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Abstract: Liquid biopsy (LB) is a non-invasive approach representing a promising tool for new
precision medicine strategies for cancer treatment. However, a comprehensive analysis of its reliability
for pancreatic cancer (PC) is lacking. To this aim, we performed the first meta-analysis on this topic.
We calculated the pooled sensitivity, specificity, positive (LR+) and negative (LR−) likelihood ratio,
and diagnostic odds ratio (DOR). A summary receiver operating characteristic curve (SROC) and area
under curve (AUC) were used to evaluate the overall accuracy. We finally assessed the concordance
rate of all mutations detected by multi-genes panels. Fourteen eligible studies involving 369 patients
were included. The overall pooled sensitivity and specificity were 0.70 and 0.86, respectively. The LR+

was 3.85, the LR- was 0.34 and DOR was 15.84. The SROC curve with an AUC of 0.88 indicated
a relatively high accuracy of LB for molecular characterization of PC. The concordance rate of
all mutations detected by multi-genes panels was 31.9%. LB can serve as surrogate for tissue in
the molecular profiling of PC, because of its relatively high sensitivity, specificity and accuracy.
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It represents a unique opportunity to be further explored towards its introduction in clinical practice
and for developing new precision medicine approaches against PC.

Keywords: liquid biopsy; cfDNA; pancreatic cancer; precision medicine; circulating tumor cells (CTC)

1. Introduction

Pancreatic cancer is a lethal malignancy with an increasing incidence, and it is projected to become
the second most common cause of cancer-related death in the world at the end of the next decade [1–3].
The most common type of pancreatic cancer is represented by ductal adenocarcinoma (PDAC), which is
responsible for more than 95% of deaths from pancreatic cancer [3,4].

At the time of diagnosis, the vast majority of patients with PDAC present with locally advanced or
metastatic disease and are thus not amenable to surgical resection with a curative purpose [3]. For such
patients, the priority is to receive an undebatable diagnosis of cancer including useful information
for addressing all potential therapeutic approaches. However, obtaining tissue for the diagnosis in
this setting may be difficult and requires invasive procedures. The gold standard is (endoscopic-)
ultrasound guided fine-needle aspiration (US-FNA), which provides a limited number of cells for
cytological analysis, not always allowing complete molecular profiling [5,6]. Moreover, the abundance
of tumor stroma in PDAC impairs the negative predictive value of US-FNA because of sampling error,
sometimes requiring a repeat of the procedure with further risks for PDAC patients [6,7].

For all these reasons, there is an urgent need for new techniques or biomarkers to aid in diagnosis,
staging and clinical-therapeutic decisions, overcoming contraindications associated with invasive
procedures. To date, the unique widely available blood-based test for patients with PDAC is the
determination of the carbohydrate antigen 19-9 (CA19-9); however, because of its limited specificity,
it is used only as generic support for diagnosis and for surveillance of recurrence [8].

Notably, recent studies have explored the possibilities of obtaining from the blood useful
information for cancer treatment analyzing circulating tumor cells (CTCs), circulating-free DNA
(cfDNA) or RNA, exosomes and secretomes, all parameters that are comprised under the general
definition of liquid biopsy (LB) [9–11]. This kind of non-invasive approach represents a promising tool
for new precision medicine strategies, since LB may be used also for molecular profiling [12–15].

Although some studies have explored and highlighted the usefulness of LB for genetic analysis of
patients with PDAC [16–20], a comprehensive analysis of its reliability for this tumor type is lacking.
With this first systematic review and meta-analysis on this topic, we aimed to highlight the reliability
of LB in assessing the molecular profile of PDAC in comparison with the mutational analysis on tissue
specimen. In addition, a specific focus on KRAS mutational status is provided, as this gene is the most
frequently mutated driver gene in PDAC.

2. Results

2.1. Search Results and Descriptive Findings

Among 387 potential eligible studies, 60 full text articles were retrieved. Of them, 14 studies were
eligible for this meta-analysis (Figure S1, Table 1) [21–34].
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Table 1. Summarizing table of the most relevant features of the studies included in this meta-analysis.

First Author
of the Study,
Year [21–34]

N. of
Patients Stage Type of Tissue

Specimen

Molecular Test for
Tissue Specimen

and Genes

Time Point of Tissue
and Liquid Biopsy

Test and Genes

Type of Liquid
Biopsy

Molecular Test for
Liquid Biopsy TP FP TN FN

Ako, 2017 [21] 40 I–II: 60%,
III–IV: 40%

16 SR and 24
EUS-FNA PCR, KRAS The same time Plasma and serum,

cfDNA
Droplet PCR,

KRAS 19 0 3 18

Bernard, 2019a

[22] 34 I–II: 68%,
III–IV: 32%

22 SR and 12
EUS-FNA PCR, KRAS The same time Blood for cfDNA Droplet digital

PCR, KRAS 20 1 11 2

Brychta, 2016
[23] 50 I–II: 82%,

III–IV: 18% SR Chip-based digital
PCR, KRAS The same time Plasma (cfDNA) Chip-based digital

PCR, KRAS 13 0 14 23

Earl, 2015 [24] 12 NA SR PCR, KRAS The same time Plasma (cfDNA) Droplet digital
PCR, KRAS 3 3 2 4

Kinugasa, 2015
[25] 75 I–II: 3%,

III–IV: 97% EUS-FNA PCR, KRAS The same time Serum (cfDNA) Droplet digital
PCR, KRAS 43 4 15 13

Kulemann,
2016 [26] 11 I–II: 91%,

III–IV: 9% NS PCR, KRAS Retrospective Blood with isolation
and analysis of CTCs PCR, KRAS 5 0 0 6

Marchese, 2006
[27] 30 I–II: 83%,

III–IV: 17% 25 SR, 5 EUS-FNA rflp-PCR KRAS The same time Serum (cfDNA) rflp-PCR KRAS 0 0 9 21

Park, 2018a

[28] 17 I–II: 18%,
III–IV: 82% EUS-FNA PCR, KRAS The same time Plasma (cfDNA) PCR, KRAS 10 0 4 3

Pishvaian,
2017a,* [29] 16 I–II: 0%,

III–IV: 100%

EUS-FNA of
pancreas or
metastasis

321 genes panel NGS During treatment cfDNA 68 genes panel
NGS 6 1 0 9

Sefrioui, 2017
[30] 27 NS EUS-FNA/biopsy/SR Digital PCR, KRAS The same time Plasma (cfDNA) Digital PCR, KRAS 14 3 5 5

Shibata, 1998
[31] 3 I–II: 66.6%,

III–IV: 33.3% NS nPCR, KRAS The same time Peripheral blood
(CTCs separation) nPCR, KRAS 3 0 0 0

Vietsch, 2018a,*
[32] 5 I–II: 100%,

III–IV: 0% SR 56 genes panel NGS LB before surgery cfDNA 56 genes panel
NGS 0 0 0 5

Wu, 2014 [33] 36 NS NS COLD-PCR, KRAS The same time Plasma (cfDNA) COLD-PCR, KRAS 26 0 10 0

Zill, 2015 [34] 13 NS EUS-FNA NGS The same time Plasma (cfDNA) 54 genes panel
NGS 12 0 0 1

Total 369 I–II: 57%,
III–IV: 43%

11 studies: same time,
3 studies: other times

12 studies: cfDNA
from blood, 2 studies:

CTCs separation
174 12 73 110

Abbreviation: TP: true positive, FP: false positive, TN: true negative, FN: false negative; SR: surgical resected specimen; EUS-FNA: endoscopic ultrasound-guided fine-needle
aspiration; cfDNA: circulating-free DNA; CTCs: circulating tumor cells; NS: not specified; rflp-PCR: restriction fragment length polymorphism-polymerase chain reaction; NGS: targeted
next-generation sequencing for specific pancreatic cancer genes; nPCR: nested PCR; LB: liquid biopsy; COLD-PCR: co-amplification-at-lower-denaturation-temperature polymerase chain
reaction; Note: Bernard, 2019a refers to the analysis of exoDNA in liquid biopsy; Park, 2018a refers to the analysis using PCR; Pishvaian, 2017a refers to a cohort of patients in which cfDNA
has been analyzed; Vietsch, 2018a refers to patients whose liquid biopsy has been analyzed before surgical resection of pancreatic tumor; * in these studies, the rate of concordance of
mutations between tumor tissue and liquid biopsy has been shown taking into account the four most important genes in pancreatic cancer (KRAS, TP53, SMAD4, and CDKN2A).
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As reported in Table 1, the 14 studies eligible included 369 participants with pancreatic cancer,
with a higher prevalence of stage I–II (57%) [21–34]. Eleven studies made the LB assessment at the
same time as the tissue sample [21–25,27,28,30,31,33,34], and the remaining three at different time
points [26,29,32]. The choice of tissue type for mutational analysis has been clearly specified in 11 studies:
four studies used PDAC tissue from US-FNA [25,28,29,34], three from surgical resection [23,24,32]
and four used PDAC tissue from US-FNA in case of metastatic or locally advanced PDAC and
surgical resected tissue in case of early stage-PDAC [21,22,27,30]. The choice of the material as LB
was represented in the vast majority of studies (12/14, 86%) by circulating-free DNA (cfDNA) from
blood [21–25,27–30,32–34], whereas only two studies explored the use of circulating tumor cells (CTCs)
for the same aim [26,31]. Eleven studies used polymerase chain reaction (PCR)-based techniques for the
mutational analysis of KRAS status [21–28,30,31,33], whereas three studies performed next-generation
sequencing (NGS) for a wider molecular analysis [29,32,34]. Overall, we identified 174 TP, 12 FP, 73
TN, 110 FN.

2.2. Quality of the Studies Included

As shown in Table S1, the risk of bias in the studies included is low, having only two studies
reporting possible high risk of bias for flow and timing. However, it is unlikely that this affects our
results since our stringent criteria for the selection of the studies ensure the high quality of the studies
and of the specific procedures that have been performed.

2.3. Diagnostic Accuracy of the Liquid Biopsy

As reported in Figures 1A and 2A, the overall pooled sensitivity and specificity were 0.70 (95% CI,
0.63–0.76) and 0.86 (95% CI, 0.77–0.93) respectively. It has to be clear that these summarizing values are
referring to sensitivity and specificity with respect to concordance between LB and tissue molecular
analyses and not with respect to cancer diagnosis more generally.
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LR−: negative likelihood ratio. 

Figure 1. This figure represents the core of this meta-analysis, in which we tested the reliability of liquid
biopsy to serve as surrogate for tissue for molecular profiling of pancreatic cancer. The upper panel is a
schematic representation of the differences between the materials used for liquid biopsy (above all from
the blood, on the left) and for tissue specimen analysis (surgical resections or cytology, on the right).
The section indicated with letter A shows the overall summary of diagnostic accuracy parameters for
liquid biopsy compared to tissue specimen with this meta-analysis, whereas the section with letter
B shows the same parameters, but obtained analyzing data regarding KRAS only. Abbreviations:
CI: confidence interval; DOR: diagnostic odds ratio; LR+: positive likelihood ratio, LR−: negative
likelihood ratio.
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the stage of the pancreatic cancer (I–II vs. III–IV) did not explain any of these high I-squares (beta = 

Figure 2. (A) shows the sensitivity and specificity meta-analysis plot for the appropriateness of
liquid biopsy compared to tissue specimen, whereas (B) shows the same plot, but obtained analyzing
data regarding KRAS mutational status only. (C) is a Venn diagram showing, for studies based on
next-generation sequencing, the concordance rate of all mutations detected by the analysis on tissue
specimens and by the analysis on liquid biopsy. The area on the left (green area) indicates mutations
detected only in tissue samples, the area on the right (red area) indicates mutations detected only
in liquid biopsy, whereas the middle area indicates mutations detected in both tissue samples and
liquid biopsy.

Our results showed that LR+ was 3.85 (95% CI, 1.87–7.90), LR- was 0.34 (95% CI, 0.19–0.62) and
DOR was 15.84 (95% CI, 4.98–50.38) (Figure 1A). Between-study heterogeneity was significant in the
sensitivity, specificity, and the DOR (I-square estimated to respectively 84.2%, 54.6%, and 50.3%),
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but the stage of the pancreatic cancer (I–II vs. III–IV) did not explain any of these high I-squares
(beta = 0.28, p = 0.28 for sensitivity; beta = 0.89, p = 0.45 for specificity; beta = 0.51, p = 0.28 for DOR).
Similar results were evident for the type of molecular analysis of both tissue samples and LB (divided
in PCR and NGS) (beta = −4.24, p = 0.17 for sensitivity; beta = 2.81, p = 0.32 for specificity; beta = −3–24,
p = 0.68 for DOR). We did not find any evidence of threshold effect (Spearman correlation coefficient:
0.157; p = 0.756). Figure 3 shows the corresponding SROC curve with AUC of 0.880 indicating that LB
is capable of identifying the mutations present in pancreatic cancer with a relatively high accuracy.
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Figure 3. Summary Receiver Operating Curve (SROC) of the appropriateness liquid biopsy, taking tissue
specimen as the outcome. In this figure, the blue lines represent the AUC (central line) with its 95% CI
(external lines) calculated with a meta-analytic approach, while red dots represent the sensitivity and
specificity data for each study.

Figures 1B and 2B show the same analyses, taking KRAS mutation as the outcome. As summarized
in Table S2, the TP were 169, the FP 11, TN 78 and the FN 111. The overall pooled sensitivity and
specificity were 0.65 (95% CI, 0.59–0.71) and 0.91 (95% CI, 0.83–0.96) respectively. Our results showed
that LR+ was 3.93 (95% CI, 2.33–6.62), LR- was 0.39 (95% CI, 0.25–0.62) and DOR was 16.41 (95% CI,
7.04–38.29) (Figure 1B). We observed a significant heterogeneity for sensitivity (I-square = 87.0%),
but not for specificity and the DOR (I-square = 46.0% and 0%, respectively). Again, the stage of the
cancer did not explain the heterogeneity found (beta = 0.89, p = 0.26), as well as the type of molecular
analysis (PCR vs. NGS, beta = −2.82, p = 0.46). We did not find any evidence of threshold effect
(Spearman correlation coefficient: 0.148; p = 0.622). Figure 4 shows the SROC curve of KRAS only,
with AUC of 0.882 indicating a relatively high accuracy also for LB investigating KRAS only.
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Figure 4. Summary Receiver Operating Curve (SROC) of the appropriateness liquid biopsy, taking KRAS
mutational status as the outcome. In this figure, the blue lines represent the AUC (central line) with its
95% CI (external lines) calculated with a meta-analytic approach, while red dots represent the sensitivity
and specificity data for each study.

For NGS studies, the concordance rate of all mutations detected by multi-genes panels analyzing
tissue specimens vs. LB was 31.9%, while 38.2% of mutations were detected on tissue specimens only
and 29.9% on LB only (Figure 2C).

3. Discussion

In the present meta-analysis, 14 different studies containing a total of 369 patients, with matched
molecular analysis of PDAC tissue specimens and LB, were analyzed. The overall pooled sensitivity and
specificity of LB compared to the mutational analysis on tumor tissue were 0.70 (95% CI, 0.63–0.76) and
0.86 (95% CI, 0.77–0.93), respectively. Considering those studies that analyzed KRAS mutations only,
the sensitivity was slightly lower (0.65; 95% CI, 0.59–0.71), but the specificity was higher (0.91; 95% CI,
0.83–0.96). Notably, the SROC curves indicate that, compared to tissue specimens, LB demonstrated a
high accuracy in determining the mutational asset of PDAC (AUC of 0.880 for all studies and of 0.882
for those regarding KRAS only).

A recent study indicated that a large body of literature has been produced in recent years related to
LB in cancer, but less than 1% regarded PDAC [35]. Despite this restricted number of studies on PDAC
compared to other cancer types (e.g., lung and breast cancers), LB represents also for this cancer a very
promising tool in the era of precision medicine. The values obtained by the quantitative synthesis of
this meta-analysis, indeed, does indicate a potential role of LB in the management of PDAC patients.

The major advantage of LB is that it does not require an invasive procedure, highlighting its
very promising role firstly in the management of old and/or low-performance status patients [33].
Indeed, with a reliable radiological background, the detection of a multigene PDAC-specific molecular
profiling could support the diagnosis of pancreatic cancer without the need of further and hazardous
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analyses. Notably, in case of the use of multigene panels for molecular analysis, LB could highlight
with a reasonable certainty the presence of druggable mutations, with potential important implications
for targeted therapies. Thus, also based on this meta-analysis, LB should be encouraged in all cases
presenting significant contraindications to invasive or mini-invasive procedures.

Notably, higher concentrations of cfDNA and/or higher numbers of CTCs have been demonstrated
in case of late-stage diseases, particularly in case of metastatic or locally-advanced PDAC [20,36–42].
Although in our meta-analysis a sub-stratification by stage was not possible due to statistical reasons
(i.e., the rate of false positive in early stages was zero for all the studies included), the use of LB
in late-stage PDAC should guarantee higher sensitivity and specificity compared to those obtained
in a localized disease. This advantage may also be translated into the use of LB for the follow-up
of metastatic patients during therapy, which is another potentially useful application of LB for the
management of PDAC patients [12,22,32,43].

Another potential advantage of LB may be represented by the possibility of overcoming the
issue linked to tumor heterogeneity, potentially showing mutations not present in a restricted area of
tumor tissue. Although some studies have shown that driver gene mutations in PDAC are usually
maintained during clonal evolution [44,45], this aspect may be even more evident for metastatic PDAC,
in which a biopsy of the primary tumor or of the metastatic tissue cannot always represent such a
complex molecular landscape [46–48]. In our meta-analysis, four studies presented data derived from
NGS [28,29,32,34]. About one third of all mutations were detected simultaneously by sequencing on
tissue specimens and LB, but 38.2% and 29.9% of all mutations were detected respectively on tissue
specimens and on LB only. These significant differences could be partly explained by intra-tumor
heterogeneity and by clonal evolution of cancer cells, which are well-recognized important biological
issues influencing tumor representativeness by tissue specimens. Notably, Vietsch and colleagues
demonstrated that cancer heterogeneity within each patient was much more evident in the mutational
landscape of cfDNA than in tumor tissue DNA [32]. In their paper, indeed, they demonstrated that the
majority (78%) of mutations in the cfDNA were not detected in the primary tumor tissue; this finding
demonstrated that a tissue section of a given tumor could fail to represent the molecular makeup of
the entire cancer. About the differences in mutation detection using PDAC tissue vs. LB, the lack
of standardized and well-established procedures for the molecular analysis of LB could also have
partly affected the reliability of the molecular profiling. This point has been further complicated by
recent evidence that has described the detection of hotspot PDAC mutations in patients without cancer,
an issue that is still under investigation [25].

Regarding the slightly higher specificity, we have found for KRAS compared with all genes, it is
important to acknowledge that the KRAS mutation is not highly specific for PDAC, even if matched
with histology [49]. Indeed, it can occur frequently in precursor lesions as well as in cancers of
other organs, such as colorectal and lung malignancies [50–52]. In this regard, it is important to
stretch that the specificity regarding KRAS that has emerged in the current meta-analysis reflects the
correlation existing between the primary tumor tissue and the LB, and not the overall specificity of
KRAS mutational status for PDAC diagnosis.

Despite of these important limitations, LB may become a fundamental tool in the routine
clinical management of PDAC patients because of its several advantages, also highlighted by the
results of this meta-analysis. However, many aspects can be better addressed in the future to
improve LB sensitivity, specificity, and accuracy, allowing it to be introduced as a new and decisive
tool for the development of precision medicine in the clinical care of PDAC patients [53]. As the
American Society of Clinical Oncology and the College of American Pathologists have highlighted
in a recommendation paper, indeed, further studies with standardized technologies are needed to
introduce LB in clinical practice [54]. Of note, the introduction of the analysis with LB of epigenetic
markers [55,56], of exosome-derived DNA [22,36], and of gene expression profiling/circulating
proteins [35,57,58] may represent important steps in improving this kind of non-invasive approach for
the molecular characterization of PDAC. Particularly, about epigenetic alterations, DNA methylation
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may represent a very promising horizon in this changing scenario. Recent studies had indeed shown
that DNA methylation signatures were highly consistent between cfDNA and the genomic DNA
from its tissue origins also in cancer models [59,60]. Furthermore, if in terms of somatic mutations
a high inter-tumor heterogeneity may be found, in the same tumor category the epigenetic profiles
are quite similar, and can be of great help, for example, in identifying the actual tumor origin also
with LB and in metastatic settings [60]. Gai and colleagues suggested that tissue-specific methylation
biomarkers are reasonably consistent across cancer patients for plasma DNA-based cancer testing [60].
Notably, Chan and colleagues reported that, using whole genome bisulfite sequencing of plasma
cfDNA, the methylation profile could serve as a general approach for the diagnosis of multiple types of
cancers [61]. It is also of importance to report that, besides DNA methylation, recent studies have also
highlighted the promising potential of cfDNA fragmentation patterns as an emerging research direction
in cancer liquid biopsy [62]. Indeed, cfDNA molecules were not randomly fragmented, but they
showed strong size patterns that are associated with the nucleosome footprint, indicating that cfDNA
fragmentation patterns may have certain biological and/or clinical potential in liquid biopsy. However,
current knowledge on cfDNA fragmentation patterns, either from a biological basis or clinical utilities,
is considerably still preliminary and without direct implications for clinical practice [62]. Another
important aspect, which should be further elucidated and validated by future research, is the enhanced
detection of cfDNA by specific DNA fragment size analysis (90–150 base-pairs), recently uncovered
by Mouliere and colleagues [63]. Indeed, with the analysis of size-selected cfDNA, they identified
clinically actionable mutations and copy number alterations that were otherwise not detected.

The limitations of our study are the overall small sample size, but this is predominantly owing to
the recent development of the application of LB in PDAC studies, and the different molecular analysis
that we have quantitatively summarized. Finally, the heterogeneity of our outcomes can be considered
as another limitation of our study. This high heterogeneity and the differences that have emerged
in both sensitivity and specificity may derive from the varying technologies applied in the studies,
as well as in the different timings of LB analysis or also in differences of sequencing depths in NGS
studies. Although in our meta-regression analysis we did not find significant moderators to explain
this aspect, this point suggests that further studies with well-standardized techniques are needed
before the introduction of LB in routine diagnostic activity.

4. Materials and Methods

This systematic review adhered to the MOOSE guidelines [64] and PRISMA statement [65],
following a predetermined but unpublished protocol.

4.1. Inclusion and Exclusion Criteria

Studies were eligible if they met the following criteria: (1) A prospective cohort or retrospective
study design; (2) contained a clear comparison of mutational analysis using cancer tissue samples
vs. LB in patients with pancreatic cancer; (3) contained histological or cytological diagnosis of
pancreatic cancer (pancreatic ductal adenocarcinoma); and (4) were published in a peer review journal
or published abstract.

Exclusion criteria were: (1) Comparison of patients with pancreatic cancer with patients without
cancer (healthy volunteers, chronic pancreatitis); (2) no presence of invasive cancer (e.g., intraductal
papillary mucinous neoplasm, so called IPMN); (3) no data regarding molecular analysis of tissue
samples and LB in the title/abstract; (4) no data on mutational profiling; (5) diagnosis of non-epithelial
malignancies (i.e., lymphomas) or of other histology other than PDAC (e.g., acinar cell carcinoma),
and (6) case reports, in vitro or animal studies. We considered articles in any language.

4.2. Data Sources and Literature Search Strategy

Two investigators (C.L., N.V.) independently searched PubMed, SCOPUS, and Embase until
31 January 2019. The search terms used in PubMed included combinations of the following keywords:



Cancers 2019, 11, 1152 11 of 16

(“pancreatic” OR “pancreas” OR “pancrea*”) AND (“cell free DNA” OR “cfDNA” OR “circulating
DNA” OR “circulating tumor cells” OR “circulating tumour cell” OR “CTC” OR “CTCs”) AND
(“diagnosis” OR “sensitivity” OR “specificity” OR “accuracy”). A similar search was carried out
in SCOPUS and Embase. We considered the reference lists of all included articles and of previous
related reviews.

4.3. Study Selection

Following the searches as outlined above, after removal of duplicates, two independent reviewers
(C.L., N.V.) screened titles and abstracts of all potentially eligible articles. The two authors applied the
eligibility criteria, considered the full texts, and a final list of included articles was reached through
consensus with a third author (A.N.).

4.4. Data Extraction

Two authors were involved in data extraction in a standardized Microsoft Excel database.
Specifically, one author (C.L.) extracted data from the included articles and a second independent
author (N.V.) validated the data. For each article, we extracted information about authors, year of
publication, number of patients, tumor stage, type of tissue samples, type of LB, type of molecular
analysis of both tissue samples and LB (divided in PCR and NGS), number of true positive, true negative,
false positive and false negative results, using the molecular analysis on tissue samples as reference.

4.5. Outcomes

The primary outcomes were sensitivity, specificity, positive and negative likelihood ratios,
diagnostic odds ratio (DOR), and the area under the curve (AUC) of the molecular analysis with LB.
For those studies which used multigene-panels of next-generation sequencing for molecular analysis,
the concordance rate between the molecular profiles of tissue samples and LB was also reported.
A similar (secondary) analysis of concordance was also performed considering the mutational status of
the KRAS gene only.

4.6. Assessment of Study Quality

Based on the revised quality assessment of diagnosis, accuracy studies-2 (QUADAS-2) criteria,
the included articles were evaluated as at high risk (−) or low risk (+) by four key domains:
Patient selection, index test, reference standard, and flow and timing [66].

4.7. Data Synthesis and Statistical Analysis

We used RevMan Manager 5.3 and Meta-Disc software 5.1.32 to conduct this meta-analysis. All the
studies reported the data regarding true positive (TP), true negative (TN), false positive (FP) and false
negative (FN). Therefore, we were able to calculate the pooled sensitivity (TP/TP + FN), specificity
(SPE) (TN/TN + FP), negative likelihood ratio (LR−), positive likelihood ratios (LR+) and DOR with
their 95% confidence intervals. At the same time, we constructed the summary receiver operator
characteristic (SROC) curve and calculated the area under the SROC curve based on the sensitivity and
specificity of each study. In case of high heterogeneity (as indicated by an I2 > 50%), we performed
a meta-regression analysis, taking the stage of the tumor (I–II vs. III–IV) and the type of molecular
analysis of both tissue samples and LB (divided in PCR and NGs) as potential moderators.

For those studies that used multi-genes panel for DNA sequencing, we also compared the
concordance rate of mutations detected by the analysis on tissue specimens and the analysis on LB,
designed a summarizing Venn diagram.
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5. Conclusions

To conclude, although further studies are needed to improve the standardization and the
applicability of LB, we have demonstrated in this meta-analysis that this non-invasive approach can
serve as surrogate to tissue in the molecular profiling of PDAC, because of its relatively high sensitivity,
specificity, and accuracy. Thus, LB could be introduced in clinical practice and should be further
explored towards the development of new precision medicine approaches against pancreatic cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/8/1152/s1,
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