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Abstract: Histopathological imaging has been routinely conducted in cancer diagnosis and recently
used for modeling other cancer outcomes/phenotypes such as prognosis. Clinical/environmental
factors have long been extensively used in cancer modeling. However, there is still a lack of study
exploring possible interactions of histopathological imaging features and clinical/environmental
risk factors in cancer modeling. In this article, we explore such a possibility and conduct both
marginal and joint interaction analysis. Novel statistical methods, which are “borrowed” from
gene–environment interaction analysis, are employed. Analysis of The Cancer Genome Atlas (TCGA)
lung adenocarcinoma (LUAD) data is conducted. More specifically, we examine a biomarker of lung
function as well as overall survival. Possible interaction effects are identified. Overall, this study can
suggest an alternative way of cancer modeling that innovatively combines histopathological imaging
and clinical/environmental data.
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1. Introduction

Cancer is extremely complex. Extensive statistical investigations have been conducted, modeling
various cancer outcomes/phenotypes. A long array of measurements from different domains have
been used in cancer modeling, including clinical/environmental factors, socioeconomic factors, omics
(genetic, genomic, epigenetic, proteomic, etc.) measurements, histopathological imaging features,
and others. However, none of the existing models is completely satisfactory, and it remains a
challenging task to develop new ways of cancer modeling.

Imaging has been playing an irreplaceable role in cancer practice and research [1]. It is
routine for radiologists to use Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
Positron Emission Computed Tomography (PET), and other techniques to generate radiological
images, which can inform the size, location, and other “macro” features of tumors [2]. Biopsies are
ordered, and pathologists review the slides of representative sections of tissues to make definitive
diagnosis. This procedure generates histopathological (diagnostic) images [3]. Through microscopically
examining small pieces of tissues, more “micro” features of tumors are obtained. Histopathological
images have been used as the gold standard for diagnosis. More recently, histopathological imaging
features have also been used to model other cancer outcomes/phenotypes. For example, in [4], they
were used for predicting the prognosis of estrogen receptor-negative breast cancer, and a multivariate
Cox regression was adopted. In [5], histopathological imaging features were used in a k-nearest
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neighbor classifier to assign images into different groups of Gleason tumor grading for prostate
cancer patients.

With the complexity of cancer, a single domain of measurement is insufficient, and measurements
from multiple sources are needed in modeling [6]. In the literature, histopathological imaging features
and clinical/environmental risk factors have been combined in an additive manner for modeling
cancer outcomes. In [7], for modeling lung cancer prognosis, clinical factors (including age, gender,
cancer type, smoking history, and tumor stage) were combined with imaging features in a multivariate
Cox regression model. This study and those alike have shown that combining the two sources of
information are more informative than a single source. Our literature review suggests that most
if not all of the existing studies have considered the additive effects of histopathological imaging
features and clinical/environmental factors, and studies that accommodate their interactions (referred to
as “I–E” interactions, with “I” and “E” standing for imaging and clinical/environmental factors, in this study)
are lacking. Statistically, adding interactions when the main-effect models are not fully satisfactory
is “normal”. Biologically speaking, incorporating such interactions have been partly motivated by
the success of gene–environment (G–E) interactions. Specifically, in the literature, the biological
rationale and practical success of G–E interactions have been well established [8]. Cancer is a genetic
disease. Histopathological images reflect essential information on the histological organization and
morphological characteristics of tumor cells and their surrounding tumor microenvironment, which
are heavily regulated by tumors’ molecular features. As such, from G–E interactions, we may naturally
derive I–E interactions. It is noted that I–E and G–E interaction analyses cannot replace each other.
More specifically, not all genetic information is contained in imaging features, and histopathological
features, as reflected in imaging data, are also affected by factors other than molecular changes.

This study has also been partly motivated by the ineffectiveness of techniques adopted in the
existing studies. Histopathological images contain rich information, and the number of extracted
features can be quite large, posing analytic challenges. This dimension problem is “brutally” handled
in some studies. For example, in [9], the univariate Cox model was fit to each imaging feature,
and those with the strongest marginal effects were selected. Such features were then used along with
clinical characteristics, including age, gender, smoking status, and tumor stage, to construct the final
prognostic model. When joint modeling is the ultimate goal, the aforementioned approach may miss
truly important signals in the first step of screening. To accommodate the high dimensionality in joint
modeling, penalization and other regularization techniques have been adopted. For example, in [10],
the elastic net approach, which combines the Lasso and ridge penalties, was used along with Cox
regression. With the differences between interactions and main effects, such methods cannot be directly
applied to analysis that accommodates I–E interactions. There are also studies that use advanced
deep learning techniques. For example, Bychkov and others [11] used the CNN (convolutional neural
network) technique to predict colorectal cancer prognosis based on images of tumor tissue samples.
Other examples also include [12,13]. Such deep learning techniques may excel in prediction, however,
usually lack interpretations and also suffer from a lack of stability when sample size is small.

The main objective of this article is to explore accommodating I–E interactions in cancer modeling.
Although the concept may seem simple, such an interaction analysis has not been conducted in the
literature. The adopted statistical methods have been “borrowed” from G–E interaction analysis.
With the connectedness between genetic and histopathological imaging features and parallelization of
G–E and I–E interaction analysis, such a strategy is sensible. The proposed interaction analysis strategy
and methods are demonstrated using the The Cancer Genome Atlas (TCGA) lung adenocarcinoma
data. Overall, this study may suggest an alternative way of utilizing histopathological imaging data
and modeling cancer more accurately.

2. Data

We demonstrate I–E interaction analysis using the TCGA lung cancer data. TCGA is a
collective effort organized by lNational Cancer Institute (NCI) and has published comprehensive
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data, especially on outcomes/phenotypes, clinical/environmental measures, and histopathological
images, for lung and other cancer types. Lung cancer is the leading cause of cancer death globally [14],
and lung adenocarcinoma (LUAD) is the most common histological subtype and has posed increasing
public concerns [15]. The TCGA LUAD data has been analyzed in multiple published studies,
including [7,9], who analyzed histopathological images, and [16,17], who conducted analysis on
clinical/environmental factors. Thus, it is of interest to “continue” these studies on main additive
effects and further examine potential I–E interactions with the TCGA LUAD data. It also has the
advantage of having a relatively larger sample size, which is critical to achieve meaningful findings.
It is noted that the proposed analysis can be directly applied to data on other cancer types.

We acquire 541 whole slide histopathology images from the TCGA ldata portal [18]. To extract
imaging features, we adopt the following pipeline developed by Luo and others [9]. First, as the
size of the whole slide images, which is from 300 Mb up to 2 Gb with 110,000 × 70,000 pixels, is too
huge to be analyzed directly, each image is cropped into sub-images with 500 × 500 pixels and saved
as tiff image files using the Openslide Python library. Analyzing all the sub-images (more than
10 million image tiles in total) is still computationally unfeasible. Thus, twenty representative tiff
sub-images that contain mostly (>50%) regions of interest are randomly selected as input for the
following process. It is expected that the randomly selected sub-images are representative samples
for the overall “population” of sub-images. Such cropping and random selection are common steps
in whole slide image processing and widely adopted in published imaging studies [10,19–21]. It is
noted that randomly selecting sub-images may lead to imaging features with very small differences
(and so affect downstream analysis). However, as our main goal is cancer model building, as opposed
to feature selection, such small differences may not be of major concern.

Second, we adopt CellProfiler [22], a platform designed for cell image processing and used in
quite a few recent publications, to extract quantitative features from each sub-image. Specifically,
image colors are separated based on hematoxylin and eosin staining, and converted to grayscale for
extracting regional features. Next, cell nuclei are detected and segmented so that cell-level features can
be specifically measured. Other features such as regional occupation, area fraction, and neighboring
architecture are also captured. Irrelevant features such as file size and execution information are
excluded from analysis. This procedure results in a total of 772 features which are categorized
into the texture, geometry, and holistic groups. Specifically, the texture group contains Haralick,
Gabor “wavelet”, and Granularity features, which are classic image processing features, measure the
texture properties of cells and tissues, and have been examined in a large number of imaging studies.
The geometry group contains features that describe the geometry properties (such as area, perimeter,
and so on), and those extracted by Zernike moments. The holistic group contains holistic statistics
that describe overall information, such as the total area, perimeter and number of nuclei, and nuclear
staining area fraction.

Third, for each patient, the features of images are normalized using sample mean at the patient
level. Missing values (with a missing rate lower than 20%) are imputed using sample medians.

For clinical/environmental risk factors, we consider age, American Joint Committee on Cancer
tumor pathologic stage, tobacco smoking history indicator, and sex. These variables have been
suggested as associated with multiple lung cancer outcomes/phenotypes, including those analyzed in
this article [23]. In particular, Nordquis and others [24] found that the mean age at diagnosis of lung
adenocarcinoma among never-smokers was significantly higher than that among current smokers,
and the never-smokers with lung adenocarcinoma were predominantly female. Studies have shown
that tobacco smoking is responsible for 90% of lung cancer [25], and has been identified as a negative
prognostic factor for lung adenocarcinoma [26]. In addition, these factors have also been considered in
G–E interaction analysis [27].

Multiple outcome variables have been analyzed in the literature [7]. In this article, we consider
two important response variables: (a) FEV1: the reference value for the pre-bronchodilator forced
expiratory volume in one second in percent. It is an important biomarker for lung capacity. It is
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continuously distributed, with mean 80.28 and interquartile range [67.00, 96.25]. Data is available
for 132 subjects; and (b) overall survival, which is subject to right censoring. Data is available for
271 subjects, among whom 102 died during follow-up. The mean observed time is 27.47 months,
with interquartile range [14.06, 35.00].

The adopted feature extraction process follows [9], where the extracted imaging features
were used to predict lung cancer prognosis. Similar processes have also been adopted in other
publications [10,19]. Different from limited histopathological features recognized visually by
pathologists, CellProfiler extracted features are morphological features of tissue texture, cells,
nuclei, and neighboring architecture. These features are extracted and measured by comprehensive
computer algorithms, and are impossible to be assessed by human eyes. As demonstrated in [9],
quantitative imaging features provide objective and rich information contained in images that can
reveal hidden information to decode tumor development and progression in lung cancer. Following
the literature [9,20,21], we adopt feature names automatically assigned by CellProfiler, as can be partly
seen in Tables 1–4. These names provide a brief description of the extracted information with the
general form “Compartment_FeatureGroup_Feature_Channel_Parameters”. For example, features
“AreaShape_MedianRadius” and “AreaShape_MaximumRadius” measure the median and maximum
radius of the identified tissue, respectively. As in some recent studies [9,20,21], in this study, our goal
is not to identify specific imaging features as markers and make biological interpretations. Instead,
we aim to conduct better cancer modeling by incorporating I–E interactions. As such, although they
may not have simple, explicit biological interpretations, these features are sensible for our analysis.

3. Methods

In parallel to G–E interaction analysis [28], we conduct two types of I–E interaction analysis,
namely marginal and joint analysis. The overall flowchart of analysis is provided in Figure 1.
In marginal analysis, one imaging feature, one clinical/environmental variable (or multiple such
variables), and their interaction are analyzed at a time. In joint analysis, all imaging features,
all clinical/environmental variables, and their interactions are analyzed in a single model. The two
types of analysis have their own pros and cons and cannot replace each other. We refer to the
literature [29,30] for more detailed discussions on the two types of analysis.

First, consider a continuous cancer outcome, which matches the FEV1 analysis. Denote Y as
the length N vector of outcome, where N is the sample size. Denote E = [E1, · · · , EJ ] as the N × J
matrix of clinical/environmental variables, and X = [X1, · · · , XK] as the N × K matrix of imaging
features. As represented by the LUAD data, usually clinical/environmental variables are pre-selected
and low-dimensional, and imaging features are high-dimensional.

3.1. Marginal Analysis

Detailed discussions of marginal G–E interaction analysis are available in [31] and other recent
literature. The marginal I–E interaction analysis proceeds as follows. First, assume that Y, E, and X
have been properly centered.

(a) For j = 1, . . . , J and k = 1, . . . , K, consider the linear regression model

Y = αjEj + βkXk + γjkEjXk + ε, (1)

where αj and βk respectively represent the main effects of the jth clinical/environmental factor
and the kth imaging feature, γjk is the interactive effect, and ε is the random error. A total of J × K
models are built.

(b) As each model has a low dimension, estimates can be obtained using standard likelihood based
approaches and existing software. p-values can be obtained accordingly.
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(c) Interactions (and main effects) with small p-values are identified as important. When more
definitive conclusions are needed, the false discovery rate (FDR) or Bonferroni approach
can be applied.

It is noted that, in Step (a), one clinical/environmental variable is analyzed in each model, which
follows [31]. It is also possible to accommodate all clinical/environmental variables in each model.
In Step (c), discoveries can be made on interactions only or interactions and main effects combined.
Advantages of marginal analysis include its computational simplicity and stability. On the negative
side, with the complexity of cancer, an outcome/phenotype is usually associated with multiple imaging
features and clinical/environmental variables. As such, each marginal model can be “mis-specified”
or “suboptimal”. In addition, there is a lack of attention to the differences between interactions and
main effects.

Figure 1. Flowchart of the I–E interaction analysis of The Cancer Genome Atlas (TCGA) lung
adenocarcinoma (LUAD) data.
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3.2. Joint Analysis

Joint analysis can tackle some limitations of marginal analysis, and is getting increasingly popular
in statistical and bioinformatics literature. It proceeds as follows.

(a) Consider the joint model

Y =
J

∑
j=1

τjEj +
K

∑
k=1

ηkXk +
J

∑
j=1

K

∑
k=1

ηkθjkEjXk + ε, (2)

where τj and ηk are the main effects of the jth environmental factor and the kth imaging feature,
respectively, and the product of ηk and θjk corresponds to the interaction.

(b) For estimation, consider the Lasso penalization

min
ηk ,θjk
||Y− f (E, X)||2 + λ1 ∑

k
|ηk|+ λ2 ∑

j
∑
k
|θjk|, (3)

where f (E, X) = ∑j τjEj + ∑k ηkXk + ∑j ∑k ηkθjkEjXk, and λ1, λ2 > 0 are tuning parameters.
In numerical study, we select the tuning parameters using the extended Bayesian information
criterion [32].

(c) Interactions (and main effects) with nonzero estimates are identified as being associated
with the outcome.

3.3. Accommodating Survival Outcomes

Consider cancer survival. Denote T as the N-vector of survival times. Below, we describe joint
analysis, and marginal analysis can be conducted accordingly. We adopt the AFT (accelerated failure
time) model, under which

log(T) =
J

∑
j=1

τjEj +
K

∑
k=1

ηkXk +
J

∑
j=1

K

∑
k=1

ηkθjkEjXk + ε, (4)

where notations have similar implications as in the above section. With high-dimensional data,
the AFT model has been widely adopted because of its lucid interpretation and more importantly
computational simplicity [33]. Under right censoring, denote C as the N-vector of censoring
times, Y = log(min(T, C)), and δ = I(T ≤ C), where operations are taken component-wise.
To accommodate censoring, a weighted approach is adopted. Assume that data have been sorted
according to Yi’s from the smallest to the largest. The Kaplan–Meier weights can be computed

as w1 =
δ1

N
, wi =

δi
N − i + 1

i−1
∏
j=1

(
N − j

N − j + 1

)δj

, i = 2, . . . , N. Similar to Equation (3), consider the

penalized estimation

min
ηk ,θjk
||
√

w× (Y− f (E, X))||2 + λ1 ∑
k
|ηk|+ λ2 ∑

j
∑
k
|θjk|, (5)

where the square root and multiplication are taken component-wise. Interpretations and other
operations are the same as for continuous outcomes.

In joint analysis, the most prominent challenge is the high dimensionality. Here, the penalization
technique is adopted, which can simultaneously accommodate high dimensionality and identify
relevant interactions/main effects. Another feature of this analysis that is worth highlighting is
that it respects the “main effects, interactions” hierarchy. That is, if an I–E interaction is identified,
the corresponding main imaging feature effect is automatically identified. It has been suggested that,
statistically and biologically, it is critical to respect this hierarchy [34]. We refer to the literature [35,36]
for alternative penalization and other joint interaction analysis methods. Compared to marginal



Cancers 2019, 11, 579 7 of 14

analysis, joint analysis can be computationally more challenging, and well-developed software
packages are still limited. In addition, the analysis results can be less stable.

The proposed analysis can be effectively realized. To facilitate data analysis within and beyond
this study, we have developed R code and made it publicly available at www.github.com/shuanggema.

4. Results

4.1. Analysis of FEV1

4.1.1. Marginal Analysis

After the FDR adjustment, none of the main effects or interactions are statistically significant.
In Table 1, we present the main effects and interactions with the smallest (unadjusted) p-values. The top
ranked main effects are from the Geometry and Texture groups, and the top ranked interactions are
from the Geometry group and with sex.

Based on the analysis results, we conduct a power calculation. First, assume the current levels of
estimated effects and their variations. Then, with a sample size of 224, the top ranked I–E interactions
can be identified as significant with target FDR 0.1. Second, consider the current sample size and levels
of variations. Then, an effect of −0.35 can be identified as significant with target FDR 0.1.

For comparison, we conduct the analysis of main effects (without interactions). The top eight
main effects (with the smallest p-values) have four overlaps with those in Table 1, suggesting that
accommodating interactions can lead to different findings.

Table 1. Marginal analysis of the reference value for the pre-bronchodilator forced expiratory volume
in one second in percent (FEV1): identified main effects and interactions, with raw p-values Pr.

Feature Group Feature Name Estimate Pr

Geometry AreaShape_Zernike_2_2 Main 0.270 0.002
Geometry AreaShape_Zernike_5_3 Main −0.319 0.001
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_9_9 Main −0.259 0.004
Geometry Median_Identifyhemasub2_AreaShape_Zernike_7_1 Main −0.249 0.005
Geometry Median_Identifyhemasub2_AreaShape_Zernike_8_6 Main −0.272 0.003
Texture StDev_Identifyeosinprimarycytoplasm_Texture_Correlation_maskosingray_3_01 Main 0.280 0.002
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_8 Main −0.251 0.005
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_9_1 Main −0.259 0.004
Geometry StDev_Identifyhemasub2_AreaShape_Center_Y Sex 0.291 0.002
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_2 Sex 0.304 0.001
Geometry StDev_Identifyhemasub2_Location_Center_Y Sex 0.294 0.002

4.1.2. Joint Analysis

The analysis results are provided in Table 2. A total of 11 imaging features are identified,
representing the Geometry and Texture groups. A total of 11 interactions are identified, with all
four clinical/environmental variables.

For comparison, we consider the joint model with all clinical/environmental variables and
imaging features but no interactions. Lasso penalization is applied for selection and estimation. A total
of eight imaging features are identified, with one overlapping with those in Table 2. We further compute
the RV coefficient, which may more objectively quantify the amount of “overlapping information”
between two analyses. Specifically, it measures the “correlation” between two data matrices of
important effects identified by two different approaches, with a larger value indicating higher similarity.
The RV coefficient is 0.24, suggesting a mild level of overlapping.

A significant advantage of joint analysis is that it can lead to a predictive model for the outcome
variable. We conduct the evaluation of prediction based on a resampling procedure, which may
provide support to the validity of analysis. Specifically, we split data into a training and a testing
set, generate estimates using the training data, and make predictions for the testing set subjects.
The PMSE (prediction mean squared error) is then computed. This procedure is repeated 100 times,

www.github.com/shuanggema


Cancers 2019, 11, 579 8 of 14

and the mean PMSE is computed. The I–E interaction model has a mean PMSE of 0.84, whereas the
main-effect-only model has a mean PMSE of 1.12. This significant improvement suggests the benefit of
accommodating interactions.

Table 2. Joint analysis of FEV1: identified main effects and interactions.

Feature Group Feature Name Main Age Stage Smoking Sex

−0.049 −0.052 −0.002 0.006
Geometry AreaShape_Zernike_2_2 0.163 0.040 −0.014 −0.185
Geometry AreaShape_Zernike_5_3 −0.053
Geometry AreaShape_Zernike_6_0 −0.034
Texture Granularity_10_ImageAfterMath 0.137 0.110 −0.020 0.064
Geometry Location_Center_X 0.002
Geometry Mean_Identifyeosinprimarycytoplasm_Location_Center_X 0.005
Geometry Median_Identifyhemasub2_AreaShape_Zernike_7_1 −0.127 −0.073 0.072 0.003
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_2 −0.170 −0.083 0.188
Texture StDev_Identifyhemasub2_Granularity_6_ImageAfterMath −0.029
Texture Texture_AngularSecondMoment_ImageAfterMath_3_00 −0.044
Texture Texture_AngularSecondMoment_ImageAfterMath_3_03 −0.010

4.2. Analysis of Overall Survival

4.2.1. Marginal Analysis

The analysis results are provided in Table 3, where we present estimates, raw p-values, as well as
the FDR adjusted p-values. Three imaging features from the Holistic group have the FDR adjusted
p-values < 0.1. In addition, 36 imaging features from the Geometry group and 24 features from the
Texture group are identified as having interactions with Smoking, the most important environmental
factor for lung cancer. Compared to the above analysis, more “signals” are identified. Note that the
effective sample size is smaller than that above. As such, the smaller p-values are likely to be caused
by stronger signals.

For comparison, we conduct the analysis of main effects. One imaging feature is identified as
having FDR adjusted p-value < 0.1, which is also identified in Table 3. With the complexity of lung
cancer prognosis, the interaction analysis, which identifies more effects, can be more sensible.

4.2.2. Joint Analysis

The analysis results are provided in Table 4. A total of 31 imaging features are identified,
representing the three feature groups. Two imaging features are identified as interacting with two and
four clinical/environmental variables, respectively.

The analysis of main effects is conducted using the Lasso penalization. A total of two imaging
features are identified, with one overlapping with those in Table 4. The RV coefficient is computed
as 0.40, representing a moderate level of overlapping. As with FEV1, prediction evaluation is also
conducted based on resampling. For the testing set, subjects are classified into low and high risk
groups with equal sizes based on the predicted survival times, where subjects with predicted survival
times larger than the median are classified into the low risk group. For one resampling of training
and testing sets, in Figure 2, we plot the Kaplan–Meier curves estimated using the observed survival
times for the predicted low and high risk groups, along with those generated under the additive
main-effect model. Compared to the main-effect model, it is obvious that the two risk groups identified
by the I–E interaction model have a much clearer separation of the survival functions, indicating
better prediction performance. To be more rigorous, we further conduct a logrank test, which is
a nonparametric test for comparing the survival distributions of two subject groups. With 100
resamplings, the average logrank statistics are 7.28 (I–E interaction model, p-value = 0.007) and
0.99 (main-effect model, p-value = 0.320), respectively. The superior prediction performance of the
I–E interaction models suggests that incorporating interactions can lead to clinically more powerful
models, justifying the value of the proposed analysis.
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Table 3. Marginal analysis of overall survival: identified main effects and interactions, with raw
p-values Pr and false discovery rate (FDR) adjusted p-values Pa.

Feature Group Feature Name Estimate Pr Pa

Holistic Threshold_FinalThreshold_Identifyeosinprimarycytoplasm Main -0.301 0 0.095
Holistic Threshold_OrigThreshold_Identifyeosinprimarycytoplasm Main −0.301 0 0.095
Holistic Threshold_WeightedVariance_identifyhemaprimarynuclei Main −0.360 0 0.077
Geometry AreaShape_Area Smoking 0.253 0.004 0.078
Geometry AreaShape_MaximumRadius Smoking 0.266 0.004 0.074
Geometry AreaShape_MeanRadius Smoking 0.265 0.005 0.079
Geometry AreaShape_MedianRadius Smoking 0.266 0.005 0.079
Geometry AreaShape_MinFeretDiameter Smoking 0.257 0.003 0.073
Geometry AreaShape_MinorAxisLength Smoking 0.264 0.002 0.07
Geometry AreaShape_Zernike_4_4 Smoking −0.241 0.005 0.079
Geometry AreaShape_Zernike_7_3 Smoking −0.308 0 0.027
Geometry AreaShape_Zernike_8_4 Smoking −0.242 0.007 0.096
Geometry AreaShape_Zernike_8_6 Smoking −0.252 0.005 0.079
Geometry AreaShape_Zernike_9_1 Smoking −0.303 0 0.027
Texture Granularity_13_ImageAfterMath.1 Smoking −0.317 0.001 0.054
Texture Mean_Identifyeosinprimarycytoplasm_Texture_Correlation_maskosingray_3_03 Smoking 0.232 0.005 0.079
Geometry Mean_Identifyhemasub2_AreaShape_Area Smoking 0.297 0.001 0.049
Geometry Mean_Identifyhemasub2_AreaShape_MaximumRadius Smoking 0.318 0.001 0.049
Geometry Mean_Identifyhemasub2_AreaShape_MeanRadius Smoking 0.318 0.001 0.049
Geometry Mean_Identifyhemasub2_AreaShape_MedianRadius Smoking 0.308 0.002 0.054
Geometry Mean_Identifyhemasub2_AreaShape_MinFeretDiameter Smoking 0.299 0.001 0.049
Geometry Mean_Identifyhemasub2_AreaShape_MinorAxisLength Smoking 0.310 0.001 0.045
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_4_4 Smoking −0.263 0.003 0.07
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_5_1 Smoking −0.268 0.002 0.07
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_8_2 Smoking −0.277 0.003 0.073
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_8_8 Smoking −0.290 0.003 0.073
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_9_1 Smoking −0.226 0.004 0.074
Texture Mean_Identifyhemasub2_Granularity_13_ImageAfterMath Smoking −0.325 0.001 0.054
Texture Mean_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_01 Smoking 0.330 0 0.039
Texture Mean_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_02 Smoking 0.297 0.002 0.07
Texture Mean_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_03 Smoking 0.397 0 0.01
Texture Mean_Identifyhemasub2_Texture_SumVariance_ImageAfterMath_3_02 Smoking 0.258 0.007 0.093
Texture Median_Identifyeosinprimarycytoplasm_Texture_Correlation_maskosingray_3_03 Smoking 0.233 0.004 0.079
Geometry Median_Identifyhemasub2_AreaShape_Area Smoking 0.344 0 0.027
Geometry Median_Identifyhemasub2_AreaShape_MaxFeretDiameter Smoking 0.242 0.005 0.079
Geometry Median_Identifyhemasub2_AreaShape_MaximumRadius Smoking 0.323 0.001 0.049
Geometry Median_Identifyhemasub2_AreaShape_MeanRadius Smoking 0.323 0.001 0.049
Geometry Median_Identifyhemasub2_AreaShape_MedianRadius Smoking 0.266 0.005 0.079
Geometry Median_Identifyhemasub2_AreaShape_MinFeretDiameter Smoking 0.346 0 0.027
Geometry Median_Identifyhemasub2_AreaShape_MinorAxisLength Smoking 0.342 0 0.027
Geometry Median_Identifyhemasub2_AreaShape_Perimeter Smoking 0.247 0.006 0.085
Geometry Median_Identifyhemasub2_AreaShape_Zernike_4_4 Smoking −0.242 0.002 0.059
Geometry Median_Identifyhemasub2_AreaShape_Zernike_5_1 Smoking −0.256 0.003 0.073
Texture Median_Identifyhemasub2_Granularity_13_ImageAfterMath Smoking −0.311 0.001 0.049
Texture Median_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_01 Smoking 0.319 0.001 0.049
Texture Median_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_02 Smoking 0.274 0.005 0.081
Texture Median_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_03 Smoking 0.394 0 0.01
Texture StDev_Identifyeosinprimarycytoplasm_Texture_SumAverage_maskosingray_3_00 Smoking 0.272 0.003 0.073
Texture StDev_Identifyeosinprimarycytoplasm_Texture_SumAverage_maskosingray_3_01 Smoking 0.273 0.003 0.073
Texture StDev_Identifyeosinprimarycytoplasm_Texture_SumAverage_maskosingray_3_02 Smoking 0.270 0.004 0.074
Texture StDev_Identifyeosinprimarycytoplasm_Texture_SumAverage_maskosingray_3_03 Smoking 0.275 0.003 0.073
Geometry StDev_identifyhemaprimarynuclei_Location_Center_Y Smoking −0.245 0.007 0.093
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_4 Smoking −0.280 0.001 0.045
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_8 Smoking −0.236 0.007 0.094
Texture StDev_Identifyhemasub2_Texture_SumVariance_ImageAfterMath_3_01 Smoking 0.266 0.007 0.096
Texture StDev_Identifyhemasub2_Texture_SumVariance_ImageAfterMath_3_02 Smoking 0.283 0.005 0.079
Texture StDev_Identifyhemasub2_Texture_SumVariance_ImageAfterMath_3_03 Smoking 0.283 0.006 0.084
Geometry StDev_identifytissueregion_Location_Center_Y Smoking −0.289 0.002 0.059
Texture Texture_Correlation_ImageAfterMath_3_01 Smoking 0.252 0.004 0.078
Texture Texture_Correlation_ImageAfterMath_3_03 Smoking 0.329 0 0.027
Texture Texture_Correlation_maskosingray_3_03 Smoking 0.237 0.004 0.074
Texture Texture_Entropy_ImageAfterMath_3_01 Smoking 0.220 0.007 0.093
Texture Texture_Entropy_ImageAfterMath_3_03 Smoking 0.233 0.004 0.074

4.3. Simulation

Comparatively, joint analysis is newer and has been less conducted. To gain more insights into
the validity of findings from our joint interaction analysis, we conduct a set of data-based simulation.
Specifically, the observed imaging features and clinical/environmental factors are used. To generate
variations across simulation replicates, we use resampling, with sample sizes set as 200. The “signals”
and their levels are set as those in Tables 2 and 4, respectively. For both the continuous and (log)
survival outcomes, we generate random errors from N(0, 1). For the survival setting, we generate the
censoring times from randomly sampling the observed. The Lasso-based penalization approach is
then applied, with tuning parameters selected using the extended Bayesian information criterion (BIC)
approach. To evaluate identification, TP (true positive) and FP (false positive) values are computed.
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Summary statistics are computed based on 100 replicates. Under the continuous outcome setting,
there are 11 true main effects and 11 I–E interactions. For main effects, the TP and FP values are 9.75
(1.65) and 3.15 (1.39), respectively, where numbers in “()” are standard deviations. For interactions,
the TP and FP values are 7.35 (0.99) and 0.05 (0.22), respectively. Under the censored survival outcome
setting, there are 31 true main effects and 6 I–E interactions. For main effects, the TP and FP values
are 24.41 (3.98) and 13.90 (2.47), respectively. For interactions, the TP and FP values are 3.24 (0.21)
and 0.24 (0.12), respectively. Overall, at the estimated signal levels and with the observed feature
distributions, the joint analysis is capable of identifying the majority of true interactions and main
effects, with a moderate number of false discoveries. This provides a high level of confidence to the
joint interaction analysis.
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Figure 2. Kaplan–Meier curves of high and low risk groups identified by the approach that
accommodates interactions ((a); logrank test p-value 0.007) and the one with main effects only ((b);
logrank test p-value 0.320).

Table 4. Joint analysis of overall survival: identified main effects and interactions.

Feature Group Feature Name Main Age Stage Smoking Sex

−0.024 −0.317 −0.038 −0.088
Geometry AreaShape_Zernike_6_0 −0.038
Geometry AreaShape_Zernike_6_4 −0.019
Geometry AreaShape_Zernike_6_6 0.052
Geometry AreaShape_Zernike_9_3 0.027
Geometry AreaShape_Zernike_9_5 0.153
Texture Granularity_10_ImageAfterMath.1 −0.033
Texture Granularity_9_ImageAfterMath 0.081
Geometry Mean_Identifyhemasub2_AreaShape_Center_X 0.002
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_5_1 0.013
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_6_2 −0.002
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_6_4 −0.010
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_9_9 −0.146
Geometry Mean_Identifyhemasub2_Location_Center_X 0.002
Geometry Mean_identifytissueregion_Location_Center_X 0.056
Geometry Median_Identifyeosinprimarycytoplasm_Location_Center_X −0.071
Geometry Median_Identifyhemasub2_AreaShape_Zernike_4_0 0.023
Geometry Median_Identifyhemasub2_AreaShape_Zernike_7_3 0.083
Geometry Median_Identifyhemasub2_AreaShape_Zernike_8_4 −0.120
Geometry Median_Identifyhemasub2_AreaShape_Zernike_8_6 −0.098
Geometry Median_Identifyhemasub2_AreaShape_Zernike_9_1 −0.044
Geometry Median_identifytissueregion_Location_Center_Y −0.063
Holistic Neighbors_SecondClosestDistance_Adjacent −0.170 −0.072 0.002
Geometry StDev_Identifyeosinprimarycytoplasm_Location_Center_Y 0.095

Texture
StDev_Identifyeosinprimarycytoplasm_Texture
_DifferenceVariance_maskosingray_3_00 0.036

Geometry StDev_Identifyhemasub2_AreaShape_Orientation −0.159
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_8 −0.146
Texture StDev_Identifyhemasub2_Granularity_12_ImageAfterMath −0.101
Texture StDev_Identifyhemasub2_Granularity_13_ImageAfterMath 0.327 0.130 0.072 −0.189 0.174
Texture StDev_Identifyhemasub2_Granularity_9_ImageAfterMath 0.003

Texture
StDev_Identifyhemasub2_Texture_SumVariance
_ImageAfterMath_3_01 −0.034

Geometry StDev_identifytissueregion_Location_Center_Y 0.016
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5. Discussion

Histopathological imaging analysis has been routine in cancer diagnosis, and recently,
its application in the analysis of cancer biomarkers, outcomes, and phenotypes has been explored.
This study has taken a natural next step and conducted the imaging-environment interaction analysis.
Statistically and biologically speaking, the analysis has been partly motivated by G–E interaction
analysis. It is noted that the statistical methods themselves have been almost fully “translated” from
G–E interaction analysis. As I–E interaction analysis has not been conducted in published cancer
modeling studies, it is sensible to first employ well-developed methods, and in the future, methods that
are more tailored to imaging data may be developed. We also note that in cancer modeling and other
biomedical fields, it is not uncommon to apply methods well developed in one field to other new fields.
The proposed I–E interaction analysis, especially joint analysis, may seem considerably more complex
than some cancer modeling approaches. With the complexity of cancer, models with a few variables
and simple statistical analysis are getting increasingly insufficient. Published studies have suggested
that advanced statistical techniques and complex models are needed. Recent developments for lung
cancer, including the elastic net-Cox analysis [10], deep convolutional neural network [13], and deep
network based on convolutional and recurrent architectures [11], have comparable or higher levels of
complexity compared to the proposed analysis. Artificial intelligence (AI) techniques, which have
been recently used for cancer modeling in particular including the radiomics analysis of non-small-cell
lung cancer [37,38], have even higher levels of complexity. We conjecture that such complexity will
also be needed for future developments in cancer modeling using imaging data. The increasing
complexity in cancer modeling seems to be an inevitable trend, and domain specific expertise is a must
for such analysis.

We have analyzed the TCGA LUAD data with a continuous and a censored survival outcome.
This choice has been motivated by the clinical importance of lung adenocarcinoma as well as data
availability (a larger sample size). It is noted that the proposed analysis and R program will be directly
applicable to the analysis of data on other cancer types. I–E interactions have been identified in both
marginal and joint analysis, for both FEV1 and overall survival. There is one prominent difference
between imaging and genetic/clinical data. With extensive investigations and functional experiments,
the biological and biomedical implications of most clinical/environmental factors and genes are at
least partially known. It is thus possible to evaluate whether G–E interactions are biologically sensible.
The circumstance is significantly different for histopathological imaging features. The rationale and
algorithms for feature extraction have been made clear in the developments of CellProfiler and other
software. However, the identified features do not have lucid biological interpretations. As such,
we are not able to objectively assess the biological implications of the findings in Tables 1–4. It is
noted that this limitation is also shared by recently published imaging studies [9,20,21], which have
unambiguously demonstrated the great value of such imaging features in cancer modeling. It is
also noted that imaging features derived from computer-aided pathological analysis have the unique
advantage of being objective and comprehensive, and can reveal hidden information contained
in histopathological images that cannot be recognized or assessed by pathologists. Our statistical
evaluations, including the prediction evaluation and data-based simulation, can provide support to
the analysis results to a great extent. In general, more investigations into the biological implications of
the computer-program-extracted imaging features will be needed.

This study has suggested a new venue for cancer modeling. Although findings made on LUAD
may not be applicable to other cancers, the analysis technique and R program will be broadly applicable.
Following the flowchart in Figure 1 and detailed steps described in this article, and using the publicly
available R program, cancer biostatisticians and clinicians should be able to carry out the proposed
analysis with their own data. More specifically, with their own clinical/environmental and imaging
data, they will be able to construct models for prognosis and other outcomes/phenotypes. Such models,
as other cancer models (for example those using omics data), can be used to assist clinical decision
making. Overall, this study may help advance the challenging field of cancer modeling.
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6. Conclusions

Histopathological imaging data may harbor important information on cancer and has been
recently used for modeling cancer clinical outcomes and phenotypes. This study has been the first to
examine the interactions between imaging features and clinical/environmental risk factors in cancer
modeling. Marginal and joint analysis approaches have been described. In the analysis of TCGA
LUAD data, it has been shown that I–E interactions may be important for modeling FEV1 and overall
survival. Overall, this study has suggested a new paradigm of cancer bioinformatics modeling.
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