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Abstract: This study is to identify the optimum prognosis index for brain metastases by machine
learning. Seven hundred cancer patients with brain metastases were enrolled and divided into
446 training and 254 testing cohorts. Seven features and seven prediction methods were selected
to evaluate the performance of cancer prognosis for each patient. We used mutual information and
rough set with particle swarm optimization (MIRSPSO) methods to predict patient’s prognosis with
the highest accuracy at area under the curve (AUC) = 0.978 ± 0.06. The improvement by MIRSPSO in
terms of AUC was at 1.72%, 1.29%, and 1.83% higher than that of the traditional statistical method,
sequential feature selection (SFS), mutual information with particle swarm optimization(MIPSO),
and mutual information with sequential feature selection (MISFS), respectively. Furthermore, the
clinical performance of the best prognosis was superior to conventional statistic method in accuracy,
sensitivity, and specificity. In conclusion, identifying optimal machine-learning methods for the
prediction of overall survival in brain metastases is essential for clinical applications. The accuracy
rate by machine-learning is far higher than that of conventional statistic methods.
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1. Introduction

The prognosis for patients with brain metastases (BM) is known to be poor, as BM is one of the
most deadly among various types of cancers [1–4]. Ranging from early detection to intervention
therapy, many innovative management models have been formulated with the goal of lowering the
fatality rate of BM. Nevertheless, in the clinical practices, exploring the prognosis index markers of
patients is often difficult and costly. Meanwhile, the challenging task of brain metastases survivability
prediction could strongly benefit from the development of personalized and precise medicine. In this
context, artificial intelligence technology can be used to predict cancer as a means of inexpensive and
practical research methodology.

It is forecasted that big data and bioinformatic technology will stay prevalent in the coming
year [5–9]. Artificial intelligence (AI) has been used to diagnose and classify cancer for more than two
decades. In contrast, utilizing bioinformatic methods to seek the prognosis index is a relatively new
approach [10]. Prognostic indices are commonly used in the field of brain metastases radiotherapy for
guiding patient decision-making and clinical trial stratification. Cancer prognosis is lately becoming one
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of the most important research areas, having profound significance in cancer precision treatment [11–13].
With the development of artificial intelligence technology [14–16], machine learning has been applied
on prognosis of breast cancer [17], lung cancer [18], among others. But only a few studies have
investigated their relevance in BM prognosis [19]. In Hosny’s perspective opinion, they compared
artificial versus human intelligence and established a comprehensive understanding of AI, with a
general focus on applications in cancer to have an outlook of the AI method [20]. Chang et al. [21]
reported that the prognosis validate by machine learning is superior with the best accuracy (accuracy
= 93.81%; AUC = 0.90) for oral cancer prognosis. Therefore, a variety of prognostic indices have been
established to evaluate the prognosis of patients with brain metastases. Subsequently, clinicians can use
them as a guide for treatment decision making and for trial eligibility. To date, commonly used clinical
prognosis indices in BM patients included Recursive Partitioning Analysis (RPA), Graded Prognostic
Assessment (GPA), Score Index for Radiosurgery (SIR), and Basic Score for Brain Metastases (BSBM). A
previous study concluded that BSBM is the most accurate index for the prediction of patients’6- and
12-months overall survival [22]. However, there have seldom been any research study focusing on the
mining of prognosis index markers through attribute reduction and classification methods, especially
based on particle swarm optimization technology [23]. Attribute reduction is useful, as the association
between the prognosis features and primary tumor type, metastasis, and other clinical outcomes, are
proven [24–26].

In this study, an improved algorithm called MIRSPSO (mutual information and rough set of
particle swarm optimization) is proposed to select the most optimized prognostic indices from all
the prognostic indices. MIRSPSO identifies optimal machine learning methods for the most accurate
prediction of overall survival in brain metastases. Machine learning is also used to conclude that
the prognosis index and the clinical performance of the best prognosis was superior to conventional
statistic methods in terms of accuracy, sensitivity, and specificity. Overall, it shows that the use of an
AI method as a feasible and convenient application that seeks an optimized prognosis index for BM
patients in clinical use is possible.

2. Results

2.1. Clinical Characteristics and Overall Survival

The median survival time (MST) was 24 months (95% CI 6.708–9.292 months). The 1- and 2-year
survival rates were 80% and 42%, respectively. The survival results classified by prognostic indices are
shown in Figure 1. BSBM is the most accurate prognosis to predict patients’ chances of 1-and 2-year
overall survival.
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Metastases; and OS, overall survival curve for all patients.
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2.2. Qualitative Feature Analysis

The seven prominent features are abbreviated and tabulated in Table 1. We proposed a mutual
information particle swarm attribute reduction method based on sequence features to explore the
relationship between benign and malignant tumors of cancer patients and each marker. MIRSPSO
that is based on meta-heuristic mutual information is compared with the traditional statistical method
(SFS), the rough set attribute reduction method (MISFS), the attribute reduction method based on
particle swarm optimization, and the rough set attribute selection method.

Table 1. The description (letter representation, name) of cancer features in patients.

Cancer Feature Label

Age A
Karnofsky Performance Status K

Extracranial metastasis E
Primary tumor control P

Number of lesions N
Max lesion volume M
If chemical therapy C

As shown in Table 2, the seven features which are abbreviated in alphabets form different
sequences. The positions of the features in a sequence are sorted from left to right by their descending
importance. SFS ranks feature C, “If chemical therapy” as most important; feature N, “Number of
lesions” is ranked as least important, located at the end of the sequence. Similarly, MISFS ranks “Age”
as the most important feature in the top position and “Max lesion volume” is least important at the
end. However, SFS and MISFS only sort the order of the features, without filtering and removing
non-important features. As such, the presence of the unimportant features is likely to cause interference
in the induction of the classification model. Therefore, our proposed method first extracts the core
attribute(s) through the attribute reduction technique. At the same time, it weighs the dependence of
decision attributes and the mutual information between attributes. The result of filtering and sorting
are shown as PSO-SFS and MIRSPSO in Table 2. We can see that only 4 or 5 most important features
are selected into a subset as core attributes through attribute reduction. MISFS only considers the
attribute dependence, selects five features, P, E, A, C, K as core attributes, while MIRSPSO picks P, A, E,
C four features as core attributes. More core attributes are retained when compared with the attribute
reduction method used in the BSBM prognosis index. Consistently, the feature prognosis index of
primary tumor control (P), which is calculated by MIRSPSO method, matches with the previous clinical
result [22].

By considering both attribute dependence and mutual information between attributes, two
different weights could be set as two individual factors contributing to the outcomes. A comparison of
attribute reduction and sorting under different ω weights is shown in Table 3. Three attributes are
reduced for each of the 9 groups of weights, and 4 features (P, A, E, C) are selected as core attributes,
indicating that the different distribution of weights does not affect the number of attributes reduced.
Different weight distributions will affect the ranking of feature importance, but the ranking order of
the features is basically stable. For example, the weights of 0.7 and 0.3 are similar to that of 0.6 and
0.4. The difference is that E and C are out of the original order. We can see that in the leftmost (most
important) feature, the probabilities of P, A, E and C ranking that ranks first, second, third, and fourth
are88.89%, 66.67%, 55.56%, and 66.67%, respectively. This indicates that P(Primary control) has the
highest degree of dependence and mutual information among all the attributes, as shown in Figure 2.
Considering attribute dependence and mutual information together can improve the effectiveness and
stability of the reduction results. The relationship between cancer tumor features and patients are fully
explored, thus providing a more powerful guarantee for the identification and decision making of
benign or malignant cancer tumors.
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Table 2. Importance ranking of cancer features in patients by different methods.

No. Methods Cancer Features in Patients

1 SFS C A E K P M N

2 MISFS A P E K C N M

3 MIPSO P E A C K N M

4 MIRSPSO

P C A E N K M
P A C E N K M
P E C A N K M
P A E C K N M
P A E C K N M
A P C E K N M
P E A C N K M
P A E C N K M
P A E C N K M

SFS: Sequential Feature Selection; MISFS: Sequential Feature Selection with mutual information; MIPSO: mutual
information with particle swarm optimization; MIRSPSO: mutual information and rough set with particle
swarm optimization.

Table 3. Comparison of importance ranking of cancer features in patients for different weights
in MIRSPSO.

No. Cancer Features in Patients ω1 Weight (1) ω2 Weight (2)

1
P C A E N K M

0.9 0.10.9074 0.8535 0.7286 0.6303 0.4771 0.3896 0.3247

2
P A C E N K M

0.8 0.20.9278 0.8634 0.8021 0.6935 0.455 0.4011 0.3546

3
P A E C N K M

0.7 0.30.9322 0.8734 0.7559 0.6765 0.4834 0.3724 0.3618

4
P A E C K N M

0.6 0.40.8921 0.8105 0.765 0.6267 0.4933 0.4 0.3911

5
P A E C K N M

0.5 0.50.9213 0.7705 0.7068 0.703 0.4267 0.4201 0.3692

6
A P C E K N M

0.4 0.60.7183 0.6437 0.5902 0.5559 0.4757 0.43 0.3783

7
P E A C N K M

0.3 0.70.891 0.9211 0.7948 0.7774 0.4469 0.351 0.3

8
P A E C N K M

0.2 0.80.9335 0.91 0.8283 0.7632 0.4528 0.3439 0.3267

9
P A E C N K M

0.1 0.90.9546 0.8973 0.7751 0.6748 0.4486 0.3382 0.36

Primary tumor control wasmost important in patients. The levels of significance for each feature
are visualized in the form of a heat map in Figure 3. The abscissa is the seven features obtained,
and the ordinate is the different experimental methods. For the ordinate, 1–3 are SFS, MISFS, and
MIPSO, respectively, and 4–12 are the importance distribution obtained by the MIRSPSO method
under different weights. A and P are mostly close to yellow, K, N, and M are mostly close to green, and
E and C are mostly close to the color between yellow and green. The distribution of importance of
each feature can be clearly seen by referring to the color bar of significance on the right.
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2.3. Feature Selection and Prognosis Prediction

We used the mean values of AUC to divide the combined feature selection and classification
methods into good and better performance groups (Figure 4). Combined feature selection and
classification methods with AUC: 0.978 ± 0.06 (upper quartile of AUC range) are considered as highly
accurate methods in Figure 4A. Figure 4B showed the confusion matrix with the MIRSPSO+RF classifier
which revealed that the accuracy was 88.5%, and the sensitivity, specificity, PPV, and NPV were 92%,
85%, 86%, and 91.4%, respectively. The illustration of the Box-plots of the AUC for the four methods
are described in Figure 5A and the 5-fold cross-validated ROC curve of cohort is shown in Figure 5B.
As the results shown in Table 3, the prognosis of the MIRSPSO method was superior to conventional
statistic methods in accuracy, sensitivity, and specificity.
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3. Discussion

Cancer prognosis analysis is a complex and arduous task [27,28]. Statistical models based
on patients’ tumor clinical characteristics provide better predictions/prognosis than that of human
experts [29]. As the development of big data matures, solving clinical problems by bioinformatic
methods will become prevalent. Likewise, tumor prognosis prediction based machine-learning
methods could aid in clinical decision support. In this study, machine-leaning technique is applied
to predict the prognosis index and to guide clinical treatment application. An improved algorithm
called MIRSPSO is proposed for selecting relevant core index markers from all the prognostic indices,
including age, primary tumor control, extracranial metastasis, KPS score, number of lesions, and
max lesion volume. Firstly, core index markers were selected, and then compared with four existing
methods based on the accuracy of classification. Four kinds of methods are used for improving the



Cancers 2019, 11, 1140 7 of 13

AUC of prediction performance (Figure 5). It achieved almost 97.8% of the AUC rate. In addition, we
found that this machine-learning prognosis was superior to statistical method in terms of accuracy,
sensitivity, and specificity (Table 4). Results from the experiment show that our proposed method can
fully explore the importance of the relationship between the features of cancer patients, and obtain
more effective and more stable results than other methods.

Table 4. Comparison of predictive performance between machine-learning and statistic methods in the
test cohort.

Statistic
Method RPA GPA SIR BSBM Overall

Survival
Machine
Learning

MST 19 26 25 23 24 -
Sensitivity 0.67 0.71 0.59 0.88 - 0.92
Specificity 0.39 0.33 0.43 0.46 - 0.85
Accuracy 0.682 0.655 0.611 0.758 - 0.885

PPV - - - - 0.83 0.86
NPV - - - - 0.65 0.914

P <0.0001 a <0.0001 a <0.0001 a <0.000 a - -
a Chi-square test. Abbreviations: MST, medium survival time (months); PPV, positive prediction value; NPV,
negative prediction value.

The proposed methods with machine learning and previous studies based on conventional
statistical methods indicate that BSBM is a good predicting index in overall survival [22]. After
obtaining the core attributes and the ranking of feature importance, we use the classical classifier
to verify the classification accuracy. Figure 5 shows the performance of classification after attribute
reduction by the compared methods. The tests were repeated 50 times with the same experiment
parameters. As shown in Figure 5A, with the attribute reduction appropriately applied, the average
AUC of classification from the data set increased slightly. The accuracy rates of MIRSPSO rose up
by 1.72%, 1.29%, and 1.83% for each of SFS, MIPSO, and MISFS, respectively. The classification
performance of the data set became more stable with attribute reduction. The proposed method
obtained the smallest displacement between the upper and lower quartiles. The displacements were
0.026, 0.069, 0.077, and 0.067 for MIRSPSO, MIPSO, MISFS, and SFS, respectively. Thus, MIRSPSO is
superior to the other three methods in terms of both the highest and the lowest values of AUC.

Qian et al. [30] showed the differentiation of glioblastoma from solitary brain metastases using
radiomic machine-learning classifiers. They used machine learning to classify the glioblastoma from
solitary brain metastases, which declared a novel diagnosis path for clinicians. Zhang et al. also used
machine learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma, which
showed a better performance [28]. BSBM, as a predictor of cancer prognosis index, was evaluated by
the conventional statistic method and machine learning. Our proposed method can fully identify the
core attributes and achieve a higher and more accurate predicting ability due to the consideration of
the attribute dependence of each feature and the mutual information between attributes from cancer
patients. Thus, mining prognosis via an artificial intelligence technique demonstrates a novel method
to acquire the most accurate prognostic index.

Although our study has achieved better results than other methods, it still has the following
limitations. Firstly, the number of cases we used were still very limited, which restricts the predictive
model’s generalizability and accuracy of the power of artificial intelligence. Secondly, we only studied
the prognostic indices and the relationship between prognostic indices. There are still other features to
be explored in order to understand more about the relationship of the importance of all the features.
Therefore, in the future, we are planning to improve the efficiency of the classification of the selected
features, where more comprehensive features of cases from clinical data and more complete features of
importance for mining will be studied. Meanwhile, we will combine our method with deep learning
technology to deeply explore the significant relationship of cancer features. The results will be used
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to enhance decision making quickly and accurately to achieve better prognostic indices and enhance
anticancer therapeutic effects. The small sample size, however, remains as a challenge even in the
previous study [27], which needs to be overcome.

4. Materials and Methods

4.1. Patient Enrollment

For the experimentation, we obtained 700 patients’ data from a hospital between 1 January 2010
and1 December 2018. Firstly, the data downloaded from the relevant cases originated from a special
hospital digital database. All the patients’ demographics are listed in Table 5. What was stored in the
database are records of700 patients who underwent gamma-knife radiosurgery for brain metastases at
the 986 Hospital of People’s Liberation Army Air Force, in China. The ages of the patients ranged
from 16 to 92 years old, comprised of 456 (65.1%) males and 244 (34.9%) females. All patients were
diagnosed by bronchoscopic biopsy, head enhanced 1.5T magnetic resonance imaging (MRI) (SIEMENS
Symphony, Germany), and computer tomograph (CT). The patients’ characteristics and demographics
are shown in Table 5. The hospital ethics approval was obtained for this database analysis and all
patients signed the informed consent form.

Table 5. The characteristics and demographics of the patients.

Characteristics N (%)

Patients 700

Gender
Male 456 (65.1%)

Female 244 (34.9%)

Age(years) Median 55
Range 48 (16–92)

KPS
Median 75
Range 30 (55–95)

Primary tumor type
NSCLC 635 (90.7%)

Breast cancer 57 (8.1%)
Other 8 (1.2%)

Primary tumor control No 319 (45.6%)
Yes 381 (54.4%)

Number of lesions
Median 3
Range 5 (1–6)

Tumor volume(mL) Median 6
Range 40.4 (0.04–49)

Maximum diameter(mm)

<10 28 (4%)
10–20 189 (27%)
21–30 245 (35%)
31–40 205 (29.3%)
>40 33 (4.7%)

Type of therapy

SRS 225 (32.1%)
Fractionated SRS WBRT 127 (18.1%)

SBRT 133 (19%)
Surgical resection 197 (28.1%)

Extracranial metastasis
No 470 (67.1%)
Yes 230 (33.9%)
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Table 5. Cont.

Characteristics N (%)

Histology classification

Adenocarcinoma 170 (24.3%)
Squamous cell carcinoma 120 (17.1%)

Large cell carcinoma 87 (12.4%)
In situ carcinoma 195 (27.9%)

Invasive carcinoma 128 (18.3%)

Molecular classification

EGFR 23 (3.3%)
KRAS 17 (2.4%)
BRAF 4 (0.6%)
TP53 9 (1.3%)
ALK 15 (2.1%)

TNBC 8 (1.1%)
HER2 9 (1.3%)
PTEN 7 (1.0%)

Pattern of dissemination
Blood 361 (51.6%)

Lymph 255 (36.4%)
Others 84 (12%)

NSCLC: Non-small Cell Lung Cancer; SRS: Stereotactic Radiosurgery; WBRT: Whole Brain Radiotherapy; SBRT:
Stereotactic Body Radiation Therapy; EGFR: Epidermal Growth Factor Receptor; KRAS: K-Ras gene; BRAF: B-Raf
gene; TP53: TP53 gene; ALK: Anaplastic lymphoma kinase; TNBC: Triple-negative breast cance; HER2: human
epidermal growth factor receptor 2; PTEN: Phosphatase and tensin homolog.

4.2. Treatment Process

The patients were fitted with stereotactic headframes and received gamma-knife (Masep SRRS,
Shenzhen, China) during radiosurgery, with MRI head enhancement scanning conducted in advance.
The radiotherapy dose in the target area was prescribed according to the NCCN guideline that the
maximum doses were 28Gy,25Gy,17Gy,14Gy, and 12 Gy in accordance with the maximum diameters
of <10mm, 20 mm, 21–30 mm, 31–40mm, >40mm, respectively. Of the 700 patients, 197 patients had
received primary tumor surgical resection before radiotherapy and only 34 patients had received
molecular targeted therapy after radiotherapy.

4.3. Patients Survival and Prognostic Factors

At the end of the follow-up, it was found that all the 700 patients included in this study were
dead and the missing patients who were not properly followed-up were excluded. The survival curve
of each prognostic indices was obtained by K–M survival analysis. The RPA was defined as KPS score
greater than 70, aged younger than 65, good primary tumor control, and no extracranial metastasis,
median survival time was 7.1 months. Such patients were considered as having good prognosis, which
was first established in 1997. Therefore, Sperduto, et al. [31] compared GPA predictive ability with RPA,
SIR, and BSBM by statistical methods. Generally, Watanabe et al. [20] considered age was an prognostic
factor in brain metastases patients, which was also a component of RPA, GPA, SIR, and BSBM. Then,
we used four prognosis indexes RPA, GPA, SIR, and BSBM to predict metastases patient survival.

4.4. Feature Selection with MIRSPSO

Mutual Information and rough set with particle swarm optimization (MIRSPSO)is a method of
attribute reduction combining the binary particle swarm optimization algorithm. First, according to
the principle in the binary particle swarm optimization algorithm, the solution of each dimension of
each particle corresponds to either “1” or “0”, which is correspondingly expressed as the attribute of
the corresponding dimension in a decision table. Through hexadecimal transformation, the values of
“0” and “1” are given practical meaning. Digit 0 means the attribute in the decision table is not selected,
and digit 1 means the attribute is selected. In this way, the execution mechanism can switch between
particle swarm optimization algorithm and attribute reduction algorithm, embracing the power of
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both functions. Second, define NDT = (U, C, D) as the data decision information table, where U is
the domain, C is the condition attribute, and D is the decision attribute. The mutual information is
used as the fitness function and the termination condition of the loop is set to the maximum number
of iterations [32]. Thirdly, the global optimal solution [33] of the population in the search space is
obtained by iterative optimization; the search agents are coded as the attribute condition selection
results based on mutual information and the attribute reduction theory. Finally, a minimum subset of
attributes which are reduced from the full feature set is retained in the decision information table. The
resultant feature subset satisfies the optimization conditions and they are optimal. Figure 6 illustrates
the relationship among the computational methods used in this study.Cancers 2019, 11, x FOR PEER REVIEW 10 of 13 
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4.5. Feature Classification Methods

We applied seven supervised machine-learning algorithms including K-nearest neighbor (KNN),
Backpropagation (BP) Neural Network, decision tree (DT), logistic regression (LR), Random forest (RF),
Naive Bayes (NB), and Support Vector Machine (SVM) [30]. Feature classification methods were all
implemented using the MATLAB (version 2018a) machine-learning library tool kit, which provides an
overall and good user interface to accesses many machine-learning algorithms. Classifiers were trained
using 10-fold cross-validation method in the training cohort, and their prognostic performance was
then evaluated in the validation cohort using the area (AUC) under the receiver operator characteristic
(ROC) curve.

4.6. Identification of Excellent Performance Groups

We used the mean values of AUC to divide the combined feature selection and classification
methods into good and excellent performance groups. Combined feature selection and classification
methods with AUC are considered as highly accurate methods.

4.7. Statistical Analysis

All data were assessed by the Student’s t-test or chi-square test, as appropriate. A threshold
0.001 was set as a two-tailed statistical significance level. The statistical analysis and figure plots were
performed using GraphPad software (Prism 8 version, San Diego, CA, USA).
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5. Conclusions

In this study, an improved innovative algorithm method (MIRSPSO) was established to select the
corresponding core index marker from all prognostic indices regarding brain metastases cancer patients.
It may provide a feasible and convenient method to seek optimized index markers for clinical use.
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PI Prognostic Index
BM Brain Metastases
NSCLC Non-small Cell Lung Cancer
RPA Recursive Partitioning Analysis
SIR Score Index for Radiosurgery
GPA Graded Prognostic Assessment
BSBM Basic Score for Brain Metastases
AUC Area under the receiver operating characteristic curve
SD Standard deviation
LR Logistic Regression
SVM Support Vector Machine
RF Random Forest
DC Distance Correlation
MIRSPSO Mutual Information and Rough set with Particle Swarm Optimization
NB Naive Bayes
MST Median Survival Time
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SRS Stereotactic Radiosurgery
MRI Magnetic Resonance Imaging
OS Overall Survival
K-M Kaplan-Meier
KPS Karnofsky Performance Status

References

1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [CrossRef]
[PubMed]

2. Kattan, M.W.; Hess, K.R.; Amin, M.B.; Lu, Y.; Moons, K.G.; Gershenwald, J.E.; Gimotty, P.A.; Guinney, J.H.;
Halabi, S.; Lazar, A.J.; et al. American Joint Committee on Cancer acceptance criteria for inclusion of risk
models for individualized prognosis in the practice of precision medicine. CA Cancer J.Clin. 2016, 66, 370–374.
[CrossRef] [PubMed]

3. Alexander, M.; Wolfe, R.; Ball, D.; Conron, M.; Stirling, R.G.; Solomon, B.; MacManus, M.; Officer, A.;
Karnam, S.; Burbury, K.; et al. Lung cancer prognostic index: A risk score to predict overall survival after the
diagnosis of non-small-cell lung cancer. Br. J. Cancer 2017, 117, 744–751. [CrossRef] [PubMed]

http://dx.doi.org/10.3322/caac.21551
http://www.ncbi.nlm.nih.gov/pubmed/30620402
http://dx.doi.org/10.3322/caac.21339
http://www.ncbi.nlm.nih.gov/pubmed/26784705
http://dx.doi.org/10.1038/bjc.2017.232
http://www.ncbi.nlm.nih.gov/pubmed/28728168


Cancers 2019, 11, 1140 12 of 13

4. Fujima, N.; Shimizu, Y.; Yoshida, D.; Kano, S.; Mizumachi, T.; Homma, A.; Yasuda, K.; Onimaru, R.; Sakai, O.;
Kudo, K.; et al. Machine-Learning-Based Prediction of Treatment Outcomes Using MR Imaging-Derived
Quantitative Tumor Information in Patients with Sinonasal Squamous Cell Carcinomas: A Preliminary Study.
Cancers 2019, 11, 800. [CrossRef] [PubMed]

5. Barton, M.K. Primary tumor location found to impact prognosis and response to therapy in patients with
metastatic colorectal cancer. CA Cancer J.Clin. 2017, 67, 259–260. [CrossRef] [PubMed]

6. Sparano, J.A.; Gray, R.J.; Ravdin, P.M.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, J.C.;
Dees, E.C.; Goetz, M.P. Clinical and Genomic Risk to Guide the Use of Adjuvant Therapy for Breast Cancer.
N. Engl.J. Med. 2019, 380, 2395–2405. [CrossRef]

7. You, R.; Liu, Y.P.; Lin, M.; Huang, P.Y.; Tang, L.Q.; Zhang, Y.N.; Pan, Y.; Liu, W.L.; Guo, W.B.; Zou, X.; et al.
Relationship of circulating tumor cells and Epstein-Barr virus DNA to progression-free survival and overall
survival in metastatic nasopharyngeal carcinoma patients. Int. J. Cancer 2019. [CrossRef]

8. Lan, K.; Wang, D.T.; Fong, S.; Liu, L.S.; Wong, K.K.L.; Dey, N. A Survey of Data Mining and Deep Learning
in Bioinformatics. J.Med. Syst. 2018, 42, 139. [CrossRef]

9. Lu, T.P.; Kuo, K.T.; Chen, C.H.; Chang, M.C.; Lin, H.P.; Hu, Y.H.; Chiang, Y.C.; Cheng, W.F.; Chen, C.A.
Developing a Prognostic Gene Panel of Epithelial Ovarian Cancer Patients by a Machine Learning Model.
Cancers 2019, 11, 270. [CrossRef]

10. Sun, Y.; Goodison, S.; Li, J.; Liu, L.; Farmerie, W. Improved breast cancer prognosis through the combination
of clinical and genetic markers. Bioinformatics 2007, 23, 30–37. [CrossRef]

11. Smith, A.K.; White, D.B.; Arnold, R.M. Uncertainty—The other side of prognosis. N. Engl. J. Med. 2013, 368,
2448–2450. [CrossRef] [PubMed]

12. Qian, D.; Liu, H.; Wang, X.; Ge, J.; Luo, S.; Patz, E.F., Jr.; Moorman, P.G.; Su, L.; Shen, S.; Christiani, D.C.; et al.
Potentially functional genetic variants in the complement-related immunity gene-set are associated with
non-small cell lung cancer survival. Int.J. Cancer 2019, 144, 1867–1876. [CrossRef] [PubMed]

13. Lu, C.F.; Hsu, F.T.; Hsieh, K.L.; Kao, Y.J.; Cheng, S.J.; Hsu, J.B.; Tsai, P.H.; Chen, R.J.; Huang, C.C.; Yen, Y.;
et al. Machine Learning-Based Radiomics for Molecular Subtyping of Gliomas. Clin. Cancer Res. 2018, 24,
4429–4436. [CrossRef] [PubMed]

14. Kennedy, E.D.; Simunovic, M.; Jhaveri, K.; Kirsch, R.; Brierley, J.; Drolet, S.; Brown, C.; Vos, P.M.; Xiong, W.;
MacLean, T. Safety and feasibility of using magnetic resonance imaging criteria to identify patients with
“good prognosis” rectal cancer eligible for primary surgery: The phase 2 nonrandomized QuickSilver clinical
trial. JAMA Oncol. 2019, 5, 961–966. [CrossRef] [PubMed]

15. Wilensky, G.R. Bedside Computer Vision—Moving Artificial Intelligence from Driver Assistance to Patient
Safety. N. Engl.J.Med. 2018, 378, 1269–1271. [CrossRef] [PubMed]

16. Hana, T.; Tanaka, S.; Nejo, T.; Takahashi, S.; Kitagawa, Y.; Koike, T.; Nomura, M.; Takayanagi, S.; Saito, N.
Mining-Guided Machine Learning Analyses Revealed the Latest Trends in Neuro-Oncology. Cancers 2019,
11, 178. [CrossRef] [PubMed]

17. Ferroni, P.; Zanzotto, F.M.; Riondino, S.; Scarpato, N.; Guadagni, F.; Roselli, M. Breast Cancer Prognosis
Using a Machine Learning Approach. Cancers 2019, 11, 328. [CrossRef]

18. Burki, T.K. Predicting lung cancer prognosis using machine learning. Lancet Oncol. 2016, 17, e421. [CrossRef]
19. Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in

cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015, 138, 8–17. [CrossRef]
20. Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J. Artificial intelligence in radiology. Nat.

Rev. Cancer 2018, 18, 500–510. [CrossRef]
21. Chang, S.W.; Abdul-Kareem, S.; Merican, A.F.; Zain, R.B. Oral cancer prognosis based on clinicopathologic

and genomic markers using a hybrid of feature selection and machine learning methods. BMC Bioinform.
2013, 14, 170. [CrossRef] [PubMed]

22. Gao, H.X.; Huang, S.G.; Du, J.F.; Zhang, X.C.; Jiang, N.; Kang, W.X.; Mao, J.; Zhao, Q. Comparison of
Prognostic Indices in NSCLC Patients with Brain Metastases after Radiosurgery. Int.J. Biol. Sci. 2018, 14,
2065–2072. [CrossRef] [PubMed]

23. Sepehri, S.; Upadhaya, T.; Desseroit, M.C.; Visvikis, D.; Le Rest, C.C.; Hatt, M. Comparison of machine
learning algorithms for building prognostic models in non-small cell lung cancer using clinical and radiomics
features from 18F-FDG PET/CT images. J. Nucl. Med. 2018, 59 (Suppl. 1), 328.

http://dx.doi.org/10.3390/cancers11060800
http://www.ncbi.nlm.nih.gov/pubmed/31185611
http://dx.doi.org/10.3322/caac.21372
http://www.ncbi.nlm.nih.gov/pubmed/28548692
http://dx.doi.org/10.1056/NEJMoa1904819
http://dx.doi.org/10.1002/ijc.32380
http://dx.doi.org/10.1007/s10916-018-1003-9
http://dx.doi.org/10.3390/cancers11020270
http://dx.doi.org/10.1093/bioinformatics/btl543
http://dx.doi.org/10.1056/NEJMp1303295
http://www.ncbi.nlm.nih.gov/pubmed/23802514
http://dx.doi.org/10.1002/ijc.31896
http://www.ncbi.nlm.nih.gov/pubmed/30259978
http://dx.doi.org/10.1158/1078-0432.CCR-17-3445
http://www.ncbi.nlm.nih.gov/pubmed/29789422
http://dx.doi.org/10.1001/jamaoncol.2019.0186
http://www.ncbi.nlm.nih.gov/pubmed/30973610
http://dx.doi.org/10.1056/NEJMp1801673
http://www.ncbi.nlm.nih.gov/pubmed/29489443
http://dx.doi.org/10.3390/cancers11020178
http://www.ncbi.nlm.nih.gov/pubmed/30717468
http://dx.doi.org/10.3390/cancers11030328
http://dx.doi.org/10.1016/S1470-2045(16)30436-3
http://dx.doi.org/10.1016/j.csbj.2014.11.005
http://dx.doi.org/10.1038/s41568-018-0016-5
http://dx.doi.org/10.1186/1471-2105-14-170
http://www.ncbi.nlm.nih.gov/pubmed/23725313
http://dx.doi.org/10.7150/ijbs.28608
http://www.ncbi.nlm.nih.gov/pubmed/30585269


Cancers 2019, 11, 1140 13 of 13

24. Sun, D.; Wang, M.; Li, A. A multimodal deep neural network for human breast cancer prognosis prediction by
integrating multi-dimensional data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 16, 841–850. [CrossRef]
[PubMed]

25. Huang, S.; Dang, Y.; Li, F.; Wei, W.; Ma, Y.; Qiao, S.; Wang, Q. Biological intensity-modulated radiotherapy
plus neoadjuvant chemotherapy for multiple peritoneal metastases of ovarian cancer: A case report. Oncol.
Lett. 2015, 9, 1239–1243. [CrossRef] [PubMed]

26. Long, N.P.; Jung, K.H.; Anh, N.H.; Yan, H.H.; Nghi, T.D.; Park, S.; Yoon, S.J.; Min, J.E.; Kim, H.M.; Lim, J.H.;
et al. An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation
of Oncogenic Biomarkers of Pancreatic Cancer. Cancers 2019, 11, 155. [CrossRef] [PubMed]

27. Oberije, C.; Nalbantov, G.; Dekker, A.; Boersma, L.; Borger, J.; Reymen, B.; van Baardwijk, A.; Wanders, R.; De
Ruysscher, D.; Steyerberg, E.; et al. A prospective study comparing the predictions of doctors versus models
for treatment outcome of lung cancer patients: A step toward individualized care and shared decision
making. Radiother. Oncol. 2014, 112, 37–43. [CrossRef] [PubMed]

28. Lee, J.H.; Ha, E.J.; Kim, J.H. Application of deep learning to the diagnosis of cervical lymph node metastasis
from thyroid cancer with CT. Eur. Radiol. 2019, 1–6. [CrossRef]

29. Zhang, B.; He, X.; Ouyang, F.; Gu, D.; Dong, Y.; Zhang, L.; Mo, X.; Huang, W.; Tian, J.; Zhang, S. Radiomic
machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett.
2017, 403, 21–27. [CrossRef]

30. Qian, Z.; Li, Y.; Wang, Y.; Li, L.; Li, R.; Wang, K.; Li, S.; Tang, K.; Zhang, C.; Fan, X.; et al. Differentiation of
glioblastoma from solitary brain metastases using radiomic machine-learning classifiers. Cancer Lett. 2019,
451, 128–135. [CrossRef]

31. Andrews, D.W.; Scott, C.B.; Sperduto, P.W.; Flanders, A.E.; Gaspar, L.E.; Schell, M.C.; Werner-Wasik, M.;
Demas, W.; Ryu, J.; Bahary, J.-P.; et al. Whole brain radiation therapy with or without stereotactic radiosurgery
boost for patients with one to three brain metastases: Phase III results of the RTOG 9508 randomised trial.
Lancet 2004, 363, 1665–1672. [CrossRef]

32. Zhang, X.; Mei, C.; Chen, D.; Li, J. Feature selection in mixed data: A method using a novel fuzzy rough
set-based information entropy. Pattern Recognit. 2016, 56, 1–15. [CrossRef]

33. Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A Survey on Evolutionary Computation Approaches to Feature
Selection. IEEE Trans. Evol. Comput. 2016, 20, 606–626. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCBB.2018.2806438
http://www.ncbi.nlm.nih.gov/pubmed/29994639
http://dx.doi.org/10.3892/ol.2014.2820
http://www.ncbi.nlm.nih.gov/pubmed/25663890
http://dx.doi.org/10.3390/cancers11020155
http://www.ncbi.nlm.nih.gov/pubmed/30700038
http://dx.doi.org/10.1016/j.radonc.2014.04.012
http://www.ncbi.nlm.nih.gov/pubmed/24846083
http://dx.doi.org/10.1007/s00330-019-06098-8
http://dx.doi.org/10.1016/j.canlet.2017.06.004
http://dx.doi.org/10.1016/j.canlet.2019.02.054
http://dx.doi.org/10.1016/S0140-6736(04)16250-8
http://dx.doi.org/10.1016/j.patcog.2016.02.013
http://dx.doi.org/10.1109/TEVC.2015.2504420
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Clinical Characteristics and Overall Survival 
	Qualitative Feature Analysis 
	Feature Selection and Prognosis Prediction 

	Discussion 
	Materials and Methods 
	Patient Enrollment 
	Treatment Process 
	Patients Survival and Prognostic Factors 
	Feature Selection with MIRSPSO 
	Feature Classification Methods 
	Identification of Excellent Performance Groups 
	Statistical Analysis 

	Conclusions 
	References

