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Abstract: Glioblastoma is a primary brain tumor associated with a poor prognosis due to its high
chemoresistance capacity. Cancer stem cells (CSCs) are one of the mechanisms of chemoresistance.
Although therapy targeting CSCs is promising, strategies targeting CSCs remain unsuccessful.
Abnormal activation of epidermal growth factor receptors (EGFRs) due to amplification, mutation, or
both of the EGFR gene is common in glioblastomas. However, glioblastomas are resistant to EGFR
tyrosine kinase inhibitors (EGFR-TKIs), and overcoming resistance is essential. Brexpiprazole is a
new, safe serotonin-dopamine activity modulator used for schizophrenia and depression that was
recently reported to have anti-CSC activity and function as a chemosensitizer. Here, we examined
its chemosensitization effects on osimertinib, a third-generation EGFR-TKI with an excellent safety
profile, in glioma stem cells (GSCs), which are CSCs of glioblastoma. Brexpiprazole treatment
sensitized GSCs to osimertinib and reduced the expression of survivin, an antiapoptotic factor, and the
pharmacological and genetic inhibition of survivin mimicked the effects of brexpiprazole. Moreover,
co-treatment of brexpiprazole and osimertinib suppressed tumor growth more efficiently than either
drug alone without notable toxicity in vivo. This suggests that the combination of brexpiprazole and
osimertinib is a potential therapeutic strategy for glioblastoma by chemosensitizing GSCs through
the downregulation of survivin expression.
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1. Introduction

Glioblastoma is the most common primary brain tumor, accounting for 60% to 70% of glial brain
tumors [1,2]. The outcome of glioblastoma is poor due to its highly infiltrative growth and high
chemoresistance to therapeutic agents such as temozolomide [3,4]. Cancer stem cells (CSCs), which
have high tumor initiation capacity and are resistant to chemotherapeutic reagents, play a role in
chemoresistance [5–8]. Thus, the development of drugs eradicating glioma stem cells (GSCs), CSCs
of glioblastoma, is important for the treatment of glioblastoma. However, the number of drugs used
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for glioblastoma is limited because drugs that poorly penetrate the blood–brain barrier (BBB) are not
effective for glioblastoma [9].

The EGFR gene is amplified in 40% of glioblastomas [10,11]. Approximately 50% of EGFR-amplified
glioblastomas express epidermal growth factor receptor (EGFR) variant III (EGFRvIII) resulting from
the in-frame deletion of exons 2–7. EGFRvIII lacks a major part of the extracellular domain and is
constitutively active [12,13]; therefore, EGFRvIII plays a role in the progression of glioblastoma [10,11,14].
Thus, inhibitors of EGFR are considered as a therapeutic option for glioblastoma [15–17]. However, in
clinical trials with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as
gefitinib, erlotinib, and dacomitinib, clinical benefits were limited or absent [18–21]. Furthermore, the
reason for resistance to EGFR-TKIs in glioblastoma remains unknown [15,19].

Osimertinib is an oral, third generation, irreversible EGFR-TKI. Osimertinib was developed to
treat the “gatekeeper” EGFR mutation, which replaces a threonine at codon 790 with a methionine
(T790M) that is acquired in approximately 50% of cases of non-small cell lung cancer (NSCLC) during
treatment with first-generation TKIs [22,23]. Osimertinib is used as second-line chemotherapy for
patients with metastatic NSCLC harboring T790M EGFR mutation who have disease progression
during or after therapy with an EGFR-TKI. In a clinical trial, the efficacy and safety of osimertinib
were superior to those of standard EGFR-TKIs in the first-line treatment of NSCLC, suggesting that
osimertinib can be used for first-line chemotherapy [24]. Moreover, osimertinib had a better toxicity
profile than standard EGFR-TKIs in clinical studies [23,24]. It can also penetrate the blood–brain barrier
more efficiently than other EGFR-TKIs [25], and clinical trials demonstrated osimertinib to be more
effective for NSCLC with brain metastasis than standard therapy [23,24,26]. Therefore, osimertinib is
a potential candidate drug for the treatment of glioblastoma. However, the effects of osimertinib on
glioblastoma have not been examined, and there are concerns that glioblastoma might be resistant to
osimertinib, similar to other EGFR-TKIs.

Brexpiprazole is a new antipsychotic drug for depression and schizophrenia. Brexpiprazole was
developed as a drug chemically and pharmacologically related to aripiprazole, a serotonin–dopamine
activity modulator. Although brexpiprazole has similar pharmacological activity to aripiprazole,
brexpiprazole has a better safety profile due to its lower intrinsic activity at the dopaminergic D2
and D3 receptors [27–29]. We previously reported that aripiprazole has anticancer effects and acts
as a chemosensitizer in CSCs of NSCLC and pancreatic cancer [30]. Moreover, we recently revealed
that brexpiprazole exhibits anticancer activity against several types of cancer, including glioblastoma,
and chemosensitizes CSCs of pancreatic cancer and NSCLC to gemcitabine and 5-fluorouracil by
downregulating survivin, an antiapoptotic protein [31]. Suppression of survivin is involved in the
resistance to first-generation EGFR-TKIs of NSCLC: erlotinib and gefitinib [32–34]. These observations
suggest that brexpiprazole acts as a chemosensitizer of EGFR-TKIs. Furthermore, as there are no
clinically approved drugs targeting survivin, from the standpoint of clinical application, it is of
interest to explore whether brexpiprazole, a clinically available and safe drug, chemosensitizes GSCs to
osimertinib. Thus, in this study, we examined the combinational effects of osimertinib and brexpiprazole
on GSCs in vitro and in vivo and addressed the mechanism of the combinational effects.

2. Results

2.1. Brexpiprazole Sensitizes GSCs to Osimertinib

As previously reported, glioblastoma tumor-initiating cells have varying degrees of responsiveness
to EGFR-TKIs [35]. We first examined the responsiveness of different types of GSCs to osimertinib
using a representative GSC line, A172GS, and patient-derived GSC lines: GS-Y01, GS-NCC01,
and GS-Y03 (Figure 1a,b). Regarding osimertinib treatment, GS-NCC01 exhibited low responses,
A172GS and GS-Y01 exhibited moderate responses, and GS-Y03 exhibited high responses, indicating
different sensitivities to osimertinib by these GSCs. As the presence of EGFRvIII mutations may
affect the sensitivity of osimertinib, we examined the expression of EGFRvIII in these cells. A172GS
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and GS-NCC01 cells expressed EGFRvIII but GS-Y01 and GS-Y03 cells did not, suggesting no
correlation between EGFRvIII expression and osimertinib sensitivity (Figure S1). Next, we examined
whether brexpiprazole increases the responsiveness to osimertinib of the GSCs. The combination of
brexpiprazole with osimertinib reduced the viable cell number (Figure 1a) and increased cell death
(Figure 1b) in the GSCs irrespective of their sensitivity to osimertinib. As we previously reported that
brexpiprazole reduces the expression of survivin, a chemoresistant factor of cancer cells [30], in CSCs
from different cancers, including GS-Y03 cells [31], we assessed the alteration of survivin expression by
brexpiprazole in these cells. Brexpiprazole reduced the expression of survivin in the GSCs (Figure 1c).
Furthermore, we examined whether brexpiprazole affects downstream signals of EGFR. However,
brexpiprazole treatment did not cause consistent changes in the expression levels of p-AKT, p-mTOR,
and p-ERK among the cell lines examined (Figure 1d).
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Figure 1. The effects of osimertinib and brexpiprazole combination treatment on glioma stem cell 
(GSC) proliferation and survivin expression: GSCs (A172GS, GS-Y01, GS-NCC01, and GS-Y03) were 
treated with or without 1.5 μM of osimertinib and with or without 3 μM of brexpiprazole for 3 days 
and were then subjected to several analyses. (a) The cells were subjected to cell viability assay using 
WST-8. Values represent means + SD from quadruplicate samples of a representative experiment 
repeated with similar results. * p < 0.05. (b) The cells were subjected to cell death assay using Hoechst 
33342 (Hoechst) and propidium iodide (PI). The upper graphs show the proportion of dead cells as 
means + SD from triplicate samples of a representative experiment repeated with similar results. * p < 
0.05. The lower panels show representative phase contrast images, Hoechst-positive images (total 
cells), and PI-positive cells (dead cells) among GS-Y01 cells. Scale bar: 200 μm. (c,d) The cells were 
subjected to immunoblot analysis for survivin, p-AKT, AKT, p-mTOR, mTOR, p-ERK, and ERK. 
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Figure 1. The effects of osimertinib and brexpiprazole combination treatment on glioma stem cell (GSC)
proliferation and survivin expression: GSCs (A172GS, GS-Y01, GS-NCC01, and GS-Y03) were treated
with or without 1.5 µM of osimertinib and with or without 3 µM of brexpiprazole for 3 days and were
then subjected to several analyses. (a) The cells were subjected to cell viability assay using WST-8.
Values represent means + SD from quadruplicate samples of a representative experiment repeated
with similar results. * p < 0.05. (b) The cells were subjected to cell death assay using Hoechst 33342
(Hoechst) and propidium iodide (PI). The upper graphs show the proportion of dead cells as means +

SD from triplicate samples of a representative experiment repeated with similar results. * p < 0.05. The
lower panels show representative phase contrast images, Hoechst-positive images (total cells), and
PI-positive cells (dead cells) among GS-Y01 cells. Scale bar: 200 µm. (c,d) The cells were subjected to
immunoblot analysis for survivin, p-AKT, AKT, p-mTOR, mTOR, p-ERK, and ERK.

2.2. Pharmacological Inhibition of Survivin Sensitizes GSCs to Osimertinib

As recent studies revealed that EGFR-TKI resistance is partially due to the expression of survivin,
a representative antiapoptotic molecule [32–34], we evaluated the effects of the pharmacological
inhibition of survivin on two representative GSC lines, A172GS and GS-Y01, which are moderately
resistant to osimertinib using YM155, a pharmacological inhibitor of survivin [36,37]. YM155 treatment
reduced the expression of survivin (Figure 2a). Next, we examined whether YM155 treatment mimics
the effects of brexpiprazole as a sensitizer to osimertinib. YM155 treatment sensitized the GSCs to
osimertinib to a similar degree as brexpiprazole (Figure 2b), suggesting the involvement of survivin in
the mechanism of osimertinib sensitization by brexpiprazole.
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Figure 2. Pharmacological inhibition of survivin by YM155-induced sensitization of GSCs to osimertinib:
The indicated GSCs were treated with or without 10 nM of YM155 and with or without 1.5 µM of
osimertinib for 3 days. (a) The cells (with or without YM155 only) were subjected to immunoblot
analysis for survivin protein expression. (b) The cells were then subjected to cell viability assay using
WST-8. Values represent means +SD from quadruplicate samples of a representative experiment
repeated with similar results. * p < 0.05.

2.3. Genetic Inhibition of Survivin Mimics Brexpiprazole Treatment

To exclude the possibility of off-target effects of brexpiprazole and YM155 on mechanisms other
than survivin, we next examined the effects of genetic inhibition of survivin on the responsiveness
to osimertinib by the GSCs using siRNA. After introducing two different siRNAs against survivin,
siSurvivin#2 and siSurvivin#3, the expression of survivin decreased (Figure 3a). On the other hand,
a non-targeting siRNA (siControl) did not cause a decrease in survivin expression. In the cells with
siRNAs against survivin, osimertinib resistance was attenuated (Figure 3b). Therefore, survivin
expression is necessary for osimertinib resistance in GSCs.
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Figure 3. siRNA-mediated knockdown of survivin sensitizes GSCs to osimertinib: The indicated GSCs
were transfected with a non-targeting siRNA (siControl) or either of the siRNAs against survivin
(siSurvivin#2 or siSurvivin#3) for 3 days. (a) The cells were subjected to immunoblot analysis for
survivin protein expression. (b) Then, the transfected cells were treated with or without 1.5 µM of
osimertinib for 3 days, and the cells were subjected to cell viability assay using WST-8. Values represent
means + SD from quadruplicate samples of a representative experiment repeated with similar results.
* p < 0.05.
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2.4. Brexpiprazole Sensitizes GSCs to Osimertinib in Vivo.

Survivin inhibition effectively attenuated the resistance to osimertinib of the GSCs in vitro. To
adapt the combination of brexpiprazole and osimertinib to clinical settings, we examined the efficacy
of the combination in a preclinical mouse xenograft model. GS-Y03 cells were implanted intracranially
into nude mice, and the mice were treated with osimertinib, brexpiprazole, their combination, or
solvent control. As a result, the mice treated with the combination of osimertinib and brexpiprazole
survived significantly longer than those treated with either osimertinib or brexpiprazole (Figure 4a).
Administration of brexpiprazole and osimertinib did not reduce the body weight of the mice (Figure 4b).
No notable adverse effects were observed in the mice.
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radiation or chemotherapy improves the prognosis, the effectiveness of these therapies is limited, 
resulting in a median survival of only 12–15 months [3,38–40]. One of the reasons for the 
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Figure 4. Systemic combination administration of brexpiprazole and osimertinib has anticancer stem
effects in vivo. After patient-derived GSCs (GS-Y03, 1 × 104 cells) were intracranially injected to the
left-brain hemisphere of nude mice, the indicated drugs (3 mg/kg of brexpiprazole twice a week and
5 mg/kg of osimertinib 5 times a week) were orally administered after 2 days. (a) Survival was evaluated
by a Kaplan–Meier analysis. (b) The body weights of the mice (means with SD) were presented. Arrows
indicate the treatment schedule. * p < 0.05.

3. Discussion

Glioblastoma is one of the most intractable malignancies. Although surgery followed by radiation
or chemotherapy improves the prognosis, the effectiveness of these therapies is limited, resulting in
a median survival of only 12–15 months [3,38–40]. One of the reasons for the ineffectiveness of the
therapies is GSCs. GSCs have a high tumor initiation capacity and are resistant to chemotherapy and
radiotherapy [41]. Therefore, it is essential to eradicate GSCs to cure glioblastomas. As the EGFR
gene is amplified in 40% of primary glioblastomas [10,11], therapy targeting EGFR was considered
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promising. However, the results of clinical trials with first- and second-generation EGFR-TKIs for
glioblastoma were disappointing [18–20]. Osimertinib, an oral third-generation EGFR-TKI, penetrates
the BBB more effectively [25] and has a better safety profile than other EGFR-TKIs [23,24]. A clinical trial
with osimertinib on glioblastoma is still ongoing (NCATS 1-UH2-TR001370-01), and the effectiveness of
osimertinib remains unknown, even for in vitro studies. In this study, we found that the sensitivity to
osimertinib of GSCs was different among the four types of GSCs examined. Of the four, three types of
GSCs were resistant and only one type was sensitive to osimertinib, demonstrating that GSCs are often
resistant to osimertinib. Brexpiprazole was developed as a new serotonin-dopamine activity modulator
with an improved safety profile to succeed aripiprazole. We recently reported that brexpiprazole acts
as a chemosensitizer to gemcitabine and 5-fluorouracil in CSCs of pancreatic cancer and NSCLC [31].
In this study, we revealed that brexpiprazole sensitized the GSCs to osimertinib regardless of their
sensitivity to osimertinib in vitro. Moreover, brexpiprazole sensitized the osimertinib-resistant GSCs
to osimertinib in a preclinical mouse model.

The mechanisms of resistance to EGFR-TKI in glioblastomas remain obscure [18–21]. The
pharmacological efficacy of gefitinib and erlotinib, first-generation EGFR-TKIs, mainly depends
on activation mutation in exons 19 and 21 of the tyrosine kinase domain. The absence of these
mutations in glioblastoma partially explains the resistance to gefitinib and erlotinib [15,42]. Another
possible mechanism is an alternative activating signal that compensates for the inactivation of
EGFR signaling by EGFR-TKIs [43]. It was previously reported that the absence of EGFRvIII and
loss of PTEN are partial determinants of resistance [15,44]. Inhibition of mTOR, a downstream
molecule of the PI3 kinase/PTEN/AKT pathway, promoted the response of glioma cells to EGFR-TKIs
in vitro [45,46]. However, phase II clinical trials with relapsed glioblastoma patients did not support the
correlation between the responsiveness to erlotinib and the expression of EGFRvIII and PTEN [47,48].
Moreover, the combination of sirolimus, an inhibitor of mTOR, and EGFR-TKIs did not improve the
responsiveness in patients with recurrent glioblastomas [49]. Alternatively, inhibition of EGFR by
erlotinib in EGFRvIII-expressing U87 glioblastoma cells may increase the expression of PDGFRβ, which
compensates for signaling inhibited by erlotinib. Co-inhibition of PDGFRβ by AG1295, an inhibitor of
PDGFR, with erlotinib effectively suppressed tumor growth [50]. Erlotinib upregulates promyelocytic
leukemia (PML) protein, which is a negative regulator of AKT-mTOR signaling, to promote resistance
to erlotinib, and treatment with a PML inhibitor chemosensitizes glioblastoma cells to erlotinib and
an mTOR inhibitor, suggesting the clinical relevance of the combination of PML-targeting drugs and
erlotinib [51]. Screening with an shRNA library using glioblastoma cells revealed that the combined
inhibition of dopamine D2 receptors and EGFR-TKI leads to synergistic tumoricidal activity through
suppression of the MAP kinase pathway [52]. Although the mechanism they suggested is different
from ours, those data support our findings that brexpiprazole sensitized GSCs to osimertinib.

We recently reported that brexpiprazole reduces the expression of survivin and chemosensitizes
pancreatic cancer and NSCLC to gemcitabine and 5-fluorouracil [31]. However, whether brexpiprazole
chemosensitizes GSCs to EGFR-TKIs via the downregulation of survivin was unclear. In this study, both
the genetic inhibition of survivin by siRNA and the pharmacological inhibition by YM155, a suppressor
of survivin, chemosensitized GSCs to osimertinib. Although our data do not exclude the possibility of
involvement of mechanisms other than survivin, they do suggest that downregulation of survivin
is, at least in part, one of the major mechanisms of chemosensitization by brexpiprazole. Consistent
with our data, survivin is involved in resistance against EGFR-TKIs in NSCLCs [32–34]. Clinical
benefits of YM155 are not proven in clinical trials [53–55], and YM155 is not approved worldwide.
As brexpiprazole is FDA-approved and applicable for clinical translation with a detailed safety
profile [28,56,57], it is a good candidate drug to chemosensitize GSCs to EGFR-TKIs by downregulating
the expression of survivin.

In a clinical trial, serious adverse events of grade 3 or higher were reported in fewer patients
administered osimertinib than in those receiving standard EGFR-TKIs (34% vs. 45%), suggesting
the better safety profile of osimertinib [24]. Brexpiprazole was developed to succeed aripiprazole, a
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serotonin–dopamine activity modulator. Compared with aripiprazole, brexpiprazole was reported
to cause fewer adverse effects; akathisia and insomnia occur 50% less frequently than with
aripiprazole [28,58,59]. Of note, the combination of brexpiprazole and osimertinib exhibited therapeutic
effects in mice but did not cause any notable adverse effects, including alteration of body weight,
demonstrating the clinical relevance of our animal experiments.

4. Materials and Methods

4.1. Antibodies and Reagents

Anti-survivin (#2808), anti-p-AKT (Ser473 #9271, Thr308 #9275), anti-AKT (#9272), anti-p-mTOR
(#2974), anti-mTOR (#2972), anti-p-ERK (#9101), anti-ERK (#4695), and anti-EGFR (#4267) antibodies
were purchased from Cell Signaling Technology, Inc. (Beverly, MA, USA). Anti-β-actin (A1978) antibody
was from Sigma (St. Louis, MO, USA). Osimertinib and YM155 were purchased from Chemscene LLC.
(Monmouth Junction, NJ, USA), and dissolved in dimethyl sulfoxide (DMSO) to 10 mM and 20 µM,
respectively, as stock solutions. Brexpiprazole was from Cayman Chemical Company (Ann Arbor, MI,
USA) and was dissolved in DMSO to 10 mM as a stock solution.

4.2. Cell Culture

Patient-derived GSCs used in this study (GS-Y01, GS-NCC01, and GS-Y03) were established and
cultured as previously described [60,61], and the A172GS GSC line was also established and cultured
as previously described [62]. In brief, cells were cultured on collagen-I-coated dishes (IWAKI, Tokyo,
Japan) in stem cell culture medium [60] (DMEM/F12 medium with 1% B27 (Thermo Fisher Scientific,
Waltham, MA, USA), 20 ng/mL of EGF and FGF2 (Peprotech, Inc., Rocky Hill, NJ, USA), D-(+)-glucose
(final concentration of 26.2 Mm), L-glutamine (final concentration of 4.5 mM), 100 units/mL of penicillin,
and 100 µg/mL of streptomycin). This stem cell culture medium was replaced every 3 days, and EGF
and FGF2 were added to the medium every day. 293T cells were cultured in DMEM supplemented
with 10% fetal bovine serum, 100 units/mL of penicillin, and 100 µg/mL of streptomycin.

4.3. Cell Viability and Cell Death Assays

Cell viability assays were performed as previously described [63]. In brief, cell viability was
assessed by the tetrazolium salt reduction method using WST-8 (Cell Counting Kit-8; Dojindo
Laboratories, Kumamoto, Japan) according to the manufacturer’s protocol. Cells (500–1000 cells/well)
plated in 96-well collagen I-coated plates were treated with drugs the next day for 3 days. WST-8
reagent was then added, and the cells were incubated for 1–3 h at 37 ◦C. Absorbance at 450 nm was
measured using a microplate reader (Model 680, Bio-Rad, Hercules, CA, USA). Relative cell viability
was calculated as a percentage of the absorbance of treated samples relative to that of control samples.
Cell viability assays were performed in four replicates. Alternatively, cells were incubated in situ with
propidium iodide (PI, 1 µg/mL) and Hoechst 33,342 (10 µg/mL) for 5 min at 37 ◦C in the CO2 incubator
to stain dead cells and the cell nuclei, respectively. Then, the numbers of PI- and Hoechst-stained cells
were counted using a fluorescence microscope (CKX41; Olympus, Tokyo, Japan), and the percentage of
PI-stained cells (dead cells) against Hoechst-stained cells (total cells) was calculated [64].

4.4. Immunoblot Analysis

Cells were washed with ice-cold PBS and lysed in RIPA buffer (10 mM Tris-HCl (pH 7.4), 0.1% SDS,
0.1% sodium deoxycholate, 1% NP-40, 150 mM NaCl, 1 mM EDTA, 1.5 mM Na3VO4, 10 mM NaF, 10 mM
sodium pyrophosphate, 10 mM sodium β-glycerophosphate. and 1% protease inhibitor cocktail set III
(Wako Pure Chemical Industries, Ltd, Osaka, Japan)). After centrifugation for 10 minutes at 14,000× g at
4 ◦C, the supernatants were harvested as the cell lysates and the protein concentration of the cell lysates
was measured using the BCA protein assay kit (Thermo Fisher Scientific). Cell lysates containing
equal amounts of protein were separated by SDS-PAGE and transferred to polyvinylidene difluoride
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membranes. The membranes were probed with primary antibodies and then with an appropriate
HRP-conjugated secondary antibody according to the manufacturer’s protocol. Immunoreactive bands
were visualized by Immobilon Western Chemiluminescent HRP Substrate (Merck Millipore, Billerica,
MA, USA) and detected semi-quantitatively using a ChemiDoc Touch Imaging System (Bio-Rad). The
relative density of immunoreactive bands was analyzed by densitometry using ImageJ 1.52a software
(National Institutes of Health, Bethesda, MD, USA). The original immunoblot pictures were shown in
Figure S2.

4.5. Gene Silencing with siRNA.

Two siRNAs against human survivin (BIRC5, #2; HSS 179404 and #3; HSS 179405) and Medium GC
Duplex #2 of Stealth RNAiTM siRNA Negative Control Duplexes (non-targeting control) were purchased
from Thermo Fisher Scientific. Cells were transiently transfected with RNAs using Lipofectamine
RNAiMAXTM (Thermo Fisher Scientific) according to the manufacturer’s directions.

4.6. Mouse Study

After the nude mice (7-week-old male BALB/cAJcl-nu/nu mice (CLEA Japan, Inc., Tokyo, Japan))
were anesthetized by subcutaneous injection of 25 mg/kg of midazolam, 5 mg/kg of medetomidine, and
25 mg/kg of butorphanol, GS-Y03 (1× 104 cells diluted in 10 µL of DMEM/F12 medium), patient-derived
GSCs, were stereotactically injected into the left cerebral hemisphere at a depth of 3 mm, as previously
described [62]. Two days after intracranial implantation, brexpiprazole was administered by oral
gavage twice a week (dose of 3 mg/kg, final volume 100 µL in DMSO) and osimertinib was administered
by oral gavage 5 times a week (dose of 5 mg/kg, final volume 100 µL in DMSO). Control mice were
administered the same volume of DMSO. Five mice were assigned to each group. All mice were
monitored for their general health status. The termination criteria were marked weight loss of greater
than 20% of that at the initiation of the experiment or apparent health problems such as inability to
access food and water. The experiment was approved by the Animal Research Committee of Yamagata
University (30027, 14 March 2018).

4.7. Transfection of Plasmid

The plasmid pT3.5-CMV-EGFRvIII was a gift from John Ohlfest (Addgene plasmid #20280).
The plasmid was transfected into 293T cells by using Lipofectamine 2000 (Thermo Fischer Scientific)
according to the manufacturer’s instructions. The cell lysate from the transfected cells was used as a
positive control for EGFRvIII.

4.8. Statistical Analysis

Results are expressed as the means and standard deviation (SD). The differences were compared
by the two-tailed t-test. The survival curve was evaluated by the Kaplan–Meier method and analyzed
using the log-rank test. p-values < 0.05 were considered significant and indicated with asterisks.

5. Conclusions

In conclusion, brexpiprazole, a safe and newly-developed antipsychotic drug, sensitized GSCs to
osimertinib in vitro and in vivo via survivin downregulation.

Supplementary Materials: The following is available online at http://www.mdpi.com/2072-6694/11/7/947/s1:
Figure S1: Expression of EGFR in GSCs: The expression of EGFR in the GSCs was examined by immunoblot
analysis. The expression of EGFRvIII was evaluated by comparing with sample of 293T cells transfected with a
plasmid for EGFRvIII overexpression. Figure S2: Original immunoblotting membranes.
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