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Abstract: The purine nucleotides ATP and GTP are essential precursors to DNA and RNA synthesis
and fundamental for energy metabolism. Although de novo purine nucleotide biosynthesis is
increased in highly proliferating cells, such as malignant tumors, it is not clear if this is merely
a secondary manifestation of increased cell proliferation. Suggestive of a direct causative effect
includes evidence that, in some cancer types, the rate-limiting enzyme in de novo GTP biosynthesis,
inosine monophosphate dehydrogenase (IMPDH), is upregulated and that the IMPDH inhibitor,
mycophenolic acid (MPA), possesses anti-tumor activity. However, historically, enthusiasm for
employing IMPDH inhibitors in cancer treatment has been mitigated by their adverse effects at high
treatment doses and variable response. Recent advances in our understanding of the mechanistic
role of IMPDH in tumorigenesis and cancer progression, as well as the development of IMPDH
inhibitors with selective actions on GTP synthesis, have prompted a reappraisal of targeting this
enzyme for anti-cancer treatment. In this review, we summarize the history of IMPDH inhibitors, the
development of new inhibitors as anti-cancer drugs, and future directions and strategies to overcome
existing challenges.
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1. Introduction

Purine nucleotides (e.g., ATP and GTP) are involved in many cellular functions including serving
as building blocks for DNA and RNA, sources of energy, enzyme cofactors in metabolic pathways, and
components of signal transduction. More specifically, GTP is a purine nucleoside triphosphate used as a
source of energy for protein synthesis and a signaling molecule that regulates various cellular processes.
Cellular GTP concentrations are markedly elevated in many types of cancers [1,2]. Until recently, the
upregulation of the GTP pool size in cancers was thought likely to be an epiphenomenon. However,
recently, we have shown that this is a primary result of elevated GTP synthesis via upregulation
of the rate-limiting enzyme of the de novo GTP nucleotide synthesis pathway, known as inosine
monophosphate dehydrogenase (IMPDH) [2]. Moreover, this increased synthesis directly increases
cellular anabolism and induces malignant transformation of tumors.

The human genome encodes two IMPDH isoenzymes, IMPDH1 on chromosome 7 and IMPDH2
on chromosome 3. Unlike IMPDH1, studies suggest that IMPDH2 expression is elevated in neoplastic
cells [3–5]. We and others recently reported the importance of the GTP de novo pathway in
glioblastoma [2], brain tumor initiating cells [6], mTORC1-activated tumors [7], and a subset of
small cell lung cancers [8]. These findings suggest de novo guanine nucleotide biosynthesis through
IMPDH may be a promising therapeutic target for some cancers. Mycophenolic acid (MPA), the first
IMPDH inhibitor discovered more than 100 years ago, has shown anti-tumor activity in various cancer
cell lines and mouse models [9–11]. However, despite these long-known anti-tumor actions, no IMPDH
inhibitor has been clinically approved as an anti-cancer drug in large part due to side effects at high
treatment dose and variable responses. In this paper, we will review the history of IMPDH inhibitors,
the reasons for the limited progress in establishing an effective antitumor derivative, and the prospects
for successful development of new inhibitors.

2. Historical Review of IMPDH Inhibitors: The Discovery of Mycophenolic Acid

The history of the first IMPDH inhibitor, mycophenolic acid (MPA), dates back more than
100 years ago with its purification of penicillium fungal species culture in 1893 by the Italian scientist,
Dr. Bartolomio Gosio (Figure 1). He was searching for the etiology of pellagra in populations in which
corn is a primary dietary staple. In that era, before the discovery that pellagra was caused by the lack
of niacin (vitamin B3), pellagra was speculated to be secondary to toxin-producing bacteria or fungus
in spoiled corn [12]. Although Dr. Gosio did not elucidate the cause of pellagra, he identified a fungal
metabolite that inhibited the growth of Bacillus anthracis [13].
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In 1913, two American Department of Agriculture chemical biologists, Drs. Alsberg and Black,
reassessed this metabolite [14] during a pellagra epidemic in the US. Since they detected the presence of
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the active metabolite in spoiled corn, which rendered acidic properties by fungal infections, they chose
to name the compound mycophenolic acid denoting an acidic phenol from a fungus (prefix “myco-“
means fungus) observing, at the time, the close similarity to the compound purified by Dr. Gosio
20 years earlier. In 1928, Dr. Alexander Fleming noticed the antibacterial effects of contaminating mold
in petri dish cultures of Staphylococcus, but actual purification and use of penicillin as an antibiotic was
not achieved until 1939. While penicillin is traditionally considered to be the first true antibiotic, in
reality, MPA, purified in 1893 by Dr. Gosio, could be considered to be the first antibiotic. However, MPA
was abandoned as a feasible antibiotic, partly due to its gastrointestinal toxicity at effective doses [15].

3. MPA Inhibits IMPDH Activity and Possesses an Immunosuppressive Effect

In 1955, IMPDH was first described in the investigation of purine biosynthesis as a NAD+ requiring
dehydrogenase necessary to convert inosine monophosphate (IMP) to xanthosine monophosphate
(XMP) in rabbit bone marrow extracts [16,17] and pigeon liver extracts [18]. IMPDH is the rate-limiting
step in de novo biosynthesis of guanine nucleotides (Figure 2). The fundamental observation that MPA
inhibits IMPDH was first reported in the UK in 1968 in a patent application (application no. 26562/68),
but the complete specification was reported in 1969 [19,20].
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Figure 2. MPA: Mechanism of Action. IMPDH catalyzes the rate-limiting, NAD-dependent
oxidation of inosine monophosphate (IMP) to xanthosine 5′-monophosphate (XMP), which is an
intermediate metabolite in the production of guanosine-triphosphate (GTP). MPA is a potent, selective,
reversible, and noncompetitive inhibitor of IMPDH. Abbreviations: SAMP: succinyl-AMP, and PRPP:
phosphoribosyl pyrophosphate.

In the 1970s, at the Medical Research Council’s Clinical Research Center in London, the South
African geneticist, Dr. Anthony Allisson, was investigating biochemical causes of immune deficiency
disorders in children. He discovered that the defect of adenosine deaminase (ADA) in the patient
was accompanied by decreased guanine nucleotides [21]. Coincidently, in 1969, a Japanese group
primarily investigating the antibiotic effects of MPA [22] reported immunosuppressant properties of
MPA. Dr. Allison predicted that depleting pools of GTP would have immunosuppressive effects on
lymphocytes and set out to improve the oral bioavailability of MPA. This led to the development of a
pro-drug amino ester derivative of MPA, mycophenolate mofetil (MMF), which was activated after
de-esterification by the liver [23] (Figure 3). After it underwent large successful clinical trials, MMF was
approved by the U.S. Food and Drug Administration (FDA) in 1995 as an immunosuppressant drug
for use in solid organ transplantation and was marketed under the brand CellCept (Roche). In 2004,
an enteric-coated formulation of mycophenolic acid (mycophenolate sodium) was also approved as an
immunosuppressant in organ transplant and marketed as Myfortic (Novartis). Table 1 summarizes
labeled (FDA approved) and off-label indications of MMF.
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acyl glucuronide (M2), and acyl-glucoside (M3), a CYP450 oxidation product.

Table 1. Labeled and off-labeled indications of MMF.

Indication Studies

Labeled (FDA Approved) Indications Studies that led to FDA approvals

Renal transplant Sollinger 1995 [24], Grinyo 1995 [25], Keown 1996 [26]
Liver transplant Eckhoff 1998 [27], Wiesner 2005 [28], Nashan 2009 [29]

Cardiac transplant Eisen 2005 [30], Kobashigawa 2006 [31], Kaczarek 2013 [32],
Andreassen 2014 [33]

Off-Label Use Studies supporting off-label use

Lung transplant Treede 2001 [34], Zuckermann 2003 [35], Speich 2010 [36]
Pancreatic transplant Ricart 2012 [37], Descourouez 2018 [38]

Refractory acute graft-versus-host disease Alousi 2009 [39]
Refractory chronic graft-versus-host disease Wolff 2010 [40]

Prevention of graft-versus-host disease Sabry 2009 [41]
Aplastic anemia Scheinberg 2006 [42]

Autoimmune hepatitis, first line Zachou 2016 [43]
Refractory autoimmune hepatitis Manns 2010 [44]

Lupus nephritis Contreras 2004 [45], Ong 2005 [46], Dooley 2011 [47],
Hahn 2012 [48]

Myasthenia gravis Meriggiolo 2003 [49], Sanders 2016 [50], Sieb 2014 [51]
Psoriasis Menter 2009 [52]

Systemic sclerosis Gerbino 2008 [53], Derk 2009 [54], Le 2011 [55], Mendoza
2012 [56], Tashkin 2016 [57], Herrick 2017 [58]

4. Current Use of IMPDH Inhibitors and Their Application in Cancer Therapy

The development of IMPDH inhibitors as anti-cancer drugs can be divided into three eras. The first
era was highlighted by the appreciation in the 1960s and 1970s of the anti-tumor activity of MPA,
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and these effects were discovered in the context of burgeoning interest in GTP metabolism in many
overlapping fields. Notably, MPA was shown to have antiviral [59], antifungal [60], antibacterial [60],
antitumor [9,59], anti-psoriasis [61], and immunosuppressant properties [22]. Specifically, with respect
to cancer, MPA was shown to have anti-tumor effects in cell lines obtained from different malignancies
and murine models (see Section 4.1). Based on these early preclinical studies, a second era (1980s–2000s)
expanded the focus to a variety of potential clinical applications. MMF and competitive inhibitors such
as tiazofurin and small molecule non-competitive inhibitors like VX-944 were developed. However,
phase II cancer trials showed limited clinical efficacy. The third and current era (2015–present) was
propelled by advances in molecular analyses (e.g., CRISPR/Cas9-based gene manipulation, mass
spectrometry-based metabolome), which lead to a renewed interest in the anti-cancer potential of
IMPDH inhibitors.

4.1. Evidence of the Antitumor Activity of IMPDH Inhibitors

The anti-tumor activity of MPA (Figure 4A) has been known since the late 1960s [59,62–64].
MPA was shown to suppress cell proliferation of leukemia, lymphoma, pancreatic cancer, non-small
cell lung adenocarcinoma, and colon cancer cell lines [11]. MPA also induced differentiation or
apoptosis of several cancer cell lines including breast [65], prostate [66], melanoma [67], leukemia [68],
and neuroblastoma [69]. In 2004, based on the apoptotic properties of MMF (Figure 4B) noted by
Dr. Takebe et al. [70], a phase I clinical trial was conducted using MMF in relapsed/refractory multiple
myeloma [71]. Doses ranged from 1–5 g/day and were well tolerated even at the maximum dose
of 5 g/day. There was also a significant correlation with the decrease of GTP levels in peripheral
blood-derived mononuclear cells to levels of MPA measured in some patients who were deemed
responders (partial response and stable disease). However, the other patients showed marginal changes
in GTP levels. This suggested the potential for monitoring MMF activity in clinical use, but it remains
unclear why peripheral blood GTP was only decreased in a subset of patients.
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In 2013, MPA activity in pancreatic ductal carcinoma (PDA) and its anti-angiogenic effects
was tested using six patient-derived xenograft mouse models (PDX), followed by a pilot proof of
concept study performed in resectable pancreatic cancer patients [72]. In the PDX study, one of the
patient-derived PDA tumors showed a significant response to MMF treatment, with the tumor size
decreasing to less than half (46%) compared to the vehicle control. Another PDA tumor showed
a partial response, decreasing size to 75%, compared to the control. Interestingly, there are two
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PDA tumors that showed progression with MMF treatment (121% and 148% increase in tumor size).
Since these MMF-treated PDA tumors decreased vascular endothelial growth factor (VEGF) synthesis
and secretion, the results suggested that there is likely a genetic factor(s) or cellular context that renders
the PDA tumor susceptible to MMF. In the clinical trial, 12 patients received MMF (6 with 1 g/day
and 6 with 2 g/day) for 5–15 days before surgery, compared to 6 non-treated patients. However, no
significant anti-angiogenic effect was observed in MMF-treated patients, in contrast to the result of the
PDX mouse study. Based on the limited growth inhibition activity in mice and the marginal responses
in patients, further clinical development of MMF in PDA was not recommended following the study.

It is conceivable that the marginal in vivo anti-pancreatic cancer effect of MMF could be due to
desmoplasia and stromal components outnumbering pancreatic tumor cells, which is a proposed cause
of drug resistance in pancreatic cancer [73]. In addition, whether MPA accessed the PDA tumors in
mice and human patients, and what drug concentration was achieved within the tumor, are unclear.
Regardless, these studies can serve as benchmarks for future pharmacodynamic studies using MMF in
human patients.

4.2. Long-Term Treatment Effect of MPA/MMF in Tissue-Transplanted Patients

Post-transplant malignancy is a well-recognized complication of transplantation with a three-fold
to four-fold increase in the incidence of cancer in transplant patients compared to age-matched
controls in the general population [74,75]. This is in part a consequence of chronic immunosuppression
increasing the risk for viral infection and expansion, including oncogenic viruses (e.g., Epstein-Barr virus
(EBV), Hepatitis B virus (HBV)). Nonmelanoma skin cancers and post-transplant lymphoproliferative
disorders (PTLD) lymphoma are the most common malignancies observed in these patients [76].
Multiple studies have shown decreased incidence of PTLD, other malignancies, and risk of death when
using MMF as a part of immunosuppression [77–80]. This could be explained by one or more of a
variety of documented MPA actions including: blocking expansion of EBV infected B lymphocytes,
anti-viral effects on HIV and Hepatitis, potentiation of other anti-viral agents [81], and its reported
anti-tumor properties. If future research clarifies the benefit and the mechanism of suppression using
MMF, this may substantially improve personalized post-transplant treatment.

4.3. Metabolism of MPA and Improved Routes of Delivery

The major drawback of MPA as an anticancer agent is its dose-limiting GI toxicity. Most of the GI
side effects are thought to be secondary to enterocytes toxicity [82]. MPA is extensively glucuronidated
at the phenol group, which generates an inactive glucuronide that is quickly cleared by the kidney
(Figure 3). Thus, the effective serum MPA concentration declines quickly in-vivo, which hampers the
development of MPA-based anti-tumor therapies. However, substitutions of the phenolic hydroxyl and
all other chemical modifications of MPA to avoid glucuronidation drastically reduce activity against
IMPDH [83]. In recent years, a series of mycophenolic adenine nucleotides were developed and are
known as “MAD” compounds (mycophenolic adenine dinucleotide analogue) [84–86]. While these
analogues were not as potent as MPA, they were resistant to glucuronidation, which suggests that they
might become lead compounds for further modification in the future.

To surmount MPA’s drawbacks as an anti-tumor drug, we have employed nano-technology to
generate a biodegradable, MPA-integrated nanofiber [87]. The first generation MPA-fiber released and
sustained an MPA concentration of about 10 µM in cell culture media [87] and suppressed growth of
both the human glioblastoma cell line U87MG and patient-derived glioblastoma neuro-spheres [87].
A guanosine supplement reversed the inhibition, which suggests a specific effect of MPA on GTP.
These results suggest that local MPA delivery, an approach that obviates gastrointestinal toxicity,
increases the MPA stability and maintains local high concentrations of MPA, which may be an effective
strategy for glioblastoma, an aggressive malignancy that recurs in nearly all patients and comes with
a mortality of greater than 90% at five years [88]. Since the recurrent tumors predominantly appear
adjacent (~2 cm) to the original lesion [89–91], continuous delivery of MPA to the region of resection
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has high potential to suppress glioblastoma recurrence. More research is needed to develop MPA
delivery as well as other MPA analogues with improved potency, selectivity, and toxicity profiles with
the retention of the inhibitory potential against IMPDH.

5. Other IMPDH Inhibitors

In addition to MPA, a different series of structurally distinct IMPDH inhibitors has been evaluated
as potential anti-cancer drugs. Hematological malignancies, such as leukemia and multiple myeloma,
are typically targeted for two primary reasons. First, IMPDH activity is 15–42-fold higher in leukemia
cells compared to normal leukocytes [92] and IMPDH inhibition leads to depletion of guanine
nucleotides and reduction of cell proliferation, selectively, in leukemia cells compared to bone marrow
leukocytes [93,94]. Second, unlike solid tumors, it is easy to determine the extent of IMPDH inhibition
in hematological malignancies by monitoring the reduction of GTP levels in blood and bone marrow
specimens. A measured GTP level within the tumor serves as a biomarker and has assisted in accurate
dose titration in clinical trials, as detailed below.

5.1. Tiazofurin Trials for Hematological Malignancy and Solid Tumors

Tiazofurin, a C-nucleoside (2-beta-D-ribofuranosylthiazole-4-carboxamide), was the first
anti-tumor agent in the class of new IMPDH inhibitors. It was first synthesized in 1977 [95] as
part of research efforts at ICN Pharmaceuticals, Inc. to develop new antiviral agents [96]. Tiazofurin
(Figure 4C) is structurally related to the antiviral agent, ribavirin (Figure 4D). While tiazofurin exhibited
weak antiviral activity, it was found to be effective against cancer cells [96]. This prompted further
development of tiazofurin as an antineoplastic agent, and it was introduced in clinical trials in 1983
under the sponsorship of the National Cancer Institute (NCI) [97].

Tiazofurin is a prodrug and thus requires metabolic conversion intracellularly to its active
metabolite thiazole-4-carboxamide adenine dinucleotide (TAD) in two sequential steps, as shown in
Figure 5. TAD is an analogue of nicotinamide adenine dinucleotide (NAD) where nicotinamide is
replaced by thiazole-4-carboxamide (Figure 6). TAD mimics NAD and interacts with the NAD cofactor
binding domain of IMPDH 1 and 2 by acting as a non-competitive inhibitor [98–101]. Given that
TAD is very similar to NAD (Figure 6), it is highly likely that the other NAD-dependent enzymes are
affected by TAD. TAD is metabolically unstable and is degraded by nicotinamide mononucleotide
adenylyltransferase (NMNATase), a phosphodiesterase. Resistance to tiazofurin is primarily associated
with a decrease in NMNAT activity [92,101–103].
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In vitro activity of tiazofurin was observed against many human cancer cell lines, including
leukemia, colon, lung, ovarian, renal, breast, and melanoma [104–109]. Tiazofurin induced
differentiation of the human promyelocytic leukemia cell line HL60 [110] and the erythroleukemia
cell line K-562 [111]. In vivo cytotoxicity of tiazofurin was observed against several murine tumors,
including Lewis lung carcinoma, hepatoma 3924A, and P388 and L1210 murine leukemias [112–114].
Tiazofurin was most efficacious against hematological malignancies. There was selective accumulation
of TAD in leukemia cells compared to normal leukocytes [115,116]. Based on these findings, a phase
I/II trial of tiazofurin in myeloid malignancies was conducted in 1987 that showed encouraging results
especially in chronic myeloid leukemia in blast crisis (CML-BC) (Table 2). The overall response rate of
48% was very promising since the best reported objective response rate (ORR) in other Phase I and II
trials between 1974 to 1982 ranged from 5.8% to 44% [117]. Despite significant toxicity, a subsequent
successful phase II tiazofurin trial led in 2000 to orphan drug designation by the FDA for treatment
of CML-BC.

Table 2. Summary of clinical trials of Tiazofurin for hematological malignancy.

Phase Study Population Dose Clinical Response References

I/II Relapsed/refractory
AML, CML-BC,

and MDS.
n = 27

Biochemically directed
protocol.

Starting dose 2200 mg/m2

daily, dose escalated based on
IMPDH and GTP levels in the

leukemic cells

Complete response (CR)
20%

Objective response rate
(ORR) 48%

[117–119]

II CML-BC
n = 6

Started at 2200 mg/m2 daily
for 10 days and escalated

based on hematological and
biochemical response.

Objective response rate
(ORR) 100% but no

complete response (CR)

[120]

One of the major limitations of therapy observed in these trials was the short duration of response
and toxicity. There was rapid normalization of the white blood cell count and disappearance of
blasts from the circulation within days of starting treatment. However, increased GTP levels were
observed within a week of discontinuation of therapy, which lead to clinical relapse within three to
four weeks [119]. Reinstitution of therapy initially led to a clinical response, but patients became
refractory after a few cycles [103]. The second major limitation was the substantial toxicity profile of
tiazofurin. This was anticipated to some extent because the close resemblance of tiazofurin to NAD
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would predict multiple targets besides IMPDH. Severe and life-threatening complications, including
neurotoxicity, pleuropericarditis, and infections were observed in patients treated for longer than
15 days and with underlying comorbidities [117]. These were minimized by restricting the treatment
duration, by administering the drug via one-hour daily infusions and promptly and effectively treating
side effects [119–121]. After tiazofurin was granted orphan drug designation for treatment of CML-BC,
a Phase III trial was planned. However, the development of imatinib and its FDA approval in 2001
revolutionized the treatment of Chronic Myelogenous Leukemia (CML) [122], and further development
of tiazofurin for CML was halted.

Several phase I and phase II clinical trials of tiazofurin in advanced solid malignancies were
conducted from 1983 to 1993 and are summarized in Table 3. Overall, despite promising results in vitro,
tiazofurin showed minimal activity in solid tumors along with severe and unpredictable toxicities.

Table 3. Summary of clinical trials of Tiazofurin for solid malignancy.

Phase Study
Population

Dose Clinical Response References

I Advanced solid
malignancies

Maximum tolerated
dose varied between

studies

Response reported with only one trial
Maroun et al. reported 12 of

25 patients had stable disease,
including one patient with anaplastic
astrocytoma who was in remission for

50 months.

[123–128]

II Glioma 1100 to 1375 mg/m2

IV daily for five days
Five of 16 patients had stable disease

for a median of 75 days, but no
responses seen.

[129–132]

5.2. VX-944/AVN-944 and VX-497, Direct IMPDH Inhibitors

The development of tiazofurin as an anti-leukemia drug expanded the areas of clinical application
of IMPDH inhibitors. Vertex Pharmaceuticals, Inc. developed a novel series of human IMPDH
inhibitors that were structurally distinct from mycophenolic acid and nucleoside analogues [133].
Merimepodib (VX-497) (Figure 7L) was the lead compound developed in this series, and displayed
immunosuppressive, anti-tumor, and anti-viral activity. As an immunosuppressive agent, it
inhibited antibody production in vivo, as demonstrated by the murine plaque formation assay [134].
It had anti-proliferative activity against keratinocytes suggesting a possible role in the treatment of
psoriasis [134]. VX-497 had broad spectrum anti-viral activity and was 10-100 times more potent than
ribavirin against Hepatitis B, human cytomegalovirus, respiratory syncytial virus, and herpes simples
virus [135]. More recently, VX-497 was found to be active against several globally emerging viruses
like Zika virus and Ebola virus [136] reaching to Phase II trials for Hepatitis C and psoriasis [137], and
displaying anti-tumor activity in vitro (Table 4).

Table 4. Summary of VX-497 as an anti-viral reagent.

IMPDH Inhibitor Mechanism of Action Study Results

VX-497 (Merimepodib)
(S)-N-3-[3-(3-methoxy-
4-oxazol-5-yl-phenyl)-ureido]-
benzyl-carbamic acid
tetrahydrofuran-3-yl-ester
(Figure 7L)

VX-497 is a non-nucleoside, orally
bioavailable, selective, reversible,
uncompetitive inhibitor of
IMPDH, which was developed by
Vertex Pharmaceuticals [134].

Clinical studies
VX-497 was efficacious as monotherapy
for Hepatitis C in combination with
interferon-alpha in treatment naïve
patients [138]. However, phase II trials in
patients with genotype 1 chronic hepatitis
C, who were non responders to standard
treatment, showed mixed results.
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A related compound, VX-944, was found to have broad anti-cancer properties in vitro and was
investigated further [139] (Figure 4E). VX-944 is an orally bioavailable, small-molecule, non-competitive
inhibitor of both human IMPDH1 and IMPDH2 [140]. VX-944 was developed using a structure-based
drug design program and displayed a novel mode of interaction with IMPDH. Unlike tiazofurin,
VX-944 does not require intracellular activation, which circumvents one of the mechanisms of resistance
to tiazofurin. Since it is not a nucleoside/nucleotide analogue, VX-944 does not incorporate into the
DNA/RNA and was predicted to work synergistically with other agents [141]. Preclinical studies
showed that VX-944 was 3 to 40 times more potent than MPA in acute myeloid leukemia (AML) cell
lines and was active against both FLT3 mutated and unmutated cells [139]. The efficacy of VX-944 was
confirmed in a mouse model using a murine Ba/F3 pro-B cell line transformed with an oncogenic FLT3
mutant [142]. The mice treated with VX-944 had significantly longer median survival time compared
to those treated with standard therapy. VX-944 suppressed proliferation of multiple myeloma cell lines,
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including drug-resistant cells [140], and several human cancer cell lines including colon, breast, lung,
pancreatic, melanoma, and prostate [142].

Vertex entered into a licensing agreement with Avalon Pharmaceuticals in February 2005 for
the development and commercialization of VX-944 in oncology as AVN-944 [143]. A phase I dose
escalation study conducted in 2002 with 25 healthy male volunteers showed that AVN-944 was well
tolerated [141]. In December 2005, a Phase I trial of AVN-944 in patients with advanced hematological
malignancies commenced (ClinicalTrials.gov Identifier: NCT00273936). AVN-944 was well tolerated
with no serious adverse events attributable to the drug. Additionally, 12 of 24 patients had a stable
disease for 2 to 10 months [144]. Depletion of GTP pools, inhibition of IMPDH activity, and changes
in gene expression were studied as biomarkers and demonstrated good correlation with a clinical
response. Though more rigorous research is needed especially for the gene expression, these could be
used to identify patients for Phase II trials. A phase II trial of AVN-944 in combination with gemcitabine,
which is a current standard in pancreatic cancer treatment, commenced in June 2007 (ClinicalTrials.gov
Identifier: NCT00493441), but the study was terminated in 2009 without reporting any results. Avalon
pharmaceuticals was acquired by Clinical Data Inc. in 2009, which was acquired by Forest Labs in
2011. Since then, further clinical studies using AVN-944 have not been reported. The reason for the
suspension is currently unclear.

5.3. FF-10501

Fujifilm pharmaceuticals developed FF-10501 as part of its effort to develop new drugs for cancer
treatment. FF-10501 is a purine-analogue antagonist and one of the most recently studied IMPDH
inhibitors for the treatment of cancer (Figure 4F). It is an orally bioavailable, competitive, second
generation inhibitor based on the previously studied SM-108 [145]. SM-108 was synthesized through
chemical modification of the nucleoside mizoribine [146] and was found to be effective against several
hematological malignancies in Phase I and II clinical trials conducted in Japan in the late 1980s [147–150].
FF-10501 is converted to its active form, FF-10501 ribosylmonophosphate (FF-10501RMP), intracellularly
by using adenine phosphoribosyl transferase [151]. It reduces cell proliferation in a dose-dependent
manner by inhibiting the production of guanine nucleotides (Figure 8). The efficacy of FF-10501 is
dependent on the pathways that convert it to the active form as well as the salvage pathway to generate
guanine nucleotides [145].
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Figure 8. Activation of FF-10501. FF-10501 is metabolized intracellularly to its active form, FF-10501
ribosylmonophosphate (RMP), which inhibits IMPDH.

Pre-clinical studies showed the anti-leukemic effect of FF-10501 in multiple AML cell
lines—MOLM13, SKM1, HL-60, U937, HEL, and OCI-AML3, including those that are resistant
to hypomethylating agents [145,151]. The safety and efficacy of FF-10501 were tested in a phase I
clinical trial, which is summarized in Table 5 [152,153]. A phase 2 study of FF-10501 in combination
with azacitidine in patients with Myelodysplastic Syndrome (MDS) was initiated but has now been
withdrawn without any enrollment [154]. Further studies to define the metabolic pathways that
regulate sensitivity to FF-10501 and effective drug combinations may help increase enrollment for
clinical trials.
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Table 5. Summary of a clinical trial of FF-10501.

Phase Study Population Dose Clinical
Response Toxicity References

I
Relapsed/refractory
AML and MDS
n = 37

Escalating doses from
50–500 mg/m2.
Recommended phase II
dose 400 mg/m2 for
21 days every 28-day cycle.

Response
observed in 4 of
37 patients

Well tolerated,
frequently
Grade 1–2

[152,153]

Several new IMPDH inhibitors have been evaluated as anti-cancer drugs in pre-clinical studies.
Many novel IMPDH inhibitors have been developed as antivirals and immunosuppressants. These are
summarized in Tables 6 and 7.

Table 6. Summary of preclinical studies of other IMPDH inhibitors as antitumor agents.

IMPDH Inhibitor Mechanism of Action Study Results

Reversible nucleoside inhibitors

Benzamide riboside (BR)
3-(1-Deoxyribofuranosyl)
benzamide
(Figure 7A)

Benzamide riboside (BR) was first
synthesized in 1992 [155]. Similar
to tiazofurin, BR, is converted to
its active metabolite, BAD
(benzamide adenine dinucleotide)
intracellularly via NMNAT. BAD
is proposed as a dual inhibitor of
IMPDH and NAD kinase. IMPDH
inhibition leads to depletion of
guanine nucleotides and halts
DNA/RNA synthesis [156,157].
NAD kinase inhibition leads to
decreased levels of NADPH. Low
NADP+ and NADPH levels lead
to instability and lower levels of
dihydrofolate reductase [158].

BR was more cytotoxic than tiazofurin in a broad
panel of human cancer cell lines, including leukemia,
lung, colon, CNS, melanoma, ovarian, and renal cell
carcinoma [104,159,160]. CNS cell lines showed
selective sensitivity to BR. BR was 3-10 times more
cytotoxic than tiazofurin against leukemia [104].
In vivo, BR prolonged survival of a mouse model
with murine leukemia L1210 [161] but caused
significant skeletal muscle toxicity [162]. BR induced
apoptosis in the VX2 model of liver cancer in rabbits
via hepatic artery infusion [163]. Mouse model of
LX-1 human small cell lung carcinoma was relatively
refractory to treatment with BR in vivo and the high
doses required for anti-tumor effect lead to significant
morbidity and mortality [162]. The clinical
application of BR was limited by its toxicity profile.

Mizoribine (MZR)
(INN, trade name Bredinin)
5-hydroxy-1-β-D-
ribofuranosyl-1H-
imidazole-4-carboxamide
(Figure 7B)

An imidazole nucleoside isolated
from Eupenicillium brefeldianum,
mizoribine (MZR) is metabolized
to MZR-5’-monophosphate
(MZRP) by adenosine kinase.
MZRP, the active metabolite,
inhibits IMPDH and guanosine
monophosphate synthetase, which
are sequential enzymes in the de
novo pathway. Therefore, MZR
completely inhibits the synthesis
of guanine nucleotides [164–166].
MZR selectively inhibits
lymphocyte proliferation, thereby
inhibiting both humoral and
cellular immunity [167,168].

MZR was originally isolated as an antibiotic with
activity against Candida albicans [167] but was
subsequently found to have potent
immunosuppressive activity [169].
Preclinical
Early pre-clinical studies reported that MZR was not
active against mice inoculated with Ehrlich and P388
tumor cells and had a minimal life prolonging effect
on mice inoculated with L1210 leukemia cells [167].
However, more recently, MZR was found to produce
a marked anti-leukemic response and increased
survival in mice inoculated with resistant acute
lymphoblastic leukemia with NT5C2+/R367Q
mutation [170]. The expression status of adenosine
kinase dramatically affects the efficacy of MZR [157].
Further preclinical studies are needed to better define
the role of MZR in leukemia.
Clinical
MZR is currently used as an immunosuppressive
drug. It has a favorable adverse effect profile and is
usually used in combination with other drugs. It has
been approved in Japan to prevent rejection after
renal transplantation (1984), lupus nephritis (1990),
rheumatoid arthritis (1992), and nephritic syndrome
(1995) [171]. The use of MZR is being investigated in
other nephropathies [172], pemphigus vulgaris [173],
and polymyalgia rheumatica [174].
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Table 6. Cont.

IMPDH Inhibitor Mechanism of Action Study Results

Ribavirin
1-β-D-ribofuranosyl-
1,2,4-triazole-3-carboxamide
(Figure 4D)

Ribavirin is a guanosine analogue
that is phosphorylated
intracellularly to
ribavirin-5-monophosphate,
which inhibits IMPDH [175].
Ribavirin has broad spectrum
antiviral activity [176]. It exerts
antitumor activity through
inhibition of IMPDH, eukaryotic
translation initiation factor 4E
(eIF4E), and histone
methyltransferase, Enhancer of
Zeste Homolog 2
(EZH2) [177,178].

Pre-clinical studies have shown that ribavirin
inhibits the proliferation of several tumor types
including malignant glioma [177], acute myeloid
leukemia [179], acute lymphoblastic leukemia [180],
esophageal [181], colon, cervical [182], breast [183],
and prostate cancer [184].
Clinical studies
Phase I/II trials are underway for assessing the use of
ribavirin in various cancers including head and neck
cancer, mantle cell, and follicular
lymphoma [185–187]. Ribavirin has been approved
by the FDA as an inhaled agent for respiratory
syncytial virus [188] and in combination with
interferon-alpha for the treatment of chronic
hepatitis C [189].

EICAR
5-ethynyl-1- β
-D-ribofuranosylimidazole-
4-carboxamide
(Figure 7C)

Imidazole derivative of ribavirin,
EICAR is metabolized
intracellularly via adenosine
kinase to EICAR
5’-monophosphate, which inhibits
IMPDH [190].

EICAR had broad antiviral activity, which was 10-100
fold greater than ribavirin [191]. It was cytotoxic to
several human cancer cell lines in vitro and murine
leukemia L1210 and P388 in vivo [192].

Selenazofurin
2- β -D-ribofuranosylselenazole-
4-carboxamide
(Figure 7D)

Selenium analogue of tiazofurin,
selenazofurin is converted to its
active metabolite,
selenazole-4-carboxamide adenine
dinucleotide (SAD) intracellularly,
via NMNAT. SAD is a NAD
analogue and inhibits
IMPDH [193,194].

As an antitumor agent, selenazofurin was found to
be 5–10 fold more potent compared to tiazofurin in
several in vitro studies [194]. It had broad antiviral
activity [195] and was synergistic in combination
with ribavirin [196].

Thiophenfurin
5-β-D-ribofuranosylthiophene-
3-carboxamide
(Figure 7E)

Thiophene analogue of tiazofurin,
it is converted intracellularly to
thiophene-3-carboxamide adenine
dinucleotide (TFAD), a NAD
analogue, which inhibits
IMPDH [197].

In vitro studies showed that thiophenfurine was
cytotoxic toward several cancer cell lines, including
human promyelocytic leukemia HL-60, human colon
adenocarcinoma LoVo, and B16 melanoma at similar
concentrations as tiazofurin [197].

Flavonoids

Myricetin
3,5,7-trihydroxy-2-
(3,4,5-trihydroxyphenyl)-
4-chromenone
(Figure 7F)

Myricetin is a dietary flavonoid
found in berries and vegetables. It
causes cell cycle arrest and
apoptosis through various
mechanisms, including inhibition
of tumorigenic kinases [198],
which increases mitochondrial
apoptotic pathways, reactive
oxygen species, and IMPDH
inhibition [199].

Myricetin has extensive biological activity, including
anti-viral, anti-inflammatory, and anti-cancer [200].
In vitro studies have shown that myricetin has
anti-leukemia effect on K562 cell lines through
IMPDH inhibition [199]. It is cytotoxic to several
other human cancer cell lines like colon [201],
ovarian [202], prostate [203], breast [204], and
thyroid [205] cancer cell lines by targeting
various pathways.

Diterpene ester

Gnidilatimonoein (Gn)
(Figure 7G)

Diterpene ester isolated from the
leaves of Daphne mucronata, Gn
exerts anti-neoplastic activity
through inhibition of
IMPDH [206].

In vitro studies have shown that Gn has
antiproliferative activity against several human
cancer cell lines and induced differentiation in the
HL-60 human leukemia cell line [207].
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Table 7. Summary of IMPDH inhibitors as immunosuppressants.

IMPDH Inhibitor Mechanism of Action Study Results

Mizoribine See Table 5.

VX-148
1-cyanobutan-2-yl
N-[(1S)-1-[3-[(4-cyano-
3-methoxyphenyl) carbamoyl
amino] phenyl] ethyl] carbamate
(Figure 7H)

VX-148 noncompetitively inhibits
IMPDH by binding to the NAD
cofactor binding site. It is an orally
bioavailable small molecule that
was developed by structural
modification of VX-497 by Vertex
Pharmaceuticals [208].

VX-148 was found to have in vivo and
in vitro immunosuppressive activity similar
to MPA but with less cytotoxicity [208].
Vertex Pharmaceuticals selected it as its lead
drug development candidate for autoimmune
diseases [134].
VX-148 has been evaluated in a Phase II trial
in moderate to severe psoriasis in 2004. It was
well tolerated. The most frequent adverse
events were diarrhea and itching. It showed a
statistically significant clinical activity with a
response rate of 18% compared to
a placebo [209,210].

BMS-566419
N-(1-(6-(4-Ethyl-1-piperazinyl)-
3-pyridinyl)-1-methylethyl)-
2-fluoro-9,10-dihydro-9-oxo-
3-acridinecarboxamide
(Figure 7I)

Acridone based derivative of
VX-497, BMS-566419 is an orally
bioavailable IMPDH inhibitor
developed in 2007 [211].

In vitro studies demonstrated the
anti-proliferative activity of BMS-566419 on
immune cells. Preclinical studies showed that
it was efficacious in the murine model of
rheumatoid arthritis and prevented cardiac
allograft rejection with less GI toxicity
compared to MMF [211,212].

BMS-337197
N-[2-[2-(3-methoxy-4-oxazol-
5-yl-anilino) oxazol-5-yl]
phenyl]-N-methyl-
2-morpholino-acetamide
(Figure 7J)

2-aminooxazole derivative of
VX-497, BMS-337197 is an orally
bioavailable, uncompetitive
inhibitor of IMPDH [213].

Preclinical studies showed that BMS-337197
had potent immunosuppressive activity. It
inhibited antibody production in mice and
was efficacious as an anti-arthritis drug in a
murine model of rheumatoid arthritis [214].

AS2643361
N-((4-fluorophenyl)
(1-methyl-1H-imidazol-2-yl)
methyl)-
2-methyl-3-(1,2,4-thiadiazol-5-yl)-
1H-indole-6-carboxamide
(Figure 7K)

An indole derivative of MMF
developed from the Astellas
compound library, AS2643361 is
an orally bioavailable IMPDH
inhibitor [215]. In vitro, it has
similar inhibitory activity as
mycophenolate to inhibit IMPDH.

AS2643361 had lower serum protein binding
activity. In vivo, it showed higher potency
and less toxicity than MMF as an
immunosuppressant. It prevented cardiac
allograft rejection in a murine model [215].

5.4. Future Directions for IMPDH Inhibitors as Anti-Tumor Drugs

Despite numerous efforts, many of which are summarized in this review, there remain no
IMPDH inhibitors FDA approved for cancer treatment. The primary impediments continue to be (1)
adverse effects upon high dose treatment, (2) highly variable responses, and (3) limited efficacy in
cancers, such as pancreatic, in which IMPDH is not elevated. Overcoming these persistent challenges
requires a greater fundamental understanding of the molecular features and roles of IMPDH enzymes.
With this knowledge, inhibitors could be designed to preferentially target the tumor over normal cells.
The remainder of this review summarizes recent efforts to understand the basic biology of IMPDH
enzymes and GTP and how this might lead to advances in IMPDH inhibitor treatments.

6. Regulation of IMPDH by GTP

IMPDH1 and IMPDH2 share more than 80% identity at the amino acid level and are primarily
found as a tetramer in vitro [216]. Both are comprised of two domains: the (α/β)8 barrel (also known as
a TIM barrel) core containing the active site, and the disordered 120-residue subdomain, which consists
of two cystathionine-β-synthase (CBS) domains (Figure 9A) [217,218]. The CBS domain is a ~60 amino
acid domain discovered in 1997 by Dr. Alex Bateman and is found in a variety of proteins, including
IMPDH, cystathionine-β-synthase, chloride channels, and AMP-activated protein kinase (AMPK) [219].
CBS domains are typically found as tandem repeats (also known as a Bateman domain) that can adopt
a globular protein structure via intramolecular folding [219,220]. The function of the CBS domain is
diverse and can range from a binding site for allosteric regulation to regulatory protein binding to
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multimerization [221,222]. The CBS domains of IMPDH, however, have little known function. Deletion
of the subdomain has no effect on enzymatic activity in vitro [223]. Despite this, the CBS domains of
both IMPDH1 and IMPDH2 are suspected to be involved in regulating enzymatic activity.Cancers 2019, 11, x FOR PEER REVIEW 16 of 30 
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Figure 9. Schematics of IMPDH structures. (A) Schematic representation of the human IMPDH2
protein (upper) and monomer of human IMPDH2 structure (lower) (PDB ID: 6i0m). IMPDH structure
is shown in cartoons while α-helixes are shown in a coiled model. The CBS domain is colored orange,
and the MPDH catalytic domain is shown in light purple. (B) Structural changes of the CBS domain
upon ATP (Cyan) and GDP (Red) binding in monomeric IMPDH from Ashbya gossypii. Superposed ATP
binding (PDB ID: 5mcp) and GDP binding (PDB ID: 4z87) by using Cα overlap and 243 aa was aligned.
A-helixes were shown in a cylindrical model. The CBS domain rotated toward an IMPDH catalytic
domain (light blue) significantly when GTP binds to the CBS domain, compared with ATP binding.
(C,D) Different octameric forms between ATP binding (C) and GTP binding (D). Two monomers
of octameric IMPDH (Gray) are colored orange (CBS domain) and light purple (catalytic domain).
The approximate longitudinal dimensions of the octamers are indicated on their side. Comparing to
ATP binding (C), the interaction changes between CBS domains upon GTP binding made the octameric
structure of human IMPDH2 (D, PDB ID: 6i0o) more compact. Since no ATP-bound structure of
human IMPDH has been determined, IMPDH from Ashbya gossypii (PDB ID: 5MCP) is used as the ATP
binding model.

Supporting evidence of this concept was reported by Dr. Buey et al. with the discovery of
GTP-binding sites within the CBS domains of fungal IMPDH, which lead to octamerization of the
enzyme and subsequent inhibition of activity [224]. The inhibitory effect of GTP was also observed
in human IMPDH1 and IMPDH2 [224]. This data suggests a form of negative feedback involving
IMPDH, where the end-product GTP inhibits the biosynthesis of GTP through inhibition of IMPDH.
In a subsequent series of studies, Dr. Buey’s group further revealed that the CBS domain of IMPDH
can bind to three GTP/GDP molecules, including two that bind to a similar pocket to ATP. However,
the third GDP molecule binds to the loop between the second CBS domain and the catalytic domain.
GDP binding at this site causes rotation in the CBS domain and structural rearrangement of the catalytic



Cancers 2019, 11, 1346 16 of 30

domain (Figure 9B). This structural change significantly affects the enzyme conformation, which forms
an inhibited conformation, as compared to the ATP-induced active form [225]. Thus, interaction with
GTP/GDP decreases the flexibility of the CBS domain, and the activity of IMPDH is suppressed by
forming a compact structure (Figure 9C,D).

7. Dynamic Feature of IMPDH—Macrostructural Formation

Interestingly, IMPDH is one of several metabolic enzymes that organize into large filaments [226–231].
Multiple groups, including ours, have found the localization of IMPDH1 and IMPDH2 are influenced
by intracellular GTP concentration, which forms self-assembled, macroscale assemblies, called Ring and
Rod (RR) structures or Cytoophidia (Figure 10) [232–235]. In most cell types under steady state growing
conditions, IMPDH isozymes localize primarily to the cytoplasm. However, under purine-depleted
conditions, primarily when GTP biosynthesis is inhibited, IMPDH organizes into these RR structures
most prominently found in the cytoplasm [233,234,236,237]. The RR structure does not colocalize with
any organelles and does not associate with actin or tubulin [232,234].Cancers 2019, 11, x FOR PEER REVIEW 17 of 30 
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and induced RR structure formation in U87MG cells, which was rescued by 2 hours pre-treatment with
100 µM guanosine that increased cellular GTP (data not shown).

The effect of the RR structure formation on enzymatic activity remains controversial, with evidence
supporting both increased activity [238] and inhibition [239]. Potential IMPDH isotype-specific
differences and the possibility of mixed-isoform structures further hinder progress in this area.
One common theme for RR structure formation appears to be decreased intracellular GTP levels, with
subsequent dissociation of RR following guanosine treatment, which is a metabolite of the salvage
pathway, that restores GTP concentration to normal or supraphysiological levels [233,234,236,237,239].
According to the recent research by Dr. Fernandez-Justel et al. [239], purified human IMPDH could
assemble into RR formation without nucleotide treatment in vitro. They showed that the RR form
is catalytically active in vitro, and GTP/GDP within the CBS domains could depolymerize the RR
conformation to suppress IMPDH activity. Moreover, the RR form is more resistant to GTP inhibition
by enzyme assay analysis in vitro [240].

8. IMPDH Immunohistochemical Analysis May Report the Metabolic Status of Tumors

Taking these discoveries into consideration, we propose that pathological analysis of IMPDH in
tumors has a high potential to assess the GTP demand and metabolic status of tumors. We favor the
model that RR structure-positive tumors would be more sensitive to IMPDH inhibitors because of their
high demand for GTP. If this were the case, it is possible that we may increase the anti-tumor efficacy
of IMPDH inhibitors by selecting patients based on their RR structure status. Additionally, it would be
of interest to develop compounds that specifically target the RR structure formation. Alternatively, it is
possible that RR structure formation may alter drug accessibility to IMPDH or sensitivity to IMPDH
inhibitors. The physiological relevance of the RR structure remains to be tested. Additionally, several
studies have shown the generation of autoantibodies for RR structures in patient serum, particularly
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in hepatitis C patients treated with interferon α and ribavirin. Although auto-antibody formation in
human cancer patients exhibiting RR structure-positive tumors has not been studied, theoretically this
could provide a noninvasive predictor of a patient’s response to IMPDH inhibitors.

9. Potential Biomarker for the Anti-Tumor Effect of IMPDH Inhibitors in the Target Tumor

As stressed throughout this review, the key challenge is increasing both the specificity, efficacy,
and kinds of cancer susceptible to IMPDH inhibitors without incurring unacceptable side effects. Better
pharmacodynamic markers would be helpful to this end. For instance, in most treated patients, it is
not known if effective concentrations of the IMPDH inhibitor are achieved within the tumors due to a
lack of biomarkers for IMPDH inhibition. To measure the pharmacodynamics of IMPDH inhibitor
penetrance in tumors as well as guanine nucleotides ideally requires a direct measurement. Recent
advances in mass spectrometry technology to measure metabolites may solve this challenge. A caveat
of this approach is that mass spectrometric analysis is not conventional in hospitals and would require
days or weeks to receive results. Additionally, it may require relatively large tissue samples, and
nucleotides rapidly decay during extraction.

Dr. Beverly Mitchell’s group, a leader in the IMPDH research field, has reported that inhibition of
IMPDH results in nucleolar stress responses, p53 activation, and the dichotomic change of subcellular
localization of nucleolar proteins, such as nucleolin and nucleostemin [241]. Thus, the detection
of p53 levels and its downstream targets, such as monitoring p21CIP1/WAF1, as well as subcellular
localization of nucleostemin and nucleolin could be an indirect means to assess the efficacy of IMPDH
inhibitors in the target tumors. Furthermore, our recent study showed that treatment with IMPDH
inhibitor, MPA, led to significant nucleolar stress responses, p53 activation, and decreased nucleolar
size in GBM, but not in primary cells [2]. Moreover, we demonstrated that IMPDH2 upregulation is
required to increase GTP concentration that can serve as a reservoir of “feeder” GTP to sustain the
needs of high activity of RNA Pol I and III for rRNA and tRNA synthesis, respectively [2]. To assess
the effect of IMPDH inhibition, one would need simple conventional methods, such as Q-PCR or
immunohistochemical staining of tumor samples, to indirectly determine IMPDH inhibitor penetrance
into the tumor. With further verification, these biomarkers could be critical, powerful tools for future
clinical trials, and also be useful in preclinical settings during the development and testing of novel
IMPDH inhibitors in tumor mouse models.

10. Conclusions

Recent advances in our basic understanding of the role of IMPDH in normal physiology and
cancer justify a reappraisal of the potential efficacy of IMPDH inhibitors. Future studies could focus on
developing modified IMPDH inhibitors with more diverse structures and different binding modes
of enzyme inhibition to hopefully provide additional guidance for clinical trial design that would,
ultimately, result in the use of IMPDH inhibitors for the treatment of cancer. The development of
biomarkers should significantly and critically improve tumor selectivity and predict patient response
to IMPDH inhibitors. In addition, with the recent advent of checkpoint inhibitors that rely upon the
patient’s immune system to attack and destroy the tumor [242], the possibility of combining these
approaches with IMPDH inhibitors that could ameliorate adverse-effects of the checkpoint inhibitor
as well as modulating the tumor immune microenvironment are important areas to explore. Future
research clarifying these points may revolutionize the use of IMPDH inhibitor as a highly potent
anti-tumor drug as has been suggested since the 1960s.
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