryophyllene and 3-caryophyllene oxide were able to downregulate the protein expression of Pgp,
as showed by Western blotting and immunofluorescence analysis [162].

Furthermore, a molecular docking study revealed that 3-caryophyllene and (3-caryophyllene
oxide directly interacted with Pgp, mainly through nonpolar and hydrophobic residues: the binding
site of caryophyllane sesquiterpenes is a hydrophobic space next to the nucleotide binding domain
of Pgp [162]. P-caryophyllene was shown to possess higher affinity than (3-caryophyllene oxide,
although both compounds interacted with Pgp more tightly than a-humulene, thus suggesting that
the caryophyllane scaffold possesses key features for inhibiting the transporter. Indeed, the nonpolar
dimethylcyclobutane moiety in the caryophyllane skeleton seems to be capable of forming several
favorable hydrophobic interactions, thus being crucial for binding Pgp; therefore, the lower affinity of
a-humulene for Pgp can be ascribable to its open cyclic structure lacking in this moiety [162].

The caryophyllane sesquiterpenes interaction in the Pgp binding site mainly occurred through
nonpolar interactions, which involve nonpolar and hydrophobic amino acids; conversely, polar residues
are found as the main unfavored interacting amino acids [162].

The standard Pgp inhibitor verapamil shared the same binding site and interacting amino acids of
caryophyllane sesquiterpenes, although it possessed a greater inhibitory power [162].

Pgp (or MDR1 or ABCB1) is an ATP-dependent membrane transporter, encoded by the human
MDRI1 gene, characterized by two bundles of six transmembrane domains, separated by intracellular
loops, containing two nucleotide-binding domains (NBD) for the ATP binding, which provide the
energy for drug efflux [274]. Pgp is responsible for the efflux of lipophilic compounds, which are firstly
accumulated within the lipid bilayer and then transported outside the cells against the concentration
gradient: this process is involved in drug pharmacokinetics and permeability and is upregulated
in cancer cells to underpin chemoresistance [275]. Pgp function can be inhibited through both
direct and indirect mechanisms, including a binding site inhibition (competitive, noncompetitive or
allosteric), an interference with ATP energy production, and an alteration in the membrane integrity
and fluidity [144].
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In this context, caryophyllane sesquiterpenes seem to affect Pgp function by multiple inhibitory
mechanisms, including a direct interaction in the binding site and a protein expression modulation,
likely regulating its gene transcription; moreover, a possible interference with its active protein
conformation due to an alteration in the membrane permeability can be hypothesized (Figure 9).
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Figure 9. Mechanisms involved in the P-glycoprotein (Pgp) inhibition by caryophyllane sesquiterpenes [162].
(1) Due to their lipophilic nature, they can alter membrane fluidity and alter its conformation,
thus inhibiting the transporter function. (2) They can directly interact in a hydrophobic space next to the
nucleotide binding domain of Pgp through hydrophobic interactions between the dimethylcyclobutane
moiety and the nonpolar and hydrophobic amino acids. (3-Caryophyllene interacts with high
affinity, followed by p-caryophyllene oxide; by contrast, a-humulene possesses the lower affinity
for Pgp, which is likely due to its open cyclic structure lacking in the dimethylcyclobutane moiety.
(3) Caryophyllane sesquiterpenes can modulate Pgp expression through the inhibition of STAT signaling,
which is known to control the mdr1 gene in different cancer cells.

The direct Pgp interaction is in line with the behavior of other lipophilic compounds,
which bind the side chains of Pgp amino acids and alter its conformation, thus inhibiting the
activity [276]. Numerous studies highlighted that the lipid environment can modulate protein
function, which includes drug binding and transport [277]. Particularly, a cholesterol enrichment of a
1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) biomembrane model has been reported as
able to reduce the affinity binding of Pgp for adenosine triphosphate (ATP) [278].

The ability of caryophyllane sesquiterpenes, mainly (3-caryophyllene, to affect the membrane
permeability has been studied in different biomembrane models: it has been found to reduce
phospholipid cooperativity and to induce a cholesterol-like stiffening in the structure, thus lowering
the biomembrane permeability [185]. A similar effect has been also hypothesized by Legault et al. [168]
as a possible mechanism involved in the ability of 3-caryophyllene to increase the intracellular
accumulation of anticancer drugs, with consequent strengthening of their activity. Accordingly,
Di Giacomo et al. [160,199] suggested that caryophyllane sesquiterpenes could interfere with
ABC-mediated transport due to their lipophilic nature.

The mdrl gene, which codifies to Pgp, is transcriptionally regulated by STAT3, which binds
with its promoter sequence [279]. In some cancer cells, an mdrl mRNA downregulation has
been associated with a STAT3 inhibition [279,280]. In line with this evidence, since caryophyllane
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sesquiterpenes, mainly (3-caryophyllene and -caryophyllene oxide, are able to affect the activation
of STAT3 [161,173,271], the inhibition of this pathway has been hypothesized to be involved
in the modulation of Pgp expression. Further studies are required to better characterize this
mechanistic hypothesis.

4. Open Challenges and Future Directions

The present literature review highlights a chemopreventive power of caryophyllane sesquiterpenes,
which arises from multiple and pleiotropic mechanisms that are mainly characterized for
-caryophyllene, 3-caryophyllene oxide, and x-humulene (Figure 10). Particularly, 3-caryophyllene
has been found able to modulate the cell redox state, inflammation, genome integrity, and cell cycle
progression and to affect different signalings, including NF-kB, STAT3, PI3K/Akt, TNF-«, and redox
cascades, such as Nrf2 and MAPK, likely through a CB2R-activation. Similarly, some of these cascades
are modulated by 3-caryophyllene oxide and «-humulene.

[-Caryophyllene, 3-caryophyllene oxide, and «-humulene synergized chemotherapeutic drugs in
cancer cells, thus stimulating a further interest in these compounds as adjuvant treatments to potentiate
low-dose chemotherapeutic treatments and to counteract chemoresistance occurrence. These effects
have been associated with ABC-transporter inhibition, increased apoptotic cell death, and cell cycle
control, although the involvement of further mechanisms, such as a cell membrane modulation or an
interference with metabolic pathways, cannot be excluded.

Interestingly, a low cytotoxicity profile has been usually found in noncancerous cells,
thus suggesting the ability of these sesquiterpenes to affects specific cancer targets, while limiting side
effects in noncancerous tissues.

Comparing sesquiterpenes, the cis-configuration of caryophyllane scaffold and the exocyclic
double bond, as found in a-humulene and isocaryophyllene respectively, seem to be associated with
a higher cytotoxicity power. However, more specific studies are needed to clearly understand a
structure—activity relationship.

Future investigations should be directed to explore novel possible chemopreventive mechanisms
of caryophyllane sesquiterpenes, as suggested by the evidence of other pharmacological activities
highlighted in noncancer disease models.

Particularly, considering the hypoglycemic properties of 3-caryophyllene [135,177-179], it could
be of interest to investigate the ability of these substances to affect the metabolic pathways activated by
cancer cells to sustain their proliferation [281], thus acting as metabolic reprogramming modulators.
B-Caryophyllene also showed to induce hypolipidemic effects by affecting lipid biosynthesis and
accumulation [180,181]: these effects could be exploited to affect the cancer cell biomembrane, whose role
in chemoresistance has been highlighted [282].

A further mechanism that deserves deep investigation is the modulation of the endocannabinoidome
in cancer cells. Indeed, several studies have reported a different expression of cannabinoid CB1 and CB2
receptors in cancer along with the possible activation of alternative non CB1/CB2-dependent cascades
in the endocannabinoidome [283]. These assumptions strengthen the need to clarify if caryophyllane
sesquiterpenes, mainly (3-caryophyllene, specifically modulate CB2 receptors or if their chemopreventive
effects can arise also from non CB2-dependent mechanisms.

At last, based on the preliminary evidence about the effects of these sesquiterpenes on immune
cells, their usefulness as cancer immunomodulators [284] should be investigated.

It is also important to underline that the present literature review did not consider all the studies
on natural by-products containing one or more caryophyllane sesquiterpenes, whose pharmacological
activity is usually ascribable to all the phytocomplexes. However, some phytocomplexes
(e.g., Hypericum perforatum L., Cannabis sativa L., Sylibum marianum L., Serenoa repens L.) have displayed
more interesting pharmacological profiles than the isolated phytochemicals [285,286]. This evidence
suggests a further interest for caryophyllane sesquiterpene-enriched phytocomplexes as possible
chemopreventive products.
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The promising chemopreventive properties of caryophyllane sesquiterpenes are limited by
several challenges that deserve much focused attention so that they can turn out opportunities for
future developments.
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Figure 10. Pleiotropic and multitarget mechanisms involved in the chemopreventive properties
of caryophyllane sesquiterpenes in healthy and cancer cells. The activation of CB2R is associated
with the antioxidant and anti-inflammatory effects of 3-caryophyllene in healthy cells. Moreover,
its role in the modulation of inflammatory process and oxidative stress in cancer cells require more
investigations. CB2R, CB2 receptor; TLR, Toll-killer receptor; RAGE, receptor for advanced glycation
end products; GSH, glutathione; STAT3, signal transducer and activator of transcription 3; YH2AX,
phosphorylated (Ser139) histone 2AX; NF-kB, nuclear factor kappa B; PI3K, phosphatidylinositol
3-kinase; Akt, protein kinase B; mTOR, mammalian target of rapamycin; PCNA, proliferating cell
nuclear antigen; CDK4, cyclin-dependent protein kinase 4; MDR1, multidrug resistance; MRP, multidrug
resistance-associated protein.
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The high lipophilicity and poor bioavailability of these compounds is a major challenge, as it
limits solubility in aqueous fluids, thus resulting in inconstant biological responses. Several efforts
have been done in the years to overcome these drawbacks mainly for $-caryophyllene. Inclusion
complexes with cyclodextrins, liposomes, and nanoparticles have been the most explored delivery
systems [287]. Particularly, a 3-caryophyllene/B-cyclodextrin inclusion complex has been shown
to improve the cognitive deficits in rats with vascular dementia and produced anti-hyperalgesic
effects likely due to its increased bioavailability [246-248]. Similarly, oil/water microemulsions have
been reported to possess suitable features for an effective topical delivery of 3-caryophyllene [249].
Moreover, we have highlighted that liposomal formulations, differing for lamellarity (i.e., unilamellar
and multilamellar vesicles) but with an optimized drug loading, increased the antiproliferative power
of 3-caryophyllene in cancer cells, thus stimulating a further pharmaceutical interest [242]. However,
as previously highlighted by Santos et al. [287], this challenge remains open, and a technology transfer
for pharmaceutical studies is needed.

Other critical issues to be considered are the limited quality of some pharmacological reviewed
studies that compromises the reliability of the obtained results, and the lack clinical evidence.
According to the suggested best practices to be applied in phytopharmacological research [288,289],
detailed methodologies, including information about the compound purity, choice of the tested
concentrations, experimental procedures, vehicle effects, and comparison with positive controls
are recommended. Moreover, promising preclinical results should be confirmed in clinical trials,
and possible toxicological concerns and food/drug interactions should be assessed. As recommended
for many natural products, future high-quality studies along with rational interpretations of the results
through standardized methodologies [290] are required.

A last issue to be considered is the best source of caryophyllane sesquiterpenes for a possible
industrial production. To date, different synthetic strategies have been proposed [66,120], although these
compounds are mainly obtained by steam distillation from plant materials [120]. Considering
their wide diffusion in nature, several species could be usefully employed as starting materials for
extraction. For instance, the flowers from Scutellaria californica A. Gray and balsam from the bark
of Copaifera langsdorffi Desf. are rich sources of 3-caryophyllene, while the essential oils from aerial
parts of Tephrosia cinerea Pers., Cachrys alpina Bieb. and Baccharis coridifolia D.C. contain high levels of
B-caryophyllene oxide, a-humulene, and isocaryophyllene, respectively.

In this context, it could be also of interest to evaluate possible waste biomass as recycling sources for
extraction. Moreover, due to the presence of similar structures in marine species and fungi, these kingdoms
could be explored as novel sources of caryophyllane-based molecules for pharmacological studies or for
hemisynthetic processes. Advances in cultivation technologies and extraction processes could contribute to
achieve increased yields in these sesquiterpenes for pharmaceutical applications.

5. Conclusions

Caryophyllane sesquiterpenes are unique natural substances widely occurring in different natural
kingdoms, although compounds from plants, especially 3-caryophyllene, 3-caryophyllene oxide,
a-humulene, and isocaryophyllene have mainly attracted pharmacological attention.

In the present review, these compounds were shown to possess a great chemopreventive power,
being able to act as genoprotective, cytoprotective, suppressing, and chemosensitizing agents and
to modulate different intracellular cascades, thus affecting both cancer proliferation and sensitivity
to chemotherapy.

Although the clinical usefulness of caryophyllane sesquiterpenes in chemotherapy remains to be
characterized, the present overview strengthens our consolidated interest in these natural compounds
as chemopreventive agents and encourages further pharmacological and pharmaceutical studies to
fully exploit their therapeutic potential.
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