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Abstract: The purpose of this study was to determine the predictive power for treatment outcome
of a machine-learning algorithm combining magnetic resonance imaging (MRI)-derived data in
patients with sinonasal squamous cell carcinomas (SCCs). Thirty-six primary lesions in 36 patients
were evaluated. Quantitative morphological parameters and intratumoral characteristics from
T2-weighted images, tumor perfusion parameters from arterial spin labeling (ASL) and tumor
diffusion parameters of five diffusion models from multi-b-value diffusion-weighted imaging (DWI)
were obtained. Machine learning by a non-linear support vector machine (SVM) was used to construct
the best diagnostic algorithm for the prediction of local control and failure. The diagnostic accuracy
was evaluated using a 9-fold cross-validation scheme, dividing patients into training and validation
sets. Classification criteria for the division of local control and failure in nine training sets could be
constructed with a mean sensitivity of 0.98, specificity of 0.91, positive predictive value (PPV) of
0.94, negative predictive value (NPV) of 0.97, and accuracy of 0.96. The nine validation data sets
showed a mean sensitivity of 1.0, specificity of 0.82, PPV of 0.86, NPV of 1.0, and accuracy of 0.92.
In conclusion, a machine-learning algorithm using various MR imaging-derived data can be helpful
for the prediction of treatment outcomes in patients with sinonasal SCCs.

Keywords: magnetic resonance imaging; machine learning; diffusion; perfusion; texture analysis;
squamous cell carcinoma of the head and neck
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1. Introduction

Multimodal treatment such as a combination of surgery, chemotherapy and radiotherapy is the
standard treatment methods for head and neck squamous cell carcinomas (SCCs), including nasal cavity
or paranasal sinus SCCs [1]. Superselective arterial infusion of cisplatin with concomitant radiotherapy
has been widely recognized as a preferred treatment method for maxillary SCCs because of its high
local control rate and good prognosis, especially in patients with advanced diseases [2]. In performing
such nonsurgical therapy, the ability to predict treatment outcome, for instance whether local control
will be achieved, is very important. High-accuracy data-based predictions based on individualized
risk categories could help optimize management such as the selection of chemotherapy (e.g., decisions
about whether to perform induction chemotherapy) and the best post-treatment follow-up strategy.
In this way, truly personalized precision medicine may result from image-based data.

To assess and predict treatment outcomes, information about tumor, node, metastasis (TNM)
staging and tumor size have been conventionally used. However, several studies have reported that such
tumor conventional morphological information is not necessarily promising for predicting treatment
outcomes [3,4]. In contrast, a wide variety of information can be obtained for any tumor from imaging
such as quantitative tumor shape data [5], intratumoral textural parameters [6] and tumor functional
information such as tumor tissue perfusion information from perfusion-weighted imaging [4,7] and
tumor microstructural characteristics from diffusion-weighted imaging (DWI) [8–10]. Especially,
several studies identified associations between diffusion parameters derived from DWI and various
histopathological features, e.g. expression of Ki-67, p53, degree of tumor cellularity, etc. [11,12]. Tumor
perfusion parameters derived from dynamic contrast enhanced (DCE) technique were also reported its
correlation to tumor histopathological features such as p16 status and vascular endothelial growth
factor (VEGF) expression [13]. Another report demonstrated even conventional magnetic resonance
(MR) T1 weighted image (T1WI) and T2 weighted image (T2WI) showed the correlation to several
histopathological features with the use of histogram image analysis [14]. In contrast, as another approach
by different imaging modality, positron-emission tomography (PET) with 18F-fluorodeoxyglucose
(FDG) depicts a tumor’s rate of glucose metabolism. Several reports indicated FDG-PET imaging
parameters provided significant correlations to many histopathological features [15–19]. However,
FDG-PET scanning was a little invasive because of its radiation exposure. In using MR imaging,
most abovementioned tumor characteristics can be obtained completely non-invasively without the
use of contrast agent and radiation exposure. Several of these MR derived parameters have been
reported as independent predictors for treatment outcomes [4,8,20–23]. If we can efficiently integrate
these data, prediction of the treatment outcome with high diagnostic accuracy may be obtained.

Conventional multiparametric analysis is an important diagnostic method and will continue to
provide clinically useful cut-off values for parameters. However, a more advanced analysis technique is
needed to handle the variety of tumor characteristics that are now available. Recently, machine-learning
algorithms have been reported to select various parameters effectively in medical imaging analysis
including the assessment of head and neck SCC as a kind of artificial intelligence-based diagnostic
technique [24,25], however, the number of reports is very limited and they have focused exclusively on
intratumoral texture analysis parameters only; the utility of tumor functional information such as tumor
perfusion and diffusion is still uncertain. The utilization of advanced parameters by machine learning
may achieve ever-better predictive results by integrating data on numerous tumor characteristics.

The aim of this study was to determine the power of a machine-learning algorithm integrating
multiple quantitative MR imaging data including shape parameters, intratumoral texture, perfusion
and diffusion to predict treatment outcomes in patients with sinonasal SCCs.

2. Results

Fourteen patients were revealed to have local failure. Of these 14 patients, local failure was
proven in 11 by surgical biopsy with histological demonstration of residual SCC. In three patients,
a large new mass lesion was observed during the follow-up period. The remaining 22 patients were
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determined to have local control by clinical observation throughout follow-up (mean 57 mos; range
34–86 mos). Imaging analyses of the primary sites were successfully performed in all patients. Details
of obtained tumor morphological and intratumoral characteristics, perfusion and diffusion parameters
are summarized in Table 1.

Table 1. Data of patients with local control and failure.

Treatment Outcome

Local Control Local Failure

Patients’ Characteristics (no. of patients)

T-stage

T1 0 0
T2 1 0
T3 10 3
T4 11 11

N-stage

N0 18 12
N1 2 0
N2 2 2
N3 0 0

Morphological Parameters
Tumor volume (mL) 25.3 ± 16.5 34.3 ± 28.6
Surface area (cm2) 50.4 ± 18.7 69.6 ± 29.7

Sphericity 0.71 ± 0.08 0.61 ± 0.11

Intratumoral Characteristics Parameters

Relative mean signal 3.8 ± 0.6 3.4 ± 0.6
Coefficient of variance 0.12 ± 0.02 0.14 ± 0.04

Contrast 35.1 ± 6 41.3 ± 8.6
Correlation 0.84 ± 0.02 0.86 ± 0.03

Energy (×10−3) 1.5 ± 0.3 1.2 ± 0.4
Homogeneity 0.28 ± 0.03 0.26 ± 0.03

Perfusion Parameters
Absolute TBF (mL/100g/min) 156.7 ± 32.9 133.7 ± 29.3

Relative TBF 7.47 ± 0.83 6.25 ± 1.22

Diffusion Parameters

ADC (×10−3 mm2/s) 0.91 ± 0.1 0.87 ± 0.13
f (×102 %) 0.16 ± 0.05 0.16 ± 0.07

D* (×10−3 mm2/s) 19.5 ± 7.5 16.7 ± 5.7
D (×10−3 mm2/s) 0.75 ± 0.06 0.73 ± 0.09

K 0.73 ± 0.07 0.76 ± 0.08
Dk (×10−3 mm2/s) 1.24 ± 0.14 1.22 ± 0.19

alpha (α) 0.69 ± 0.07 0.67 ± 0.08
DDC (×10−3 mm2/s) 1.14 ± 0.12 1.12 ± 0.17

f1 (×102 %) 0.14 ± 0.04 0.13 ± 0.04
f2 (×102 %) 0.23 ± 0.04 0.25 ± 0.05
f3 (×102 %) 0.62 ± 0.06 0.61 ± 0.08

D1 (×10−3 mm2/s) 32.9 ± 7.8 28.1 ± 6.5
D2 (×10−3 mm2/s) 1.03 ± 0.16 0.92 ± 0.15
D3 (×10−3 mm2/s) 0.64 ± 0.07 0.62 ± 0.1

Data are means ± standard deviations. TBF, tumor blood flow; ADC, apparent diffusion coefficient; f, perfusion
fraction; D*, fast diffusion coefficient; D, true diffusion coefficient; K, kurtosis value; Dk, kurtosis corrected diffusion
coefficient; α, diffusion heterogeneity; DDC, distributed diffusion coefficient; f1, perfusion-related diffusion fraction;
f2, intermediate diffusion fraction; f3, slow diffusion fraction; D1, perfusion-related diffusion coefficient; D2,
intermediate diffusion coefficient; D3, slow diffusion coefficient.

In the support vector machine (SVM) analysis, classification criteria for the discernment of local
control versus failure in the training set data could be constructed with a sensitivity of 0.98, specificity of
0.91, positive predictive value of 0.94, negative predictive value of 0.97 and accuracy of 0.96, as a mean
value obtained from the nine test set data. In the parameter selection process, the five top-ranked
features in all nine training data sets included the perfusion parameter of relative tumor blood flow
(TBF), morphological parameter of tumor sphericity, and texture parameter of contrast. In addition,
the morphological parameter of tumor volume was selected six times, the diffusion parameter of
intermediate diffusion coefficient (D2) in tri-exponential model DWI five times, the diffusion parameter
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of perfusion fraction f in the intravoxel incoherent motion (IVIM) DWI model three times, the texture
parameter of energy twice, and both diffusion parameters of apparent diffusion coefficient (ADC) and
patient characteristics of T-stage once. Details of results for training group data are presented in Table 2.

Table 2. Results of the Training Set Data (n=32 in each set).

Set No. Sensitivity Specificity PPV NPV Accuracy

1 1 0.92 0.95 1 0.97
Top 5 ranked variables: Sphericity, Relative TBF, Contrast, D2, f

2 1 1 1 1 1
Top 5 ranked variables: Relative TBF, Sphericity, Contrast, T-stage, Tumor volume

3 1 0.85 0.9 1 0.94
Top 5 ranked variables: Relative TBF, Contrast, Sphericity, Tumor volume, f
4 0.95 0.78 0.91 0.9 0.91

Top 5 ranked variables: Relative TBF, Sphericity, D2, Energy, Contrast
5 1 1 1 1 1

Top 5 ranked variables: Sphericity, Relative TBF, D2, Contrast, Tumor volume
6 1 0.85 0.9 1 0.94

Top 5 ranked variables: Relative TBF, Sphericity, f, Contrast, Energy
7 1 0.92 0.95 1 0.97

Top 5 ranked variables: Sphericity, Relative TBF, Contrast, Tumor volume, ADC
8 0.94 0.93 0.94 0.93 0.94

Top 5 ranked variables: Relative TBF, Sphericity, Contrast, D2, Tumor volume
9 0.95 0.9 0.95 0.9 0.94

Top 5 ranked variables: Relative TBF, Sphericity, D2, Contrast, Tumor volume

Average 0.98 0.91 0.94 0.97 0.96

PPV, positive predictive value; NPV, negative predictive value; TBF, tumor blood flow; D2, intermediate diffusion
coefficient; f, perfusion fraction; ADC, apparent diffusion coefficient.

The classification algorithm for the discernment of local control versus failure obtained by training
set data was further used for the classification in the validation set data. Group assignment in the
validation data set was achieved with a sensitivity of 1.0, specificity of 0.82, positive predictive value
of 0.86, negative predictive value of 1.0 and accuracy of 0.92; these values were the means of total
36 validation data (4 × 9 validation sets).

3. Discussion

Our findings revealed that a machine-learning-derived diagnostic algorithm by pre-treatment MR
imaging-derived tumor data can highly predict the treatment outcome of local control versus failure in
patients with sinonasal SCCs. To the best of our knowledge, the current study is the first report to
indicate the utility of a machine learning-based diagnosis derived from quantitative morphological,
intratumoral, perfusion and diffusion data. This diagnostic ability can be useful as a kind of artificial
intelligence-based technique. Being able to predict the local outcome of the primary tumor would
have a significant impact on treatment decision. If a poor outcome after chemoradiation therapy is
strongly indicated, additional or alternate treatment plan such as induction chemotherapy, earlier
salvage surgery after the chemoradiotherapy, or surgical resection prior to chemoradiation therapy
may be offered. Follow-up strategy after the treatment such as the frequency and duration of the
imaging follow-up may be also optimized individually, depending on the pre-treatment risks.

Quantitative morphological shape characteristics of tumors (i.e., sphericity) were recently reported
to be useful for the prediction of treatment outcomes in head and neck SCC as an advanced
morphological parameter compared to TNM stage and tumor size [5,23]. Intratumoral heterogeneity
was also indicated as a prognostic factor in head and neck SCC patients [26,27]; in these reports,
tumors with high degree of intratumoral heterogeneity demonstrated a tendency for poor prognoses.
In contrast, tumor perfusion and diffusion are considered to be major tumor functional parameters that
indirectly reflect biological processes; thus, these may be related to individual treatment sensitivity.
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In previous reports, tumor perfusion was described as an important predictor of the treatment
outcome [4]. Lower tumor perfusion was related to poor treatment outcome in these reports, probably
because of the relation between tumor hypoxia and lower tumor perfusion [28,29]. Tumor diffusion
was also significantly related to treatment outcome in head and neck SCC patients; in numerous
ADC studies [30], low ADC was related to a good treatment outcome. Additionally, non-Gaussian
diffusion parameters beyond ADC values have been recently shown to be useful for treatment outcome
prediction [8].

The various characteristics of tumor shape, intratumoral characteristics, and tumor perfusion
and diffusion are expected to reflect different types of biological conditions. Multiparametric use of
these data were suggested to allow each parameter’s diagnostic power to be expressed. A previous
study used multiparametric analysis employing both ADC values and tumor perfusion information,
and concluded that the combination of diffusion and perfusion data was helpful for diagnosis [31].
However, diagnostic performance was not still complete, probably because simple cut-offs are
insufficient to fully reflect tumor biology. In the current study, the machine-learning algorithm
seemed to emphasize all effective parameters sufficiently. The high diagnostic accuracy of treatment
outcome prediction obtained by the present study is probably due to the effective use of numerous
tumor characteristics with an ideal determination strategy. The various characteristics differ from
patient to patient; non-invasive acquisition of numerous tumor characteristics using advanced MR
imaging sequence and post-processing techniques and determination of the diagnostic strategy using
this machine-learning algorithm should contribute greatly to individualized precision medicine for
sinonasal SCC patients.

The current study has several limitations. First, the number of patients was quite small. However,
sinonasal SCC are not very common, and it would be a challenge to investigate a larger number
of sinonasal SCC patients who received advanced MR imaging protocol and long-term follow-up.
The results of the present study should be regarded as preliminary. Second, analysis of intratumoral
characteristics was performed only in T2WI. Arterial spin labeling (ASL) and DWI were acquired
with the use of large pixel size to obtain sufficient signal-to-noise ratios; therefore, especially
complex intratumoral analysis such as second-order texture was somewhat difficult. Additionally,
post-contrast-enhanced T1WI is somewhat invasive, and differences in readout schemes such as 2D
or 3D acquisition affect intratumoral texture data. Third, although a few studies which performed
radiomics approach to predict treatment outcome in patients with head and neck cancer were recently
reported [32–35], whether diagnostic power obtained in the current study will be superior or not
compared to previous reports is still unclear. It was because patient characteristics, treatment method,
follow-up strategy, imaging technique and diagnostic model construction algorism were quite different
among these studies. Further analysis to address these limitations will be needed.

4. Materials and Methods

4.1. Subjects

This retrospective study was approved by the institutional review board of Hokkaido University
Hospital (ID: 017-0322, date of approval: 28th February 2018), and the requirement to obtain written
informed consent was waived. From September 2010 to October 2015, 36 consecutive patients with
histopathologically proven sinonasal SCCs who were referred to our hospital to undergo superselective
arterial infusion of cisplatin with concomitant radiotherapy were enrolled in this study. Patient
characteristics are summarized in Table 3.

The treatment regimen was a superselective arterial infusion of cisplatin with concomitant
radiotherapy for all patients. Superselective transarterial infusion therapy with cisplatin (100–120 mg/m2

per week for 4 weeks) via the dominant feeding arteries to the primary tumor was performed using
a microcatheter, with concurrent radiotherapy of a total of 70 Gy in 35 fractions with curative intent.
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Table 3. Patient characteristics (n = 36).

Number of Patients

Age

Range 43–73
Median 59
Average 58.7
Gender

Male 28
Female 8
Primary tumor site
Nasal cavity 6
Paranasal sinus 30
T-stage

T1 0
T2 1
T3 13
T4a 17
T4b 5
N-stage

N0 30
N1 2
N2 4
N3 0
Smoking status

Tabacco smokers 31
Packs-years
Range 2–161
Median 34
Average 40.4
Alcohol use

Occasional or non-drinker 10
Moderate use 6
Heavy use 20

4.2. MR Imaging Protocol

All MR imaging was performed using a 3.0-Tesla unit (Achieva TX; Philips Healthcare, Best,
The Netherlands) with a 16-channel neurovascular coil. MR imaging including conventional anatomical
imaging of spin-echo (SE) T1WIs, turbo spin-echo (TSE) fat-suppressed (Fs) T2WIs, ASL and multiple
b-value DWI was performed before treatment in all patients. The patients were instructed not to
swallow, move their tongues, open their mouths, or make any other voluntary motion during the MR
scan. All axial slices were placed in parallel with the anterior commissure-posterior commissure line.

4.2.1. Conventional MR Imaging Acquisition

Conventional MR imaging sequences were obtained to evaluate the primary tumor including
axial SE T1WIs (TR, 450 ms; TE, 10 ms; field of view (FOV), 240 × 240 mm; 512 × 512 matrix; slice
thickness, 5 mm; inter-slice gap, 30%; scanning time, 2 min 12 s), and axial TSE Fs-T2WIs (TR, 4500 ms;
TE, 70 ms; TSE factor, 9; FOV, 240 × 240 mm; 512 × 512 matrix; slice thickness, 5 mm; inter-slice gap,
30%; scanning time, 2 min 06 s). Coronal TSE T2WIs (TR, 4,500 ms; TE, 70 ms; TSE factor, 9; FOV,
240 × 240 mm; matrix, 512 × 512; slice thickness, 4 mm; inter-slice gap, 30%; scanning time, 2 min 06 s)
were also obtained as a supporting tool for ASL acquisition (see below).
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4.2.2. ASL Acquisition

For the ASL imaging, a pseudo-continuous ASL (pCASL) technique was used. The acquisition of
pCASL was performed using multi-shot spin-echo echo-planar imaging to obtain control and labeled
images. The labeling slab was placed just under the bifurcation of the internal and external carotid
arteries using coronal T2WIs as a reference for the placement of the labeling plane by carefully detecting
the vessel flow void. Control images were obtained without the labeling of arterial water, using the
same imaging scheme as the labeled images. The acquisition parameters of the pCASL were as follows:
labeling duration, 1650 ms; post-label delay, 1280 ms; TR, 3619 ms; TE, 18 ms; flip angle, 90◦; number of
shots, two; FOV, 230 × 230 mm; matrix, 80 × 80; slice thickness, 5 mm; number of slices, 15; acceleration
factor for parallel imaging, two; scanning time, 5 min 11 s. ASL-based perfusion-weighted images
were obtained by subtracting values of the control from the labeled images.

4.2.3. DWI Acquisition

The DWI acquisition used single-shot spin-echo echo-planar imaging (EPI) with three orthogonal
motion-probing gradients. Twelve b-values (0, 10, 20, 30, 50, 80, 100, 200, 400, 800, 1,000, and 2000 s/mm2)
were used. Other imaging parameters were: TR, 4500 ms; TE, 64 ms; DELTA (large delta; gradient time
interval), 30.1 ms; delta (small delta; gradient duration), 24.3 ms; flip angle, 90◦; FOV, 230 × 230 mm;
64 × 64 matrix; slice thickness, 5 mm × 20 slices; voxel size 3.59 × 3.59 × 5.00 mm; parallel imaging
acceleration factor, 2; numbers of signal averages, b-value of 0–100 s/mm2 (one average), 200–800 s/mm2

(two averages) and 1000–2000 s/mm2 (three averages); scanning time, 4 min 37 s.

4.3. Data Analysis

4.3.1. ROI Delineation

A board-certified neuroradiologist with ten years’ experience in head and neck imaging delineated
each tumor with a polygonal region-of-interest (ROI) on Fs-T2WIs, ASL subtraction images and DWI b0
images. The ROI of the axial Fs-T2WI was placed first; then almost the same ROI was delineated with
reference to the Fs-T2WI ROI so that the same region was delineated for all sequences. For the DWI
analysis, the tumor ROI on the b0 image was copied on the echo planar imaging (EPI) of the respective
b-values. Any area suspected of being a necrotic or a cystic lesion was excluded from the ROI. If the
tumor extended into two or more slices, all slices were delineated respectively. In addition, the medial
pterygoid muscle of the healthy side was also delineated with a polygonal ROI on Fs-T2WI and ASL
images for the relative T2WI signal intensity and perfusion parameter calculation with reference to the
axial Fs-T2WI.

4.3.2. Analysis of Fs-T2WI for Morphological and Intratumoral Data

For the analysis of morphological characteristics, we calculated the tumor volume and tumor
surface area from the morphological shape of all selected tumor voxels with the delineated tumor ROI
on Fs-T2WI. The sphericity of each tumor was calculated by a previously reported method [23]. For the
intra-tumoral characteristics analysis, we calculated the relative Fs-T2WI mean signal intensity (=mean
signal on tumor ROI/ the medial pterygoid muscle ROI), the coefficient of variance (CV) in the tumor
ROI and the textural parameters within the ROI. Textural features included the contrast, correlation,
energy, and homogeneity, based on gray-level co-occurrence matrix (GLCM) features, namely, spatially
detailed signal intensity data within the tumor ROI; GLCM were previously described the most
common and sensitive texture descriptor to calculate lesion heterogeneity in greater detail from the
texture data [36]. Texture parameters were calculated based on a previously reported method [37].
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4.3.3. ASL and DWI Analysis

We calculated the TBF of the pCASL from the signal data in ASL subtraction images using the
previously described equation [7]. Both absolute and relative TBF values were calculated, with absolute
TBF being the mean TBF value in the delineated tumor ROI, and relative TBF being that value
divided by the medial pterygoid muscle blood flow, i.e., the mean value in the muscle ROI [7].
From the diffusion signal data, we calculated each parameter of mono-exponential function (i.e., ADC),
bi-exponential function so-called IVIM (the perfusion fraction f, the pseudo-diffusion coefficient D*,
and the true diffusion coefficient D), the tri-exponential function (the perfusion-related diffusion fraction
f1 and coefficient D1, the intermediate diffusion fraction f2 and coefficient D2, and the slow diffusion
fraction f3 and coefficient D3), the stretched exponential model (SEM) (diffusion heterogeneity α and
distributed diffusion coefficient DDC) and the diffusion kurtosis imaging (DKI) (kurtosis value K and
kurtosis-corrected diffusion coefficient Dk). Using the signal intensities of all 12 b-values, we calculated
the bi-exponential and tri-exponential function parameters. Assessments of the ADC, SEM and DKI
usually target tissue diffusion (except for the perfusion-related signal), and we therefore used the signal
intensity of six b-values (0, 200, 400, 800, 1000 and 2000 s/mm2) for the parameter calculations of ADC,
DKI and SEM. To perform these parameter calculations, we used the previously reported calculation
method [38]. In-house developed program by MATLAB ver. 2015a (MathWorks, Natick, MA, USA)
was used for the above-described calculations.

4.4. Determination of the Clinical Outcome

In all patients, clinical and radiological follow-up was performed for ≥ 2 years after treatment
to determine the final diagnosis of local control/failure at the primary site. During follow-up
period, if residual/recurrent tumor was suspected by visual inspection or radiological assessment
(e.g., development of mass like lesion in post-treatment granulation tissue), surgical resection was
performed to confirm the presence of histological residual/recurrent tumor. If patient’s consent for the
surgical resection was not obtained, careful observation was continued. Local failure was defined by
the histopathological confirmation of SCC in biopsied or surgically resected tissue, or the observation of
clearly development/enlargement of a mass lesion arisen from post-treatment granulation. Local control
was defined by histopathological confirmation of the absence of SCC by surgical resection and no
enlargement of soft tissue in post-treatment granulation throughout the follow-up period.

4.5. Statistical Analysis Based on Machine Learning Algorithm

A machine-learning algorithm by non-linear SVM with radial basis function was used to obtain
the best diagnostic algorithm for the differentiation of local control versus failure groups. The kernel
size (γ) and regularization parameter (C) with the best performance to predict the local control versus
failure group was determined by the grid-search technique within ranges of 2−20 to 210 for γ and
from 2−10 to 210 for C. In the feature-selection process, we performed backward sequential selection to
determine the ranking in all features as well as the best diagnostic algorithm. This method is based
on an iterative technique in which the starting condition includes all features. With each iteration,
the feature with the least impact on improving the diagnostic performance for the differentiation of
local control versus failure is eliminated. Features are removed one by one, and the rank of each feature
is determined by the number of the iteration in which it was eliminated. Higher ranked features are
explained that remained through the longest number of iterations. Ultimately, several highly ranked
features that showed the highest diagnostic accuracy for predicting local control versus failure groups
were included in the final established diagnostic model [39]. To avoid the possibility of overfitting
with the use of leave-one-out cross-validation technique, the accuracy of the prediction was evaluated
through a 9-fold cross-validation scheme. The data were randomly divided into 9 equal-size subsets
(i.e. four patients each), of which eight subsets of the 32 (4 × 8) patients were used for training and the
remaining one of four (4 × 1) patients for validating. The mean diagnostic accuracy over 9 repetitions
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was calculated for all possible combinations of features to find the combination of features with the
highest predictive power. The overall analytic process is summarized in Figure 1. All of the analysis
was performed using MATLAB ver. 2015a.

Figure 1. The overall process for parameter acquisition and machine-learning analysis.

Morphological and intratumoral data from Fs-T2WI, perfusion data from ASL and diffusion data
from DWI were respectively obtained by post-processing image analysis. The diagnostic algorithm
was constructed by the machine-learning technique from all the obtained parameters in the training
set patient group; then, the diagnostic accuracy of the constructed algorithm was calculated from the
data in the validation set. This process was repetitively performed 9 times in each set of training and
validation groups in a total cross-validation analysis.

5. Conclusions

The integration of quantitative tumor morphological, intratumoral textural, perfusion and
diffusion data with the machine-learning-based analysis might be highly accurate at predicting
treatment outcomes in patients with sinonasal SCC. This information could help in making decisions
regarding treatment options such as details of treatment planning, additional treatment, and follow-up
strategies, and thus to improved patient prognoses.
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