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Abstract: Previously, we reported that nicotine reduces erlotinib sensitivity in a xenograft model
of PC9, an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-sensitive
non-small-cell lung cancer cell line. The present study examined whether smoking induces erlotinib
resistance in vitro. We assessed resistance to EGFR-TKIs by treating cancer cell lines with erlotinib,
afatinib, or osimertinib, and serum collected from smokers within 30 min of smoking and that from
a non-smoker as a control. We also assessed erlotinib resistance by treating PC9 cells exposed to
serum from a smoker or a non-smoker, or serum from an erlotinib user. Treatment of the cancer
cell lines with serum from smokers induced significant erlotinib resistance, compared with the
control (p < 0.05). Furthermore, serum samples with a high concentration of cotinine (a nicotine
exposure indicator) demonstrated stronger erlotinib resistance than those with low concentrations.
Similar to the observations with erlotinib treatment of cell lines, the analysis of serum from erlotinib
users revealed that smokers demonstrated significantly reduced sensitivity to erlotinib (p < 0.001).
In conclusion, our present results support the hypothesis that smoking contributes to resistance to
erlotinib therapy in non-small-cell lung cancer.

Keywords: cotinine; nicotine; non-small-cell lung cancer (NSCLC); EGFR; erlotinib resistance

1. Introduction

Smoking is a major risk factor for lung cancer, 85% of which is non-small-cell lung cancer
(NSCLC) [1]. One of the primary components of tobacco is nicotine, which is known to promote cancer
cell growth, metastasis, and resistance to chemotherapy. Nicotine is believed to exert these effects by
binding to nicotinic acetylcholine receptors (nAchRs) expressed on lung cancer cells, thereby activating
signaling pathways such as the Phosphoinositide 3-kinase/ Protein Kinase B (PI3K/AKT), Extracellular
Signal-regulated Kinase (ERK) 1/2, Mitogen-activated Protein Kinase (MAPK), Mitogen-activated
protein kinase kinase (MEK), nuclear factor-kappa B (NFκB), β-arrestin-1, Src kinase, and Rb-Raf-1
signaling pathways, and consequently triggering cell survival and proliferation, angiogenesis, invasion,
epithelial-mesenchymal transition, and inhibition of apoptosis [2–17]. While there are various subunits
(α [1–10], β [1–4], δ, γ, and ε) of nAchRs [2], we have focused on the α1 subunit to investigate the
association between nicotine and lung cancer.
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We previously reported that α1nAchR is expressed in the epidermal growth factor receptor (EGFR)
mutation-positive NSCLC cell lines (PC9 and HCC827) [18,19]. Furthermore, we demonstrated that the
action of nicotine on α1nAchR in murine xenograft models of both cell lines activates EGFR signaling
pathways via PI3K/AKT and ERK1/2, and reduces sensitivity to erlotinib, a typical EGFR-tyrosine
kinase inhibitor (TKI) [18,19]. The present study aimed to examine whether smoking induces resistance
to erlotinib, using human serum obtained from smokers and non-smokers.

2. Results

2.1. Serum Cotinine Levels of All Subjects

Table 1 shows the age, sex, smoking history, and serum cotinine levels of the four smokers and
one non-smoker. Heavy smokers showed higher cotinine levels than light smokers. Smoker No. 4
showed the highest cotinine level at 488.4 ng/mL.

Table 1. Characteristics and smoking status of four smokers and a non-smoker.

Factor Non-Smoker Current Smoker

Serum No. 1 2 3 4

Gender Female Male Female Male Male
Age (years) 57 31 33 35 46
Pack-years 0 1.5 2.5 7.5 18.75

No. of cigarettes/day 0 3 5 10 15
Brinkman index 0 30 50 150 375

Serum cotinine level (ng/mL) 0.6 33.0 65.6 111.6 488.4

2.2. Treatment of PC9 and HCC827 Cells with Serum from the Reduced Sensitivity of Smokers to Erlotinib

The erlotinib-treated (1 µM) PC9 and HCC827 cell lines demonstrated significantly reduced
erlotinib sensitivity when treated with serum from smoker No. 4, compared with that from the
non-smoker (p < 0.001, Figure 1a,b).

At various concentrations of erlotinib (0; 0.1; and 1 µM), serum from smoker No. 4 reduced the
cell-killing effect of erlotinib in both PC9 and HCC827 cell lines, compared with the serum from the
non-smoker (at erlotinib 1 µM in PC9 cells, p = 0.0018; for all other comparisons, p < 0.001, Figure 2a,b).

To identify the signaling mechanisms of smoking-induced resistance to erlotinib, we then assessed
the protein levels of PC9 cells cultured with erlotinib (1 µM) and serum from the non-smoker or smoker
No. 4 for 1 h. The combination of erlotinib and serum from smoker No. 4 elevated the protein levels of
phosphorylated AKT (Ser 473) considerably, while AKT phosphorylation was inhibited in cells treated
with erlotinib and serum from the non-smoker. Erlotinib inhibited the phosphorylation of EGFR and
ERK, independent of serum addition (Figure 2c).

Additionally, the smoker with the highest serum cotinine level (No. 4) showed greater resistance
to erlotinib treatment than the smoker with the lowest serum cotinine level (No. 1, 33.0 ng/mL).
Specifically, the resistance was greater in HCC827 cells at erlotinib concentrations of 0.1 and 1 µM
(p < 0.001), and in PC9 cells at erlotinib concentrations of 0.1 and 1 µM (p = 0.8077 and 0.4242,
respectively; Figure 3a,b). In this experiment, we think that the difference in cell survival between
PC-9 and HCC 827 was due to differential dependence on the EGFR signal in the cells lines. However,
it is worth noticing that although the difference was not significant, the PC-9 cell line also showed a
tendency for increased survival when treated with the serum of patient No. 4. We therefore think that
nicotine ingestion influences the therapeutic effects of erlotinib in both cell lines.
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Figure 1. Treatment of (a) PC9 and (b) HCC827 cells with serum from a smoker reduces sensitivity to
erlotinib therapy. Treatment of cells for 72 h with 1 µM erlotinib and serum from smoker No. 4 (serum
cotinine level: 488.4 ng/mL) resulted in a significant reduction of sensitivity to erlotinib compared
with serum from a non-smoker control (serum cotinine level: 0.6 ng/mL) in both cell lines (** p < 0.001).
Cell survival was assessed by using a cell-counting kit (CCK)-F. Results are means ± SEM of four
independent experiments.
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Figure 2. Comparisons of (a) PC9 and (b) HCC827 cell lines cultured for 72 h with various
concentrations of erlotinib (0, 0.1, and 1 µM), and serum from the non-smoker and smoker No. 4. Serum
from the smokers demonstrated significant resistance to erlotinib treatment at all concentrations in both
cell lines, compared with serum from the non-smoker (at 1 µM erlotinib in the PC9 cell, p = 0.0018; for
all other comparisons, p < 0.001). Cell survival was assessed using a cell counting kit (CCK)-F. Results
are means ± SEM of four independent experiments. (c) Immunoblot analysis of PC9 cells incubated
with erlotinib (1 µM), and serum from the non-smoker or smoker No. 4 for 1 h. The combination of
erlotinib with serum from the smoker elevated the protein levels of the phosphorylated AKT (Ser 473)
considerably. AKT phosphorylation was inhibited by erlotinib and serum from the non-smoker.
Erlotinib inhibited the phosphorylation of EGFR and ERK, independent of serum addition. The control
is untreated cells.
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Figure 3. Comparison between smokers No. 1 and 4 with the lowest and highest serum cotinine
levels (33.0 and 488.4 ng/mL), respectively. Serum with the highest levels showed stronger resistance
to erlotinib therapy over 72 h. (a) PC9 cells treated with 0.1 and 1 µM erlotinib, p = 0.8077 and 0.4242,
respectively. (b) HCC827 cells treated with 0.1 and 1 µM erlotinib, ** p < 0.001. Cell survival was assessed
using a cell counting kit (CCK)-F. The Results are means ± SEM of four independent experiments.

2.3. Treatment of PC9 Cells with Serum from Smokers Reduced Sensitivity to Afatinib and Osimertinib

At various concentrations of afatinib and osimertinib (0, 0.1, and 1 µM), the serum from smoker
No. 4 reduced the cell-killing effects of both drugs in the PC9 cell line, compared with the serum from
the non-smoker (p < 0.001; Figure 4a,b).Cancers 2019, 11, 282 6 of 12 
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Figure 4. Comparisons of PC9 cell lines cultured for 72 h with various concentrations of (a) afatinib
and (b) osimertinib (0, 0.1, and 1 µM) and serum from the non-smoker and smoker No. 4. Serum
from the smoker demonstrated significant resistance to afatinib and osimertinib treatment, compared
with serum from non-smoker (p < 0.001). Cell survival was assessed using a cell counting kit (CCK)-F.
Results are means ± SEM of five independent experiments.

2.4. PC9 Cells Treated with Serum from a Smoker Showed Erlotinib Resistance When Further Treated with
Serum from the Erlotinib User

PC9 cells cultured with serum from a patient treated with erlotinib showed reduced cell numbers
compared with untreated cells. However, when additionally treated with serum from smoker No. 4,
the cell inhibitory effect was significantly reduced compared with additional treatment with serum
from the non-smoker (p < 0.001, Figure 5).Cancers 2019, 11, 282 7 of 12 
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Figure 5. Treatment of PC9 cells with serum from smoker-induced erlotinib resistance following
treatment with serum from an erlotinib user. Analysis of PC9 cells treated with serum from a
non-smoker or smoker No. 4 for 24 h, followed by serum from erlotinib users (1:10 or 1:2 dilutions,
or undiluted) for 120 h. Serum from smokers significantly reduced erlotinib sensitivity (** p < 0.001).
Cell survival was assessed using a cell counting kit (CCK)-F. Results are means ± SEM of four
independent experiments.

3. Discussion

For patients with NSCLC, continued smoking, smoking cessation failure, and inhalation of
secondhand smoke may exacerbate the risks of tumor progression, resistance to therapy, post-therapy
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recurrence, and death [20–23]. Although molecular targeted therapy with EGFR-TKIs such as erlotinib
has dramatically improved the outcomes of patients with EGFR mutation-positive NSCLC, smoking
is known to negatively impact the effects of EGFR-TKI therapy. Smokers show poor survival rates
in EGFR-TKI therapy compared to those who have never previously smoked [24–27]. This is likely
because smokers display rapid erlotinib clearance that is 24% faster than that in non-smokers, and
they use 300 mg to obtain the same area under the curve values compared with the normal dose of
150 mg used in non-smokers. Furthermore, the action of nicotine activates EGFR signaling pathways
via α1nAchR, thereby inducing resistance to erlotinib therapy [28].

Although nicotine exhibits age- and race-related differences in its effects [29–31], it is seldom
measured as a quantitative indicator of smoking, because it is rapidly metabolized by CYP2A6 [32],
with a half-life of several hours [33]. A smoker who weighs 68 kg and who smokes 20 cigarettes per
day is considered to have a serum nicotine level of 1 µM [14]. Because blood nicotine levels peak at the
end of smoking a cigarette and decline rapidly over the next 30 min due to tissue distribution [34],
blood was sampled from smoking patients within 30 min of smoking. Cotinine, the primary metabolite
of nicotine, has a half-life of approximately 20 h. Serum cotinine levels reflect relatively short-term
exposure to cigarette smoke, and they are detectable for up to one week. Therefore, similar to urinary
cotinine, serum cotinine is generally used as an objective quantitative indicator of smoking that is
more reliable than smoking history [30,31].

Our previous studies using PC9 and HCC827 cell lines showed that an administration of 1–10 µM
nicotine induces the lowest level of erlotinib sensitivity, and activates α1nAchR, ERK, AKT, and EGFR.
We confirmed the same results in a murine xenograft model [18,19]. In mice, the anticancer effect by
erlotinib was reduced by a low-dose, continuous oral administration of nicotine (100 µg/mL) compared
with high-dose, rapid intermittent intravenous administration (0.6 mg/kg, five times/week) [19].
This finding indicates that nicotine may reduce the erlotinib anticancer effect in heavy smokers with a
longer smoking history.

In the present study, we examined the effects of nicotine on EGFR-TKI under conditions similar to
a clinical setting. In both EGFR-TKI-sensitive lung cancer cell lines used in the present study, treatment
with serum from smokers resulted in a significant inhibition of the effects of erlotinib, compared with
serum from a non-smoker. We also showed that serum from a smoker promotes AKT phosphorylation
in PC9 cells when compared to serum from a non-smoker. The results were similar to those of our
previous study, in which nicotine was added directly to the culture medium.

Next, we evaluated the effect of serum from smokers on the cell inhibitory effects of other
EGFR-TKIs (afatinib and osimertinib) used in varying concentrations, since EGFR-TKIs are sometimes
administered at reduced doses clinically. Notably, the results indicated that nicotine inhibited cell
growth at all EGFR-TKI concentrations tested. Comparatively, the suppressive effects of serum from
a smoker on erlotinib depended on the serum cotinine level. In a previous study, we showed that
nicotine promotes the phosphorylation of EGFR/AKT/ERK, and induces resistance to erlotinib in a
concentration-dependent manner [19]. In the present study, the observed trend suggested that the blood
levels of nicotine affected the development of erlotinib resistance in a concentration-dependent manner.

Lastly, we assessed the resistance to erlotinib therapy by treating cells with serum from a patient
treated with erlotinib, along with serum from a smoker. Treatment of PC9 cells with serial dilutions
of the serum from the patient treated with erlotinib showed that at all dilutions, the serum from a
smoker reduced the cell-inhibitory effects compared with treatment with serum from a non-smoker.
An analysis using serum from smokers and a non-smoker indicated that nicotine induces resistance to
erlotinib treatment, similar to the results of our previous study.

Smoking cessation and the avoidance of secondhand smoke improve lung cancer treatment
in various ways, such as by reducing the risk of secondary cancer, and improving sensitivity to
chemotherapy [22]. The present study similarly confirmed the importance of smoking cessation while
undergoing EGFR-TKI treatment. It is reported that oxidative stress caused by reactive oxygen species
(ROS) such as H2O2 contained in tobacco smoke causes the abnormal activation of EGFR, and induces
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resistance to treatment by EGFR-TKI [35–37]. Both sera from the smokers used in this study and the
cigarette smoke extract (CSE) contained nicotine as well as ROS [37]. Although both components are
considered to contribute to the resistance to EGFR-TKI, further investigation with a comparative study
on which components contribute the most needs to be performed.

In the future, we must examine how nicotine acts on nAchRs other than the α1 subunit, and
investigate components of cigarette smoke other than nicotine.

4. Materials and Methods

4.1. Cell Culture and Reagents

We purchased PC9 cells from the RIKEN BioResource Center (Ibaraki, Japan), and obtained
the HCC827 cells from Kyushu University (Fukuoka, Japan). The cell lines were cultured in
RPMI1640 (Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin–streptomycin at 37 ◦C in an atmosphere of 5% CO2. Erlotinib was purchased from Cayman
Chemical (Ann Arbor, MI, USA). Afatinib and osimertinib were purchased from Selleck Chemicals
(Houston, TX, USA).

4.2. Serum Collection

Blood was sampled from four smoking patients within 30 min of smoking, one non-smoking
patient, and one non-smoking patient with NSCLC who had been treated with erlotinib (150 mg/day)
for at least 10 days. Because the inside of the hospital site is a non-smoking site, we collected blood
sample from patients within 30 min of them having smoked outside the hospital. The blood samples
were centrifuged at 3000 rpm for 20 min, and the serum was collected.

The study involved the secondary use of plasma, and it was approved by the Ethics Committee of
the Kyoto Prefectural University of Medicine, Kyoto, Japan (ERB-C-1269, 26/09/2018), and conducted
in line with the Declaration of Helsinki.

4.3. Measurement of Serum Cotinine Levels

The serum cotinine level, an objective indicator of nicotine exposure [20], was measured in the
serum samples from the four smoking patients and one non-smoking patient using a cotinine direct
Enzyme-Linked ImmunoSorbent Assay (ELISA) kit (Alere Toxicology, Oxfordshire, UK).

4.4. Cell Growth Assay

4.4.1. Evaluation of Inhibitory Effects of Serum from Smokers and EGFR-TKIs

We first seeded PC9 and HCC827 cells at a density of 5000 cells/well in a total volume of 50 µL
made up with RPMI1640 supplemented with 10% FBS in a 96-well microplate. The next day, 20 µL
serum (either containing or not containing nicotine) from a smoker or the non-smoker was added,
followed by the addition of 50 µL erlotinib, afatinib, and osimertinib in RPMI1640 supplemented with
10% FBS to achieve various concentrations (0, 0.1, and 1 µM) of the drugs. Three days later, the numbers
of cells were counted by using a cell counting kit (CCK)-F (Dojindo Laboratories, Kumamoto, Japan).

4.4.2. Evaluation of the Inhibitory Effect of Serum from Smokers and Serum from Patients Treated
with Erlotinib

First, we added 30 µL serum (either containing or not containing nicotine) from a smoker or
the non-smoker to the adjusted PC9 cell suspension (50 µL). The next day, 30 µL serum was added
from another patient other than the above, treated with erlotinib, and the resulting suspension was
adjusted with RPMI1640 supplemented with 10% FBS to various dilution concentrations (undiluted,
diluted at 1:2 and 1:10). Five days later, the numbers of cells were counted using the CCK-F (Dojindo
Laboratories).



Cancers 2019, 11, 282 9 of 11

4.5. Western Blotting

Protein aliquots of 9 µg each were resolved by Sodium dodecyl sulfate (SDS) polyacrylamide
gel electrophoresis (Bio-Rad, Hercules, CA, USA). After electrophoresis, the protein samples were
transferred to polyvinylidene difluoride membranes (Bio-Rad). The membranes were washed
three times and incubated with 5% skim milk for 1 h at room temperature, and overnight at
4 ◦C with the following primary antibodies: p-EGFR, p-Akt (Ser473), t-Akt, β-actin (13E5) (Cell
Signaling Technology, Danvers, MA, USA), t-EGFR, p-Erk1/2 (Thr202/tyr204), t-Erk1/2 (R&D systems,
Minneapolis, MN, USA). After washing three times, the membranes were incubated for 1 h at room
temperature with horseradish peroxidase-conjugated species-specific secondary antibodies (Cell
Signaling Technology, Danvers, MA, USA). Immunoreactive bands were visualized using Immobilon
Western Chemiluminescent HRP Substrate (Merck Millipore, Darmstadt, Germany).

4.6. Statistical Analysis

All data are shown as means ± standard error of the mean (SEM). An analysis between the groups
(smokers versus the non-smoker) was conducted using two-way analysis of variance (ANOVA), and
p < 0.05 was considered to be statistically significant.

5. Conclusions

The present study similarly confirmed the importance of smoking cessation while undergoing
EGFR-TKI treatment.
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