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Abstract: The genetic variations responsible for tumorigenesis are called driver mutations. In breast
cancer (BC), two studies have demonstrated that germline mutations in driver genes linked to sporadic
tumors may also influence BC risk. The present study evaluates the association between SNPs and
SNP-SNP interaction in driver genes TTN (rs10497520), TBX3 (rs2242442), KMT2D (rs11168827), and
MAP3K1 (rs702688 and rs702689) with BC risk in BRCA1/2-negative Chilean families. The SNPs
were genotyped in 489 BC cases and 1078 controls by TaqMan Assay. Our data do not support an
association between rs702688: A>G or rs702689: G>A and BC risk. The rs10497520-T allele was
associated with a decreased risk in patients with family history of BC or early-onset BC (OR = 0.6,
p < 0.0001 and OR = 0.7, p = 0.05, respectively). rs2242442-G was associated with a protective effect
and rs11168827-C was associated with increased BC risk in families with a strong history of BC
(OR = 0.6, p = 0.02 and OR = 1.4, p = 0.05, respectively). As rs10497520-T and rs2242442-G seemed
to protect against BC risk, we then evaluated their combined effect. Familial BC risk decreased in a
dose-dependent manner with the protective allele count, reflecting an additive effect (p-trend < 10−4).
To our knowledge, this is the first association study of BC driver gene germline variations in a
Chilean population.

Keywords: genetic predisposition to breast cancer; breast cancer risk; driver genes; germline variants;
single nucleotide polymorphisms

1. Introduction

In females, breast cancer (BC) has the highest incidence of any cancer worldwide. At least
1.15 million patients are diagnosed annually, comprising about 23% of all cancer cases in women [1,2].
Roughly 1 in 8 women alive today will contract BC in their lifetimes [3]. Chile is no exception to these
global statistics, as BC has the highest mortality rate among cancers in Chilean women. BC caused
1511 deaths in 2015 in this country, with a mortality rate of 16.6 per 100,000 [4,5]. BC incidence is also
on the rise nationally [5,6].

Identification of the tumor suppressor genes BRCA1 (MIM 113705) [7] and BRCA2 (MIM 600185) [8,9]
spurred significant progress in understanding the genetic etiology of BC. Mutations in these two genes
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are considered to be high-penetrance BC susceptibility variations [2,10]. Studies suggest that about
16–20% of familial BC risk is attributable to BRCA1/2 variants [11–13]. It is very likely that moderate-or
low-penetrance susceptibility alleles are responsible for a large proportion of BC cases in families that
do not carry BRCA1/2 mutations [14]. As alluded, susceptibility mutations can be categorized as high-,
moderate-, or low-penetrance according to the associated risk of developing BC [15]. All known BC
susceptibility genes account for about half of hereditary BC (HBC) cases [11]; the genes responsible for
the remaining half are yet to be determined. Identifying new BC susceptibility genes or alleles will
improve risk assessment, shed light onto cancer mechanisms, and enhance the effectiveness of treatment.

The genomes of all cancers contain somatic mutations. Driver mutations are a subgroup of such
variations that are causally involved in oncogenesis, as they confer cancer cells with a clonal selective
advantage [16]. The remaining variations are called passenger mutations. A typical tumor contains
2–8 driver mutations. Although the specific driver mutations and mutational processes underlying BC
have yet to be comprehensively probed [17], about 90% of BC tumors may be the result of somatic driver
mutations that trigger the carcinogenic process [16,18,19]. Most known driver genes were identified in
sporadic breast tumors using Next Generation Sequencing (NGS), including ARID1B, CASP8, MAP3K1,
MAP3K13, NCOR1, SMARCD1, CDKN1B, AKT2, and TBX3. These genes contain low-frequency driver
mutations, according to the gene databases ClinVar and dbSNP. Researchers have recently begun to
explore whether the driver genes in sporadic tumors might also contain heritable variants associated
with cancer risk. Göhler et al. (2017) [20] demonstrated an association between germline variants in the
driver genes of sporadic cancer and BC risk, tumor characteristics and/or survival in a Swedish cohort
with BC. These authors also studied a set of single-nucleotide polymorphisms (SNPs) in 15 genes
commonly categorized as BC driver genes according to NGS analysis, identifying five genes with a
potential link to BC susceptibility. (1) TBX3 (rs2242442): The minor allele for this SNP correlated with
decreased BC risk (OR = 0.76 [95% CI = 0.64–0.92], p = 0.004). (2) TTN (rs10497520): Homozygosity
for the minor allele was associated with increased BC risk (OR = 1.96 [95% CI = 1.18–3.26], p = 0.001).
(3) MAP3K1 (rs702688 and rs72758040): Homozygosity for these SNPs correlated with increased risk
(OR = 1.33 [95% CI = 0.99–1.76], p = 0.05 and OR = 1.36 [95% CI = 1.01–1.83], p = 0.04), respectively).
(4) KMT2D (rs11168827): This SNP correlated with increased BC risk (OR = 1.31 [95% CI = 1.00–1.72],
p = 0.05) and was associated with positive hormone receptor status and low-grade tumors. (5) SF3B1
(rs4688): The minor allele correlated with decreased BC risk (OR = 0.75 [95% CI = 0.54–0.97], p = 0.03).
This SNP was also associated with negative lymph node findings, metastases, and hormone receptor
status [20]. To date, the mutations and variants in these novel driver genes have not been studied in
a Chilean or Latin American population, and it remains unknown whether inherited variants in the
driver genes affect cancer risk. Genetic variations typically vary by ethnicity, meaning that findings for
one group may not applicable to Chilean or other populations.

The present study evaluates the association between specific SNPs and SNP-SNP interactions
in the driver genes TTN, TBX3, KMT2D, and MAP3K1 with familial and early-onset non-familial BC
in Chilean families who are negative for BRCA1/2 point mutations. A case-control study was used
to explore the relationship between BC susceptibility and the following SNPs: s702688 and rs702689
(MAP3K1), rs2242442 (TBX3), rs10497520 (TTN), and rs11168827 (KMT2D). Moreover, we carried out
a SNP-SNP interaction between rs2242442 and rs10497520 to evaluate their combined effect on the
BC risk.

2. Results

2.1. Association Study between rs10497520, rs2242442, rs11168827, rs702688 and rs702689 with Familial
Breast Cancer and Early-Onset Non-Familial Breast Cancer in Non-Carriers of BRCA1/2 Mutations

The cases were divided into two subgroups for the case-control analysis according to family
history: Subgroup A (two or more family members with breast/ovarian cancer, n = 311) and Subgroup
B (non-familial early-onset (diagnosis at ≤50 years of age) BC, n = 178). Table 1 shows the genotype
and allele frequencies of the rs10497520:C>T (TTN), rs2242442:G>A (TBX3), rs11168827:G>A (KMT2D),
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and rs702688:A>G and rs702689:G>A (MAP3K1) polymorphisms in the whole data set, subgroups
A and B, and controls. The genotype frequencies were in Hardy-Weinberg equilibrium for four
of the five polymorphisms in controls (p = 0.69 for rs2242442:G>A, p = 0.30 for rs11168827:G>A,
p = 0.74 for rs702688:A>G, and p = 0.75 for rs702689:G>A, respectively), while the p-value was 0.03 for
rs10497520:C>T.

In the single-locus analyses, no significant differences were detected for rs702688:A>G or
rs702689:G>A (both located in the MAP3K1 gene) genotype or allele distributions, either in the
whole dataset or subgroups A or B (p > 0.05).

For rs10497520:C>T (located in the TTN gene), the genotype and allele distribution was significantly
different in the whole sample of BRCA1/2-negative cases and subgroup A as compared to controls
(p ≤ 0.05) (Table 1). The minor allele frequency (MAF) (allele T) was significantly lower in the
whole BC sample (39.7%), subgroup A (38.4%), subgroup B (41.9%) vs. control (47.5%) (OR = 0.7
[95% CI = 0.6–0.8], p < 0.0001, OR = 0.6 [95% CI = 0.5–0.8], p < 0.0001, and OR = 0.7 [95% CI = 0.6–0.9],
p = 0.05, respectively) (Table 1). This result indicates that the T allele is associated with a protective
effect against BC risk. We also observed a protective effect for T/T homozygosity in the whole sample
(OR = 0.5 [95% CI = 0.3–0.9], p < 0.0001), subgroup A (OR = 0.4 [95% CI = 0.3–0.7], p = 0.0001), and
subgroup B (OR = 0.6 [95% CI = 0.3–0.9], p = 0.05) (Table 1). Moreover, the distribution of T allele carriers
(C/T + T/T) was significantly lower in the whole BC sample (OR = 0.6 [95% CI = 0.5–0.8], p = 0.001)
and subgroup A (OR = 0.6 [95% CI = 0.4–0.8], p = 0.0009) vs. control, again indicating a protective
effect of the T allele (Table 1). We then assessed for a protective effect of rs10497520:C>T according
to number of BC cases per family (Table 2). BC risk was significantly decreased in homozygous
T/T and T allele carriers (C/T + T/T) in families with two BC/OC cases (OR = 0.4 [95% CI = 0.2–0.7],
p = 0.001 and OR = 0.6 [95% CI = 0.4–0.8], p = 0.01, respectively). Similarly, there was a protective
effect for homozygous T/T and T allele carriers (C/T + T/T) in families with a strong family history
of BC (OR = 0.5 [95% CI = 0.3–0.9], p = 0.01 and OR = 0.6 [95% CI = 0.4–0.9], p = 0.01, respectively).
These results consistently suggest that the T allele was associated with a protective effect in Chilean
BRCA1/2-negative families.
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Table 1. Genotype and allelic frequencies of rs10497520 (TTN), rs2242442 (TBX3), rs11168827 (KMT2D), rs702688 and rs702689 (MAP3K1) in BRCA1/2-negative breast
cancer cases and controls.

Genotype or Allele Controls (%) (n = 1078)
All BC Cases (n = 489) Families with ≥2 BC and/or OC Cases (n = 311) A Single case, Diagnosis at ≤50 Years of Age (n = 178)

BC Cases (%) OR [95% CI] p-Value a BC Cases (%) OR [95% CI] p-Value a BC Cases (%) OR [95% CI] p-Value a

rs10497520 (TTN)

C/C 314 (29.1) 182 (37.2) 1.0 (Ref) - 122 (39.2) 1.0 (ref) - 60 (33.7) 1.0 Ref -
C/T 504 (46.8) 226 (46.2) 0.7 [0.6–0.9] 0.04 139 (44.7) 0.7 [0.5–0.9] 0.02 87 (48.9) 0.9 [0.6–1.2] 0.58
T/T 260 (24.1) 81 (16.6) 0.5 [0.3–0.9] <0.0001 50 (16.1) 0.4 [0.3–07] 0.0001 31 (17.4) 0.6 [0.3–0.9] 0.05

C/T + T/T 764 (70.9) 307(62.8) 0.6 [0.5–0.8] 0.001 189 (60.8) 0.6 [0.4–0.8] 0.0009 118 (66.3) 0.8 [0.5–1.1] 0.21
Allele C 1132 (52.5) 590 (60.3) 1.0 (Ref) - 383 (61.6) 1.0 (ref) - 207 (58.1) 1.0 (Ref) -
Allele T 1024 (47.5) 388 (39.7) 0.7 [0.6–0.8] <0.0001 239 (38.4) 0.6 [0.5–0.8] <0.0001 149 (41.9) 0.7 [0.6–0.9] 0.05

rs2242442 (TBX3)

G/G 674 (62.5) 328 (67.1) 1.0 (Ref) - 210 (67.5) 1.0 (Ref) - 118 (66.3) 1.0 (Ref) -
G/A 358 (33.2) 146 (29.9) 0.8 [0.6–1.0] 0.14 90 (28.9) 0.8 [0.6–1.0] 0.14 56 (31.5) 0.8 [0.6–1.2] 0.54
A/A 46 (4.3) 15 (3.0) 0.6 [0.3–1.1] 0.20 11 (3.5) 0.7 [0.3–1.5] 0.52 4 (2.2) 0.4 [0.1–1.4] 0.21

G/A + A/A 404 (37.5) 161 (32.9) 0.8 [0.6–1.0] 0.08 101 (32.5) 0.8 [0.6–1.0] 0.10 60 (33.7) 0.8 [0.6–1.1] 0.35
Allele G 1706 (79.1) 802 (82.0) 1.0 (Ref) - 510 (82.0) 1.0 (Ref) - 292 (82.0) 1.0 (Ref) -
Allele A 450 (20.9) 176 (18.0) 0.8 [0.6–1.0] 0.06 112 (18.0) 0.8 [0.6–1.0] 0.13 64 (18.0) 0.8 [0.6–1.1] 0.23

rs11168827 (KMT2D)

G/G 439 (40.7) 198 (40.5) 1.0 (ref) - 121 (38.9) 1.0 (ref) - 77 (43.3) 1.0 (ref) -
G/C 510 (47.3) 239 (48.9) 1.0 [0.8–1.3] 0.77 157 (50.5) 1.1 [0.8–1.4] 0.45 82 (46.1) 0.9 [0.6–1.3] 0.66
C/C 129 (12.0) 52 (10.6) 0.8 [0.6–1.2] 0.58 33 (10.6) 0.9 [0.6–1.4] 0.82 19 (10.7) 0.8 [0.4–1.4] 0.59

G/C + C/C 639 (59.3) 291 (59.5) 1.0 [0.8–1.2] 0.95 190 (61.1) 1.0 [0.8–1.3] 0.59 101 (56.7) 0.9 [0.6–1.2] 0.56
Allele G 1388 (64.4) 635 (64.9) 1.0 (ref) - 399 (64.1) 1.0 (ref) - 236 (66.3) 1.0 (ref) -
Allele C 768 (35.6) 343 (35.1) 0.9 [0.8–1.1] 0.79 223 (35.9) 1.0 [0.8–1.2] 0.95 120 (33.7) 0.9 [0.7–1.1] 0.52

rs702688 (MAP3K1)

A/A 345 (32.0) 167 (34.2) 1.0 (Ref) - 100 (32.3) 1.0 (Ref) - 67 (37.6) 1.0 (Ref) -
A/G 525 (48.7) 236 (48.3) 0.9 [0.7–1.1] 0.58 150 (48.6) 0.9 [0.7–1.3] 0.94 85 (47.8) 0.8 [0,.5–1.1] 0.32
G/G 208 (19.3) 86 (17.6) 0.8 [0.6–1.1] 0.34 60 (19.3) 0.9 [0.6–1.4] 1.0 26 (14.6) 0.6 [0.3–1.0] 0.08

A/G + G/G 733 (68.0) 322 (65.8) 0.9 [0.7–1.1] 0.41 210 (67.8) 0.9 [0.7–1.3] 0.94 111 (62.4) 0.7 [0.5–1.0] 0.14
Allele A 1215 (56.4) 570 (58.3) 1,0 (Ref) - 350 (56.4) 1.0 (Ref) - 219 (61.5) 1.0 (Ref) -
Allele G 941 (43.6) 408 (41.7) 0.9 [0.7–1.0] 0.33 270 (43.6) 0.9 [0.8–1.1] 0.99 137 (38.5) 0.8 [0.6–1.0] 0.07

rs702689 (MAP3K1)

G/G 274 (25.4) 132 (27.0) 1.0 (Ref) - 82 (26.4) 1.0 (Ref) - 48 (27.0) 1.0 (Ref) -
G/A 544 (50.5) 226 (46.2) 0.8 [0.6–1.1] 0.28 133 (42.8) 0.8 [0.5–1.1] 0.22 92 (51.7) 0.9 [0.6–1.4] 0.84
A/A 260 (24.1) 131 (26.8) 1.0 [0.7–1.4] 0.82 96 (30.9) 1.2 [0.8–1.7] 0.26 38 (21.3) 0.8 [0.5–1.3] 0.48

G/A + A/A 804 (74.6) 357 (73.0) 0.9 [0.7–1.1] 0.53 229 (73.6) 0.9 [0.7–1.2] 0.76 130 (73.0) 0.9 [0.6–1.3] 0.64
Allele G 1092 (50.6) 490 (50.1) 1.0 (Ref) - 297 (47.7) 1.0 (Ref) - 188 (52.8) 1.0 (Ref) -
Allele A 1064 (49.4) 488 (49.9) 1.02 [0.8–1.1] 0.81 325 (52.3) 1.1 [0.9–1.3] 0.21 168 (47.2) 0.9 [0.7–1.1] 0.48

BC—breast cancer, OC—ovarian cancer, OR—odds ratio, CI—confidence interval, Ref—Reference; a Fisher’s exact test; Bold values are statistically significant (p < 0.05).
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Table 2. Genotype and allelic frequencies of rs10497520 (TTN), rs2242442 (TBX3), rs11168827 (KMT2D), rs702688 and rs702689 (MAP3K1) according the number of BC
cases in the families in BRCA1/2-negative breast cancer cases and controls.

Genotype or Allele Controls (%) (n = 1078)
Families with 2 BC and/or OC Cases (n = 166) Families with ≥3 BC and/or OC Cases (n = 145)

BC Cases (%) OR [95% CI] p Value a BC Cases (%) OR [95% CI] p Value a

rs10497520 (TTN)

C/C 314 (29.1) 65 (39.2) 1.0 (ref) - 57 (39.3) 1.0 (ref) -
C/T 504 (46.8) 77 (46.4) 0.7 [0.5–1.0] 0.11 62 (42.8) 0.6 [0.4–0.9] 0.05
T/T 260 (24.1) 24 (14.5) 0.4 [0.2–0.7] 0.001 26 (17.9) 0.5 [0.3–0.9] 0.01

C/T + T/T 764 (70.9) 101 (60.8) 0.6 [0.4–0.8] 0.01 88 (60.7) 0.6 [0.4–0.9] 0.01
Allele C 1132 (52.5) 207 (62.3) 1.0 (ref) - 176 (60.7) 1.0 (ref) -
Allele T 1024 (47.5) 125 (37.7) 0.6 [0.5–0.8] 0.001 114 (39.3) 0.7 [0.5–0.9] 0.01

rs2242442 (TBX3)

G/G 674 (62.5) 105 (63.3) 1.0 (Ref) - 105 (72.4) 1.0 (Ref) -
G/A 358 (33.2) 54 (32.5) 0.9 [0.6–1.3] 0.92 36 (24.8) 0.6 [0.4–0.9] 0.03
A/A 46 (4.3) 7 (4.2) 0.9 [0.4–2.2] 1.00 4 (2.8) 0.5 [0.8–1.5] 0.38

G/A + A/A 404 (37.5) 61 (36.7) 0.9 [0.6–1.3] 0.93 40 (27.6) 0.6 [0.4–0.9] 0.02
Allele G 1706 (79.1) 264 (79.5) 1.0 (Ref) - 246 (84.8) 1.0 (Ref) -
Allele A 450 (20.9) 68 (20.5) 0.9 [0.7–1.2] 0.92 44 (15.2) 0.6 [0.4–0.9] 0.02

rs11168827 (KMT2D)

G/G 439 (40.7) 72 (43.4) 1.0 (ref) - 49 (33.8) 1.0 (ref) -
G/C 510 (47.3) 74 (44.6) 0.8 [0.6–1.3] 0.53 83 (57.2) 1.4 [1.0–2.1] 0.05
C/C 129 (12.0) 20 (12.0) 0.9 [0.5–1.6] 0.89 13 (9.0) 0.9 [0.4–1.7] 0.87

G/C + C/C 639 (59.3) 94 (56.6) 0.9 [0.6–1.2] 0.55 96 (66.2) 1.3 [0.9–1.9] 0.12
Allele G 1388 (64.4) 218 (65.7) 1.0 (ref) - 181 (62.4) 1.0 (ref) -
Allele C 768 (35.6) 114 (34.3) 0.9 [0.7–1.2] 0.69 109 (37.6) 1.0 [0.8–1.4] 0.55

rs702688 (MAP3K1)

A/A 345 (32.0) 51 (30.7) 1.0 (Ref) - 49 (33.8) 1.0 (Ref) -
A/G 525 (48.7) 83 (50.0) 1.0 [0.7–1.5] 0.77 68 (46.9) 0.9 [0.6–1.3] 0.68
G/G 208 (19.3) 32 (19.3) 1.0 [0.6–1.6] 0.90 28 (19.3) 0.9 [0.5–1.5] 0.90

A/G + G/G 733 (68.0) 115 (69.3) 1.0 [0.7–1.5] 0.78 96 (66.2) 0.9 [0.6–1.3] 0.70
Allele A 1215 (56.4) 185 (55.7) 1.0 (Ref) - 166 (57.2) 1.0 (Ref) -
Allele G 941 (43.6) 147 (44.3) 1.0 [0.8–1.2] 0.87 124 (42.8) 0.9 [0.7–1.2] 0.82

rs702689 (MAP3K1)

G/G 274 (25.4) 41 (24.7) 1.0 (Ref) - 41 (28.3) 1.0 (Ref) -
G/A 544 (50.5) 71 (42.8) 0.8 [0.5–1.3] 0.52 62 (42.8) 0.7 [0.5–1.1] 0.22
A/A 260 (24.1) 54 (32.5) 1.3 [0.8–2.1] 0.14 42 (29.0) 1.0 [0.6–1.7] 0.81

G/A + A/A 804 (74.6) 125 (75.3) 1.0 [0.7–1.5] 0.92 104 (71.7) 0.8 [0.5–1.2] 0.47
Allele G 1092 (50.6) 153 (46.1) 1.0 (Ref) - 144 (49.7) 1.0 (Ref) -
Allele A 1064 (49.4) 179 (53.9) 1.2 [0.9–1.5] 0.13 146 (50.3) 1.0 [0.8–1.3] 0.79

BC—breast cancer, OC—ovarian cancer, OR—odds ratio, CI—confidence interval, Ref—Reference; a Fisher’s exact test; Bold values are statistically significant (p < 0.05).
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The genotype and allele distributions did not differ significantly between cases and controls for
rs2242442:G>A (located in the TBX3 gene) in either the whole-group or subgroup analysis (p > 0.05)
(Table 1). However, when we analyzed the effect of rs2242442:G>A according to number of BC cases
per family, we found that heterozygous A/G and G allele carriers (G/A + A/A) had a significantly
decreased BC risk (OR = 0.6 [95% CI = 0.4–0.9], p=0.03 and OR = 0.6 [95% CI = 0.4–0.9], p = 0.02,
respectively), indicating that the G allele is associated with a protective effect in the families with strong
history of BC (Table 2).

In the case-control analysis, no significant differences were observed for genotype or allele
distribution for rs11168827:G>C (located in the KMT2D gene), in the whole BC sample or subgroup A
or B vs. controls (p > 0.05) (Table 1). However, BC risk was significantly elevated in heterozygous G/C
individuals that had three or more family members with BC/OC (OR = 1.4 [95% CI = 1.0–2.1], p = 0.05)
(Table 2). This result reflects and association between the C allele and BC risk in families with a strong
history of BC.

2.2. Combined Effect between TTN rs10497520-T and TBX3 rs2242442-G Alleles with Breast Cancer Risk

As TTN and TBX3 are driver or potential driver genes, and rs10497520-T and rs2242442-A seem
to protect against BC risk, we evaluated the combined effects of these variants. For this analysis, cases
were divided into five groups according to risk allele count: zero (G/G + C/C), one (G/G + C/T, G/A
+ C/C), two (G/G + T/T, A/A + C/C, G/A + C/T), three (G/A + T/T, A/A + C/T), or four (A/A + T/T).
As shown in Table 3, the distributions of the combined genotypes in the whole BC sample and
subgroup A differed significantly from the controls (global p 0.0003 and 0.0008, respectively), and BC
risk decreased in a dose-dependent manner in the whole case group and subgroup A with the number
of risk alleles (p-trend < 10−4 and <10−4, respectively). No additive effect was observed for early-onset
BC (diagnosis ≤ 50 years of age). We also analyzed this additive effect according to number of BC cases
per family (Table 4). A protective effect was found in the families with two BC/OC cases and families
with the strongest history of BC (p-trend = 0.004 and 0.0007, respectively). These results indicate an
additive effect of TTN rs10497520 and TBX3 rs2242442 in the protection conferred.
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Table 3. Combined effects of rs2242442 (TBX3) and rs10497520 (TTN) on the risk of breast cancer.

Number of Risk Alleles (a) Controls (n = 1078) (%)
All BC Cases (n = 489) Families with ≥2 BC and/or OC Cases (n = 3 11) A Single Case, Diagnosis at ≤50 Years of Age (n = 178)

BC Cases (%) OR [95% CI] p Value (b) BC Cases (%) OR [95% CI] p Value (b) BC Cases (%) OR [95% CI] p Value (b)

0 risk alleles 200 (18.6) 125 (25.6) 1.0 (Ref) - 84 (27.0) 1.0 (Ref) - 41 (23.0) 1.0 (Ref) -
1 risk allele 409 (37.9) 196 (40.1) 0.7 [0.5–1.0] 0.07 127 (40.8) 0.7 [0.5–1.0] 0.07 69 (38.8) 0.8 [0.5–1.2] 0.3
2 risk alleles 354 (32.8) 139 (28.4) 0.6 [0.5–0.8] 0.002 79 (25.4) 0.5 [0.4–0.7] 0.0005 60 (33.7) 0.8 [0.5–1.2] 0.4
3 risk alleles 103 (9.6) 29 (5.9) 0.4 [0.2–0.7] 0.0007 21 (6.8) 0.4 [0.2–0.8] 0.006 8 (4.5) 1.3 [0.5–3.1] 0.4

4 risk alleles 12 (1.1) 0 (0) 0.06
[0.003–1.0] 0.004 0 (0) 0.09 [0.005–1.6] 0.02 0 (0) 0.1 [0.01–3.3] 0.2

P-trend (c) <10−4 <10−4 0.02
Global P (d) 0.0003 0.0008 0.08

(a) 0 risk allele: G/G + C/C; 1 risk allele: G/G + C/T, G/A + C/C; 2 risk alleles: G/G + T/T, A/A + C/C, G/A + C/T; 3 risk alleles: G/A + T/T, A/A + C/T; 4 risk alleles: A/A + T/T; (b) Fisher’s exact
test; (c) Chi-test for trend; (d) Chi-squared test for independence; BC—breast cancer; OC—ovarian cancer; OR—odds ratios, CI—confidence interval; Ref—Reference. p ≤ 0.05 Statistically
significant (bold).

Table 4. Combined effects of rs2242442 (TBX3) and rs10497520 (TTN) on the risk of breast cancer according the number of BC cases in the families.

Number of Risk Alleles (a) Controls (n = 1078) (%)
Families with Two BC and/or OC Cases (n = 166) Families with ≥3 BC and/or OC Cases (n = 145)

BC Cases (%) OR [95% CI] p-Value (b) BC Cases (%) OR [95% CI] p-Value (b)

0 risk alleles 200 (18.6) 43 (25.9) 1.0 (Ref) - 41 (28.3) 1.0 (Ref) -
1 risk allele 409 (37.9) 67 (40.4) 0.7 [0.4–1.1] 0.1 60 (41.4) 0.7 [0.5–1.1] 0.2
2 risk alleles 354 (32.8) 45 (27.1) 0.4 [0.2–0.7] 0.002 34 (23.4) 0.5 [0.3–0.9] 0.02
3 risk alleles 103 (9.6) 11 (6.6) 0.4 [0.2–0.9] 0.05 10 (6.9) 0.4 [0.2–1.0] 0.05
4 risk alleles 12 (1.1) 0 (0.0) 0.1 [0.01–3.3] 0.2 0 (0.0) 0.1 [0.01–3.1] 0.2

p-trend(c) 0.0007 0.004
Global p (d) 0.01 0.06

(a) 0 risk allele: G/G + C/C; 1 risk allele: G/G + C/T, G/A + C/C; 2 risk alleles: G/G + T/T, A/A + C/C, G/A + C/T; 3 risk alleles: G/A + T/T, A/A + C/T; 4 risk alleles: A/A + T/T; (b) Fisher’s exact
test; (c) Chi-test for trend; (d) Chi-squared test for independence; BC—breast cancer; OC—ovarian cancer; OR—odds ratios, CI—confidence interval; Ref—Reference. p ≤ 0.05 Statistically
significant (bold).
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3. Discussion

As there is widespread agreement that only about 16% of heritable breast and ovarian cancer
risk is attributable to the high-penetrance BRCA1/2 mutations [12,13], it seems likely that many BC
cases in BRCA1/2-negative families could be attributable to moderate- or low-penetrance genes [14].
However, the sum total of BC susceptibility genes identified to date only explain about half of HBC
incidence [11].

The driver mutations and mutational processes underlying BC have not yet been comprehensively
explored [17]. Nevertheless, it has been proposed that around 90% of BC tumors are caused by somatic
driver mutations that initiate the carcinogenic process [16,18,19]. Göhler et al. (2017) [20] investigated
whether known driver genes may contain inherited variants in Swedish BC patients. To date, the
article published by Göhler et al. [20] is the only study on germline variations in driver genes. In the
discussion, the authors state that their results should be replicated in other populations. There have
been no studies related to mutations or variants in driver genes in Chile or anywhere in Latin America,
the following question, then, emerges: Could germline variations (SNPs) in driver genes influence
BC risk in Chilean population? In the present study, we evaluated the impact of specific SNPs in the
driver genes TTN, TBX3, KMT2D, and MAP3K1 on familial and early-onset BC in Chilean families
negative for BRCA1/2 point mutations. To this end, we performed a case-control study to examine
the association between BC risk and rs702688 and rs702689 (MAP3K1), rs2242442 (TBX3), rs10497520
(TTN), and rs11168827 (KMT2D).

The SNPs rs702689 and rs702688 are located in the coding region of MAP3K1 gene [20]. The
MAP3K1 gene has been classified as a driver gene and acts within the MAP-signaling pathway, which
triggers the expression of genes important for angiogenesis, proliferation, and cell migration [17].
Therefore, it is important to determine whether the SNPs rs702689 and rs702688 contribute to HBC
risk in a Chilean population. Our data do not support an association between rs702688:A>G or
rs702689:G>A and BC risk. With respect to rs702688:A>G, our results diverge from those reported
by Göhler et al., who showed an elevated BC risk in individuals homozygous for the minor allele of
rs702688 (A/A) [20]. To date, the Göhler et al. [20] study constitutes the only publication to evaluate
the association between rs702688:A>G and HBC risk. G is the minor allele in Chilean and other Latin
American populations. The control frequencies of rs702688-A (56.4%) and rs702688-G (43.6%) in this
Chilean population are similar to those reported in the Ensembl database for Latin American control
populations (57% for rs702688-A and 43% for rs702688-G). Therefore, it is possible that the rs702688
SNP is not associated with BC risk in Latin Americans. Regarding rs702689:G>A, there are no data in
the literature on the association between this SNP and hereditary or sporadic BC risk.

The T-box transcription factor 3 gene (TBX3) belongs to a gene family that shares a common
DNA-binding domain, the T-box. T-box genes encode transcription factors involved in regulating
developmental processes. TBX3 is expressed in mammary tissues and plays a context-dependent
role in mammary gland development as well as in tumorigenesis [21]. TBX3 interacts with several
major oncogenic pathways and is overexpressed in many tumors, including BC [22]. Recently, somatic
variations in TBX3 have been classified as BC driver mutations [17,23–26]. Marouf et al. [27] investigated
the rs2242442 germline variation in a Moroccan population, finding that the homozygous genotype A/A
was associated with elevated BC risk (OR = 3.93 [95% CI = 1.84–8.42], p = 0.0004). Nevertheless, Göhler
et al. [20] showed that rs2242442 A allele carriers have a significantly decreased BC risk (OR = 0.76
[95% CI = 0.64–0.92], p = 0.004) in a Swedish population. The previously-cited articles are only studies
that have conducted association analyses for rs2242442 and BC risk. Our results shown that the
rs2242442 A allele has a protective effect in families with a strong family history of BC (≤3 BC cases), in
agreement with the findings obtained by Göhler et al.

TTN (titin or connectin), the largest polypeptide encoded by the human genome, is a protein more
generally known for its structural and elastic roles in muscle contractile machinery [28]. However,
it has been suggested that TTN also has a critical role in establishing or maintaining chromosome
compaction. Analogous to its role in muscle, TTN may localize to chromosomes and provide a template
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for the correct binding and assembly of other proteins involved in chromosome condensation [29].
Therefore, TTN mutations could affect the condensation and segregation of chromosomes, playing
an important role in oncogenesis. Göhler et al. [20] described six SNPs in TTN that are associated
with increased BC risk, aggressive tumor characteristics, and/or poor survival; of relevance to the
present findings, homozygosity for the minor allele of rs10497520:C>T was associated with BC risk
(OR = 1.96 [95% CI = 1.18–3.26], p = 0.01) in a Swedish population. In contrast, our results showed that
the rs10497520-T allele, T/T homozygosity, or carrying the T allele (C/T + T/T) had a protective effect in
BRCA1/2-negative Chilean women with a strong family history BC or non-familial early-onset BC,
with highly significant p-values. One important issue to consider is that the genotype distribution
of rs10497520 was in Hardy-Weinberg disequilibrium in our study, which could distort the results.
The possibility that different selective factors may directly or indirectly alter the association between
rs10497520 and BC risk cannot be discarded.

It has been reported that KMT2D is part of the histone methyltransferase (HMT) complex that
directs tri-methylation of histone H3 lysine 4. These chromatin modifications stimulate transcriptional
activation of target genes [30]. KMT2D has been shown to be involved in several cellular signaling
pathways, regulating different sets of genes. A possible role for KMT2D as a tumor suppressor
gene has also been proposed [31]. rs11168827, located in the KMT2D gene, was associated with BC
risk (OR = 1.31 [95% CI = 1.00–1.72], p = 0.05), positive hormone receptor status, and low-grade
tumors in a Swedish population. Our results are consistent with these findings, as we found that G/C
heterozygosity was associated with elevated BC risk (OR = 1.4 [95% CI = 1.0–2.1], p = 0.05) in Chilean
women with a strong family history of BC. Although our study provides evidence for an association of
rs2242442 (TBX3), rs10497520 (TTN) and rs11168827 (KMT2D) with BC risk, certain limitations must be
considered. Firstly, the genotype distribution of rs10497520 did not conform to the Hardy–Weinberg
expectations (p = 0.03), which may distort the results. Secondly, the sample size of the whole group in
the present study is sufficient to yield 80% power; nevertheless, the sample size limits the subgroup
analyses. Therefore, these results should be replicated using subgroups with larger sample sizes.

As our results showed that the SNPs rs10497510-T (TTN) and rs2242442-A (TBX3) were associated
with a protective effect, we evaluated their combined effect and constructed a genetic score based on
the protective allele count. A dose-response association was observed for familial BC (Table 4). Several
studies have demonstrated that TTN is highly mutated in several cancers, including BC, where the
average mutation rate is 15.78% [32,33]. TBX3 is a transcription factor frequently overexpressed in
various types of human cancers, especially breast cancer [21]. There is no information in the literature
regarding the interaction between the two genes. Nevertheless, it is possible that the SNP rs10497520-T
increases chromosome compaction and rs2242442-A produces down-expression of specific genes;
therefore, both SNPs could increase the protective effect. In order to assess whether there is an
interaction between TBX3 and TTN proteins that could explain a synergistic protective effect, we used
STRING software v11.0 (https://string-db.org/) to analyze the protein-protein interaction between
TTN-TBX3. We found that TTN related indirectly to TBX3 through NKX2-5, which is an homeobox
gene (Figure 1). Further studies are necessary to evaluate the functional impact of rs10497520-T (TTN)
and rs2242442-G (TBX3) in the BC tumorigenesis.

https://string-db.org/
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Finally, it is important to note that the literature on the SNPs rs10497520:C>T (TTN), rs2242442:G>A
(TBX3), rs11168827:G>A (KMT2D), and rs702688:A>G and rs702689:G>A (MAP3K1) is sparse; for the
majority of these SNPs, the only study to date has been the Göhler et al. [20] report, making our data the
first available for a Latin American population. Our results in Chilean population differ markedly from
those obtained in the Swedish study, possibly due to the ethnic composition of the Chilean population.
The contemporary Chilean population was produced by an admixture of Amerindian peoples with
sixteenth- and seventeenth-century Spanish settlers. Later (nineteenth-century) immigration from
Germany, Italy, Croatia, and Middle Eastern nations had a negligible effect on the ethnic makeup
of the country (representing less than 4% of the national population), and any impact was largely
circumscribed to the localities where the immigrants were concentrated [34]. The relationships
among ethnicity, Amerindian admixture, genetic markers, and socioeconomic strata in Chile are well
documented [35,36]. Given that the Chilean population is ~52% Caucasian and ~44% Native American,
studies in other populations are needed to explore the general applicability of these findings [37].

4. Materials and Methods

4.1. Families

We selected 489 BC patients from 489 BRCA1/2-negative Chilean families at high risk for BC from
records provided by the Servicio de Salud del Área Metropolitana de Santiago, Corporación Nacional
del Cáncer (CONAC) and other private healthcare centers in Santiago (Metropolitan Region). Index
cases were screened for BRCA1 and BRCA2 mutations as previously described [38], and the index case
with the highest likelihood of carrying a deleterious mutation was used to develop the pedigree for
each family. All families were negative for Li-Fraumeni, ataxia-telangiectasia, Cowden disease, and
other syndromes associated with BC.

All study families were of exclusively Chilean ancestry for at least the past 3 generations according
to self-report and in-depth interviews with several family members from different generations. The
family history for the sample relevant to the inclusion criteria is shown in Table 5. Notably, 18%
(88/489) had cases of bilateral BC; 58% (284/489) had cases of both BC and ovarian cancer (OC); and
1.1% (5/489) had BC cases in males. Among the cases, mean age at diagnosis was 42.1 years, and 75.2%
were diagnosed before 50 years of age.
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Table 5. Inclusion criteria for the families included in this study.

Inclusion Criteria Families n (%)

Three or more family members with breast and/or ovarian cancer 145 (29.7%)
Two family members with breast and/or ovarian cancer 166 (33.9%)

Single affected individual with breast cancer, onset ≤35 years of age 91 (18.6%)
Single affected individual with breast cancer, onset 36–50 years of age 87 (17.8%)

TOTAL 489 (100%)

The study was approved by the Institutional Review Board of the University of Chile School of
Medicine (Project Code 1150117.1 March 2015). Informed consent was obtained from all participants.

4.2. Control Population

The control group of healthy Chilean individuals (n = 1078) was selected from CONAC files.
Controls were not related to the study families and had no personal or significant family history
of cancer according to an interview carried out by a geneticist in our research group. Over 90% of
controls lived in Santiago. Anonymous DNA samples were obtained from the controls. All participants
provided informed consent, and samples were obtained in compliance with applicable ethical and
legal norms. The control sample was matched to the cases for age and socioeconomic strata.

4.3. Mutation Analysis

Genomic DNA was extracted from the peripheral blood lymphocytes of 1078 controls and 489 cases
from the high-risk families. The sampling procedure was performed as described by Chomczynski
and Sacchi [39].

The SNPs rs10497520 (C>T), rs2242442 (G>A), rs11168827 (G>A), rs702688 (A>G) and rs702689
(G>A) were genotyped using commercially-available TaqMan Genotyping Assays (Thermo Fisher
Scientific, Applied Biosystems, Waltham, MA, USA) (assay ID C__1958912_10, C__16174320_10,
C__2023793_20, C__8961459_10 and C__8961434_10 respectively). The reaction was carried out in a
10 µL final volume containing 5 ng of genomic DNA, 1X TaqMan Genotyping Master Mix, and 20X
TaqMan SNP Genotyping Assay. Polymerase chain reaction (PCR) was performed in a StepOnePlus
Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). The thermal cycles were as follows:
10 min at 95 ◦C then 40 cycles at 92 ◦C for 15 s and 60 ◦C for 1 min. Each genotyping run contained
control DNA confirmed by sequencing. The alleles were assigned using StepOne software, v2.2
(Applied Biosystems). As a quality control, we repeated the genotyping on ~10% of the samples, and all
genotype scoring was performed and checked separately by two reviewers blind to case-control status.

4.4. Statistical Analysis

The control data was assessed for Hardy-Weinberg equilibrium using a goodness-of-fit chi-square
test (HW Chisq function, “Hardy Weinberg” package v1.4.1). Fisher’s exact test was used to test the
association between genotypes/alleles and case/control status. Odds ratios (OR) with 95% confidence
intervals (CI) were calculated to estimate the strength of the associations (odds ratios and Fisher’s
exact test functions were performed using GraphPad Prism software v6.0 for Windows 10, Graphpad
Software, La Jolla, CA, USA, www.graphpad.com). The cutoff for significance was a two-tailed p-value
≤ 0.05. The Cochran-Armitage trend test was performed to test the additive genetic effect model
(CATT function in ‘Rassoc’ package v1.03 for R, Foundation for Statistical Computing, Vienna, Austria,
https://www.r-project.org/). A chi-square test for trend was performed to test for additive effects of
the SNPs (‘p-trend’ was determined in the Stata/MP v13.0 for Windows 10, Unix-StataCorp, College
Station, TX, USA; ‘p-trend’ package).

www.graphpad.com
https://www.r-project.org/
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5. Conclusions

Our study suggests that germline variants in driver genes TTN (rs10497520), TBX3 (rs2242442)
and KMT2D (rs11168827) can influence BC risk in BRCA1/2-negative Chilean families. Moreover,
the presence of rs10497520 and rs2242442 could increase the protector effect of BC risk in Chilean
population. To our knowledge, this is the first association study between germline variants in driver
genes and BC risk in a South American population; therefore, studies in other populations are needed
in order to understand how germline variants in driver genes can impact BC risk. On the other hand,
functional studies are needed to determine the biological impact of this variants.
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