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Abstract: Cancer genomes accumulate nucleotide sequence variations that number in the tens of
thousands per genome. A prominent fraction of these mutations is thought to arise as a consequence
of the off-target activity of DNA/RNA editing cytosine deaminases. These enzymes, collectively
called activation induced deaminase (AID)/APOBECs, deaminate cytosines located within defined
DNA sequence contexts. The resulting changes of the original C:G pair in these contexts (mutational
signatures) provide indirect evidence for the participation of specific cytosine deaminases in a given
cancer type. The conventional method used for the analysis of mutable motifs is the consensus
approach. Here, for the first time, we have adopted the frequently used weight matrix (sequence
profile) approach for the analysis of mutagenesis and provide evidence for this method being a
more precise descriptor of mutations than the sequence consensus approach. We confirm that
while mutational footprints of APOBEC1, APOBEC3A, APOBEC3B, and APOBEC3G are prominent
in many cancers, mutable motifs characteristic of the action of the humoral immune response
somatic hypermutation enzyme, AID, are the most widespread feature of somatic mutation spectra
attributable to deaminases in cancer genomes. Overall, the weight matrix approach reveals that
somatic mutations are significantly associated with at least one AID/APOBEC mutable motif in all
studied cancers.

Keywords: DNA sequence profile; Monte Carlo; mixture of normal distributions; somatic mutation;
tumor; mutable motif; activation induced deaminase; AID/APOBEC
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1. Introduction

The sequencing of genomes of solid tumors and liquid malignancies associated with different
types and stages of cancer has revealed a plethora of genetic changes, from nucleotide substitutions and
insertions/deletions to chromosomal rearrangements and chromosome copy number alterations [1–3].
As predicted decades ago by the mutator theory of cancer [4], the elevated mutability in tumors
contributes both to their onset and to their further evolution. The underlying causes of this mutagenesis
are diverse, from the appearance of mutator mutations to DNA damage by intrinsic or environmental
mutagens (e.g., oxidative stress, tobacco smoke, UV light, etc.) [5]. Somatic genome instability leads to
the activation of oncogenes and inactivation of tumor suppressors and helps tumor cells to emerge,
proliferate, elude immune surveillance, and acquire resistance to anticancer drugs.

In some cancers, the number of single nucleotide variations (SNVs) is in the order of tens of
thousands per genome. A few driver mutations [6,7] ultimately lead to cancer, while the role, if
any, of the vast majority of mutations, termed “passengers”, during tumor development is poorly
understood [8,9]. One crucial principle stands out: mutations can be classified into ‘families’ based
upon their flanking DNA sequences [10,11]. Different mutagenic processes generate mutations within
different contexts of a neighboring nucleotide sequence (the bases upstream and/or downstream of the
mutations, termed “mutation signatures”). Sophisticated approaches have been developed to extract
the most prominent signatures from a complex mix of mutational targets resulting from the action of
a variety of mutagens, both exogenous and endogenous, operating during tumor evolution [12,13].
Both driver and passenger mutations have been used in the analysis. One of the clearest mutational
signatures, found in breast and other cancers [14,15], is characterized by C:G to T:A or C:G to G:C
substitutions that are found predominantly in the 5′-TC sequence motif (signatures #2 and 13; listed in
the COSMIC database). These signatures have been attributed to the action of nucleic acid-editing
enzymes, cytosine deaminases. These enzymes, collectively called APOBECs, deaminate cytosine
in single-stranded DNA, yielding uracil. DNA replication past the uracil leads to the insertion of A,
thereby giving rise to the C-to-T transition. Also, abasic sites that are produced as intermediates of
uracil repair are bypassed by the cytidine transferase activity of REV1 translesion DNA polymerase,
leading to C:G to G:C transversions. Cytosine deaminases possess inherent sequence specificity. Thus,
for example, activation induced deaminase (AID) prefers to deaminate within 5′-WRC motifs (W
= A or T, R = A or G), whereas APOBEC3G acts preferentially on the last cytosine in the 5′-CCC
motif, while two other APOBEC3 enzymes, APOBEC3A and APOBEC3B, exhibit a preference for
5′-TC sequences. Another prominent feature of APOBEC enzymes is their ability to act in a processive
fashion, i.e., to catalyze multiple deamination events per substrate-binding event [16], thereby inducing
kataegis (clustered mutations); however, it should be noted that APOBEC action is only one possible
explanation for kataegis in cancer cells [17]. Mutational signatures of cytosine deaminases are detected
in many cancers [15]. It is unlikely to be a mere coincidence that the APOBEC3 enzymes are frequently
upregulated in tumors [18,19]. It should be noted that if deaminases act on 5-methylcytosine generating
“T”, a specialized G:T mismatch repair mechanism operates, and the genetic consequences could be
different because of the disappearance of an epigenetic mark [20]. There is evidence for the contribution
of this process to cancer [21].

Cancer genome studies necessitate working with huge datasets; the obvious problems posed
by the analysis of such data are partially solved by the advent of the “mutational signature”
technique [12,22,23]. It is not usually possible to define the DNA strand upon which the vast majority
of mutations has occurred (but see [24,25]); for example, both a C>T change on one strand and a
G>A change on the opposite strand lead to the same CG to TA transition. Therefore, in practice, the
analysis may be reduced to the study of only six different types of substitution. Similarly, there are 96
context-dependent mutations (mutation types) that consider two nucleotides in the flanking 5′ and
3′ positions of the mutated nucleotide [23]. Analysis of the mutational spectra of context-dependent
mutations in cancer genomes involves pooling all the mutations from cancer samples into a discrete
distribution according to the mutation types, while further analysis involves the so-called non-negative
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matrix factorization (NMF) method [12,22,23]. There are some variations of this basic technique;
indeed, Temiz et al. [26] presented a 32 × 12 mutation matrix, which captures the nucleotide pattern
two nucleotides upstream and downstream of each mutation. In this study, a somatic autosomal
mutation matrix (SAMM) representing tumor-specific mutations and mechanistic template mutation
matrices (MTMMs) representing oxidative DNA damage, ultraviolet-induced DNA damage, (5m)CpG
deamination, and APOBEC-mediated cytosine mutation were constructed. MTMMs were mapped
to the individual tumor SAMMs to identify mutational mechanisms corresponding to each overall
mutational pattern. The method appeared to be sensitive enough to retrospectively allocate the origins
of tumors to specific tissues [26].

In an attempt to increase the specificity and sensitivity of the arsenal of techniques available
for mutation analysis in whole genomes, we have employed mutable motifs of cytosine deaminases
represented in the form of weight matrices (sequence profiles) [27–29]. This approach may be expected
to be a more general descriptor of nucleotide sequences as compared to the sequence consensus
approach, because it takes into account the variability in the information content (“conservation”)
across neighboring positions. Control experiments using various constrained samples of randomly
selected sequences indicated that the level of false positives obtained using this approach is even lower
than the expected false discovery rate (~0.05, see Sections 4.5–4.8 for details). These analyses suggest
that the weight matrices method is a powerful tool for the analysis of genomic mutations. Further,
we identified prominent mutational footprints of APOBECA and APOBECB in many human cancers.
Mutable motifs attributable to AID are less pronounced but are nevertheless present ubiquitously in
cancer genomes.

2. Results

2.1. Weight Matrices of AID/APOBEC Mutable Motifs

The information content of AID/APOBEC mutable motifs is shown in Figure 1 (the list and
sources of the mutated sequences are shown in Supplementary Table S1). AID/APOBEC cytosine
deaminases exhibit substantial variability in terms of their mutable motifs. T in position −1 (number 5
in Figure 1) was the most prominent feature of the APOBEC1, APOBEC3A, and APOBEC3B enzymes,
consistent with previous studies (reviewed in [23]). APOBEC3C has a distinct mutable motif with T in
position −2. Additionally, APOBEC1 has an excess of T in position −3 (number 3 in Figure 1).

APOBEC3G has a distinct mutation pattern wcCCw (lower case w and c mean substantially lower
information content as compared with the upper case, Figure 1), which is a variation of the previously
described CCC motif and CCR motif [7,30]. The AID deaminase has the expected context specificity,
WRC [16,31].

It is hard to demarcate the mutational signatures of APOBECs using the consensus approach
due to the high variability of information content across sites. For example, APOBEC3G has a highly
conserved C in positions −4 and −5; however, there is also a less conserved C (and lower information
content) in position −3 that may or may not be included in a consensus sequence (Figure 1). We opted
to employ the widely used weight matrix technique (see Section 4) in order to avoid uncertainties with
the less informative positions.

We compared the nucleotide composition of mutation sites (±5 nucleotides, Supplemental Figure
S1) for all the studied AID/APOBEC proteins using the χ2 test (Table 1). We found that all six
AID/APOBEC proteins studied were significantly different with respect to the DNA sequence context
of the mutation sites expressed in the form of nucleotide frequency matrices (Table 1). Thus, weight
matrices properly represent the DNA sequence context of mutations induced by various AID/APOBEC
proteins, as noted in previous studies [5] where a simple consensus approach was used. We aimed to
differentiate between the mutable motifs associated with the various AID/APOBEC proteins, although
this was not always possible (for example, the sequence contexts of the APOBEC3A, APOBEC3B, and
APOBEC3C targets are not as different as other pairwise comparisons, see Table 1).
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Figure 1. Information content and derived consensus sequences of the DNA context of mutations
induced by AID/APOBEC deaminases in yeast genomes (frequencies of nucleotides were used as
input). (A) APOBEC1, (B) APOBEC3A, (C) APOBEC3C, (D) APOBEC3B, (E) APOBEC3G, and (F)
AID. Position 6 is the position of the somatic mutations. AID/APOBEC weight matrices are shown in
Supplementary Figure S1.

Table 1. Pairwise differences between the DNA context (position-specific nucleotide frequencies across
±5 surrounding bases) of the studied AID/APOBEC proteins.

AID APOBEC3G APOBEC3C APOBEC3B APOBEC3A

APOBEC1 1986.8 2299.2 203.2 378.6 344.1

APOBEC3A 1674.4 2057.0 138.4 175.7

APOBEC3B 1764.5 2316.8 175.7

APOBEC3C 237.2 327.5

APOBEC3G 2711.8

The critical χ2 values = 71.1 (after Bonferroni correction P = 0.05/15 = 0.0033, degrees of freedom = 42). The χ2 test
was applied to raw numbers of nucleotides.

We performed four control experiments (for details, see Sections 4.5–4.8): (1) analysis of the
sequence context of somatic mutations in mitochondrial DNA as a negative control [32]; (2) analysis of
the correlation between the matrices of shuffled sites of mutations and the sites of somatic mutation
in cancer cells using the expected false discovery rate approach [33]; (3) analysis of the correlation
between matrices of randomly sampled sites from the yeast genome and somatic mutations in cancer
cells using the expected false discovery rate approach [33]; and (4) analysis of somatic mutations in
human immunoglobulin genes as a positive control [34–36]. The results of all four control experiments
(Supplementary Tables S2–S5) strongly support our contention that the weight matrix technique is
applicable to the studied AID/APOBECs (for details, see Section 4).

2.2. Analysis of the Correlation between AID/APOBEC Mutable Motifs and Somatic Mutations in Cancer
Cells: C:G>T:A Transitions

We examined the correlation of the sites of C:G>T:A mutations in cancers and AID/APOBEC
mutable motifs. A correlation between a mutable motif and the DNA context of somatic mutations
from the COSMIC database was claimed when the results of two statistical tests (Monte Carlo test and
t-test, see Section 4) were both significant. A correlation between the mutable motifs of (at least one)
deaminase(s) and the sites of somatic C:G>T:A mutations was found for all cancer tissues (Figure 2 and



Cancers 2019, 11, 211 5 of 19

Supplementary Table S6). AID activity was the most ubiquitous according to the enzyme characteristic
signature in various cancer types, whereas the APOBEC1, APOBEC3A, APOBEC3B, and APOBEC3G
signatures were detected less frequently, although their signatures were stronger, most notably in
breast, lung, cervix, skin, and bladder cancer (Figure 2).
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Figure 2. Correlation between AID/APOBEC mutable motifs and the sequence context of somatic
C:G>T:A mutations. For the actual data, see Supplementary Table S6. The intensities of the gray color
correspond to the ratio values (the ratio being the mean weight of the mutated sites divided by the mean
weight of the non-mutated sites). The unweighted pair group method with arithmetic mean (UPGMA)
clustering of ratio values for the AID/APOBEC footprints and tissues is shown as dendrograms.

We attempted to estimate the fraction of somatic mutations associated with AID/APOBEC
deamination using a mixture of two normal distributions (see Sections 3 and 4 for details). For example,
estimated fractions of APOBEC1-associated mutations (0.66, 0.48, 0.74, 0.39, and 0.62) look consistent
with the smallest value of 0.39 corresponding to the lowest ratio value (1.064, APOBEC1, lung),
although this method sometimes yielded potentially underestimated values (0.17, APOBEC3G, cervix,
ratio = 1.113) and overestimated values (0.92, APOBEC3G, bladder, ratio = 1.101) (Supplementary Table
S6). The overall distribution of fractions for APOBEC1, APOBEC3A, ABOPECB, and AID deaminases
is shown in Supplementary Figure S2. The mean of the fractions in Figure S2 is 0.42 (Supplementary
Table S6). This result suggests that a substantial proportion of somatic mutations is associated with
AID/APOBEC mutagenesis.

2.3. Analysis of the Correlation between AID/APOBEC Mutable Motifs and Somatic Mutations in Cancer
Cells: C:G>G:C and C:G>A:T Transversions

Many C:G > G:C transversions were suggested to be the result of processing abasic sites after
the removal of uracils originating via DNA deamination by AID/APOBEC proteins [37]. Consistent
with this idea, a significant correlation of these mutations with mutable motifs was found in many
cancers (Figure 3 and Supplementary Table S7). The transversions associated with APOBEC1,
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APOBEC3A, and APOBEC3B were found to be more abundant in comparison with APOBEC3G
and AID, suggesting a role of these three deaminases in generating C:G>G:C somatic mutations in
human cancer. The correlation with the three APOBEC motifs was again strongest for breast, bladder,
cervix, and lung cancer.Cancers 2018, 10, x FOR PEER REVIEW  6 of 19 
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Although it has been proposed that C:G>A:T mutations are a less likely outcome of AID/APOBEC
enzymatic action, we found a significant excess of these transversions in many cancers (Figure 4 and
Supplementary Table S8), suggesting that a significant portion of C:G>A:T mutations may be caused
by processes initiated by deamination by AID/APOBEC enzymes. That the APOBEC3A, APOBEC3B,
and APOBEC3G footprints are more abundant in comparison with the APOBEC1 and AID motifs
suggests an important role for these three deaminases in generating somatic C:G>A:T mutations in
human cancers.

The unweighted pair group method with arithmetic mean (UPGMA) clustering of ratio values for
AID/APOBEC footprints and tissues (Figures 2–4) suggests that AID/APOBEC3G form one clade,
whereas APOBEC1/3A/3B form another clade according to the distributions of the ratios across
tissues (graphs above heatmaps at Figures 2–4). This can be explained by the high similarity of
APOBEC1/3A/3B signatures (Figure 1). Breast, bladder, and colon tend to form a separate group
according to the distributions of ratios across the AID/APOBEC footprints (graphs above heatmaps
at Figures 2–4). In general, these classifications are not consistent, reflecting large variations in
transition/transversion ratios (Supplementary Tables S6–S8) and are likely to be a result of variation in
the efficiency of DNA repair of such sites in different tissues [5,36,38].
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2.4. Analysis of Various Tumor Types in Blood and Skin

Cancers of the blood system were found to be associated with AID and APOBEC3A (Figures 2–4
and Supplementary Tables S6–S8). No other putative associations with APOBEC enzymes were
identified. We performed an analysis of two blood cancer subtypes with the highest representation in
the COSMIC dataset (see Section 4): acute myeloid leukemia and germinal center B-cell-like (GCB)
lymphomas (Table 2). A significant excess of somatic mutations in AID mutable motifs was detected in
acute myeloid leukemia (Table 2). In GCB lymphomas, a significant excess of somatic mutations was
detected in both AID and APOBEC3A mutable motifs (Table 2). These results suggest that there is
variability of mutation context specificity across the same tissue, as seen previously [39].

We also performed an analysis of two skin cancer subtypes with the highest representation in
the COSMIC dataset (see Section 4.3) (Table 2): skin cutaneous melanoma and skin adenocarcinoma.
Both tumor types yielded somewhat similar results. An overwhelming excess of somatic mutations
in APOBEC1 and APOBEC3A/B/G mutable motifs (Table 2) is likely to be due to the known excess
of mutations in dipyrimidine dinucleotides (for example, TC) in skin cutaneous melanoma caused
by mutagenic UV photoproducts [40]. Accordingly, we interpreted the excess of mutations in the
AID/APOBEC3A/B/G contexts (Table 2) to be the result of false positives (as was already suggested
by the results of the control experiments; for details, see Section 4.7), but we are also aware of evidence
for the direct role of deaminases in skin cancer [41]. We observed a much lower excess of mutations
in the mutable motifs observed in skin adenocarcinoma (Table 2). These results are likely to reflect
the participation of AID/APOBEC deaminases in mutagenesis, because UV photoproducts do not
play any role in the mutagenesis of skin adenocarcinomas [39]. Thus, APOBECs may play a role in a
proportion of cases of squamous cell carcinoma [42].
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Table 2. Correlation between AID/APOBEC mutable motifs and the context of somatic mutations in
C:G sites in various blood and skin tumor types.

Cancer Tissue
Type

Number of
Mutations Test APOBEC1 APOBEC3A APOBEC3B APOBEC3G AID

Blood: acute
myeloid
leukemia

6844

Ratio 0.920 0.978 0.958 0.977 1.031
t-test NSE # NSE NSE NSE 6.5 *

MC test <0.001
Fraction

Blood: GCB
lymphomas 2747

Ratio 0.967 1.030 0.979 0.980 1.091
t-test NSE 3.4 * NSE NSE 12.3 *

MC test <0.001 <0.001
Fraction 0.208

Skin:
cutaneous
melanoma

235043

Ratio 1.388 1.308 1.334 1.138 1.026
t-test 321.3 * 292.8 * 344.6* 176.2 * 35.8 *

MC test <0.001 <0.001 <0.001 <0.001 <0.001
Fraction 0.608 0.508 0.982 0.687

Skin:
adeno-carcinoma

780

Ratio 1.045 1.073 1.088 1.075 1.025
t-test NSE 4.4 * 4.8 * 4.6 * NSE

MC test <0.001 <0.001 <0.001
Fraction 0.213

#—NSE (no significant excess) indicates the absence of a significant excess of mutations in the mutable motifs,
suggesting that there is no association between mutagenesis and the motifs. The significance of any excess
was measured using the Student t and Monte Carlo (MC) tests. The bold font and asterisk (*) denote that the
corresponding P < 0.002 (critical value = 3.1); this is a conservative estimate of the critical overall value of the
t-test having allowed for multiple testing by means of the Bonferroni correction (4 × 6 = 24). The “Ratio” is the
mean weight of the mutated sites divided by the mean weight of the non-mutated sites. The predicted fraction of
mutations induced by AID/APOBEC proteins (“Fraction”) is shown when a significant excess of somatic mutations
in the mutable motif comparisons was detected; all cases where there was a significant difference between the
observed and expected distributions (P > 0.05) were discarded.

The mixture of two normal distributions yielded fairly predictable results (0.168–0.687, Table 2,
see Section 2.2) except for the APOBEC3G mutable motifs in skin cutaneous melanoma samples where
the fraction of sites potentially associated with the APOBEC3G mutable motifs is extremely large
(0.982, Table 2). The distribution of weights for this case is shown in Figure 5A. A putative component
(normal distribution) corresponding to the APOBEC3G mutable motifs (large weights, the rightmost
distribution) was less obvious compared with Figure 5B, which can be classified as a reasonable result,
because the fraction of sites potentially associated with the APOBEC1 mutable motifs (0.65) is close
to the mean of the fractions estimated above (0.42, Supplementary Figure S2). This distorted normal
distribution (another problem is a much larger number of sites in the last bin compared with the
previous bin) may be a reason why two distributions (Figure 5A) were incorrectly classified (mixed
together) yielding an obvious overestimate for the APOBEC3G mutable motifs (see Section 3). This is a
known problem in classification analyses of this kind [43,44].
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Figure 5. The weight distribution obtained using (A) the APOBEC3G weight matrix for skin
adenocarcinoma (Table 2) and (B) the APOBEC1 weight matrix for bladder tissue (Supplementary Table
S6). X axis: 0 stands for 0–9 interval of weights, 1 stands for the 10–19 interval, 2 stands for 20–29, etc.

3. Discussion

The advantage of our approach is that we used a unified computational technique that allowed an
objective and accurate comparison of the mutational contribution of various APOBEC enzymes under
the same experimental conditions and for the same datasets. We confirm that while the mutational
footprints of APOBEC1, APOBEC3A, APOBEC3B, and APOBEC3G are prominent in many cancers,
mutable motifs characteristic of the humoral immune response somatic hypermutation machine, AID,
are the most widespread feature of the somatic mutation spectra attributed to APOBECs in cancer
genomes. It is important to note that the suggested technique does not depend on expert opinion as to
the exact consensus sequences and, therefore, objectively represents mutable motifs.

Somatic mutations in all 18 studied cancer types are significantly associated with at least one
AID/APOBEC mutable motif. The blood subset of mutations stands apart because only AID mutable
motifs are detected (Figures 2–4 and Table 2). Although there are significant differences between
the contexts of AID/APOBEC-induced mutations manifested in frequency matrices (Table 1), there
are many tissues where mutable sites have been found to be targeted by two or more deaminases
(Figures 2–4). In such cases, we cannot reliably differentiate between different deaminases with
similar mutable motifs (Figure 1). For example, the frequency matrices of APOBEC1, APOBEC3A, and
APOBEC3B are quite similar to each other (Figure 1 and Table 1), and this represents a major problem.
To resolve this issue, it may be possible to use additional information, for example, gene expression
data. However, the addition of expression data was not particularly informative for the AID and DNA
polymerase η mutational footprints [21,39]. The same conclusion was reached in several other studies,
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because the genomic level of cytosine deamination does not necessarily correlate with the expression
of the corresponding AID/APOBEC genes [15,23,45]. For this reason, we did not attempt to compare
expression data from different tissue types and relate these data to the results we obtained.

In order to take into account the differences in the base composition between the yeast and human
genomes, we used the simplest normalization procedure by taking the frequencies of nucleotides
in the non-informative positions −5, −4, +4, and +5 as a null model (Figure 1, see Section 4.7 for
details). Although the control experiments suggest that this normalization tends to yield results that
are consistent with our expectations (with the exception of bladder, cervix, and skin tumors; see
Section 4.7), we cannot exclude the possibility that more sophisticated normalization schemes might
be required to generate more accurate results.

In addition, the role of APOBEC3C in mutagenesis remains uncertain and requires further
investigation. Another potential methodological problem (at least, for complex computational
techniques) is that we have a “positive” set (sites of mutations: sites that contain characteristic
features of mutable motifs) and do not have a “negative” set (sites of mutations: sites that do not
contain characteristic features of mutable motifs). Randomly sampled sites from yeast chromosomes
are far from being a good “negative” set, because distributions of mutations across yeast chromosomes
are too sparse and may contain a lot of mutable motifs. This is not a problem for the weight matrix
technique, which does not use negative sets as a part of its learning procedures. However, this is the
major problem for more sophisticated methods. For example, it is an obstacle for the application of
supervised learning methods (e.g., hidden Markov models or support vector machine), because the
training of these artificial intelligence (AI) algorithms requires classified or labeled data. However,
unsupervised learning methods (such as k-means clustering), which do not need classified data, may
be applied to this problem. Another issue is the need to take into account the much higher A:T
content of the mutation sites in the yeast genome as compared with the human genome; this should be
implemented as a part of a learning procedure.

The results of all the control experiments and somatic mutations in cancers strongly suggest that
the weight matrix technique is applicable to various types of mutational signatures. The suggested
approach complimented with clustering techniques (Figures 2–4) allows for comparison between the
studied enzymes and tissues. The suggested approach can be applied to various exciting questions
in cancer genomics, including the underlying causes of the non-uniform distribution of somatic
mutations across the human genome and asymmetries of mutagenesis with respect to leading/lagging
and non-transcribed/transcribed DNA strands.

We estimated the impact of mutagenesis associated with AID/APOBEC deamination by
representing distributions of weights as mixtures of two normal distributions. This approach is
based on the method of estimating the protein coding density in a corpus of DNA sequence data,
in which a ‘protein-coding coding statistic’ (which is similar to distributions of weights of somatic
mutation contexts) is calculated for a large number of windows for the sequences under study,
and the distribution of the statistic is decomposed into two normal distributions, assumed to be
the distributions of the coding statistic in the coding and non-coding fractions of the sequence
windows [43]. The distribution with the largest mean was assumed to reflect the fraction of protein
coding fragments [43]. Similarly, the fraction of sites in a distribution with the largest mean was
assumed to be the fraction of mutations induced by the AID/APOBEC enzymes. We noted problems
with such an approach for some cases (see Section 2.4). However, the method tends to produce
reasonable estimates. Rare deviations from normality caused by the natural boundaries of weight
distributions (0 and 100, see the last bin in Figure 5A) is a possible explanation for the problems
associated with the use of this classification technique in some cases.

Our analysis suggested that initial deamination events lead to both transitions and transversions.
This is already known for somatic mutations initiated by AID in immunoglobulin genes and for
APOBEC enzymes in cancer [5,38]. A large variation in transition/transversion ratios (Supplementary
Tables S6–S8) is likely to be a result of peculiarities in the relative abundance of proper DNA substrates
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for deamination and the various efficiency of the DNA repair of such sites [5,36,38]. Overall, our
results suggest that AID/APOBEC proteins make a major contribution to several different types of
somatic mutations in cancer. The idea that APOBECs can be carcinogenic was originally proposed by
Neuberger et al. in early 2000s [46], after the discovery that these proteins can edit DNA [47,48] and,
therefore, are by definition mutators. Under normal conditions, deaminases are involved in adaptive
(AID) and innate (APOBEC3s) immunity, lipid metabolism (APOBEC1), and possibly even active DNA
demethylation [49–51] both in developing and in terminally differentiated cells. Extremely precise,
tight, and complex (and therefore, not surprisingly, poorly understood) regulation of AID/APOBEC
proteins ensures that in normal cells, they edit cytosines at very specific sites, such as immunoglobulin
genes or viral DNA. However, when the regulatory constraints fail, these housekeepers can become
much more promiscuous and edit DNA genome-wide.

The overexpression of active APOBECs is highly toxic in human cell lines [18,52], indicating that
a precise balance of deaminase production and other factors is required in order to cause non-lethal
genome-wide hypermutagenesis and kataegis. This is apparently also true in the case of APOBECs,
where only a small fraction of cells with unfettered deaminases and a fine-tuned environment survive
and give rise to malignant clones. It is also possible that the sudden overproduction of deaminases
in tumor cells with genomes shaped by other mutagenic processes will kill the tumor by extensively
damaging its genome, unless the tumor cells can protect themselves against APOBEC.

4. Materials and Methods

4.1. Mutations in Yeast Genomes

Coordinates and types of mutations induced by various APOBEC/AID proteins in yeast were
obtained from previously published SNV datasets (see legend to Supplementary Table S1) [37,53–56].
To extract the sequence context of the mutations, we used the getfasta tool from the bedtools package
(http://bedtools.readthedocs.org/en/latest/). These datasets are available upon request from I.B.R.
The logo description of mutable motifs was constructed using the Weblogo website (http://weblogo.
berkeley.edu/logo.cgi).

4.2. Analysis of Mutable Motifs

Several approaches have been developed for the analysis of a set of mutated sequences [27–29].
A mononucleotide weight matrix is a simple and straightforward way to present the structure of a
functional signal and to calculate weights for the signal sequence. Each matrix includes information
on a normalized frequency of A, T, G, C bases in each of the 10 positions surrounding the detected
sites of mutation (5 bases downstream and 5 bases upstream). We calculated the weight matrices for 6f
different AID/APOBEC mutational signatures in the yeast genome (Supplementary Table S1).

A simple formula for W(b,j) was used for data analysis: W(b,j) = log2[f(b,j)/e(b)], where f(b,j) is
the observed frequency of the nucleotide b in position j and e(b,j) is the expected frequency of the
nucleotide b in position j, calculated as the mean nucleotide frequencies of positions −5,−4, +4, +5
for sites of mutations in the yeast genome; the resulting W(b,i) matrices are shown in Supplementary
Figure S1.

The matching score S(b1, ..., bL) of a sequence b1, ..., bL is as follows:

L
S(b1, ..., bL) = Σ W(b,j)

j = 1
(1)

The matching score between sequence b1, ..., bL and a weight matrix can be further expressed as
a percentage:

% matching score = 100 × (S(b1, ..., bL) − Smin)/(Smax − Smin) (2)

http://bedtools.readthedocs.org/en/latest/
http://weblogo.berkeley.edu/logo.cgi
http://weblogo.berkeley.edu/logo.cgi


Cancers 2019, 11, 211 12 of 19

L L
Smin = Σ MIN W(b,j) Smax = Σ MAX W(b,j)

j = 1 b j = 1 b
(3)

Hereafter, we use the term “weight” instead of “% matching score”. We used the positions −3:+3
to estimate the weights of the sites.

In addition to the analyses of AID/APOBEC mutational signatures in cancer genomes, we
performed a control experiment: we randomly shuffled a dataset of AID/APOBEC contexts in the yeast
genome (Supplementary Table S1), keeping position 6 (the position of mutations) intact. Each sequence
was shuffled separately; thus, the overall base composition and the base compositions of each sequence
were the same. We also performed another control experiment: we randomly extracted sequences
from the yeast genome, maintaining the nucleotide composition and the size of sequence sets for each
set of mutation sites with AID/APOBEC-induced mutations. Weight matrices were derived from these
sampled sites. Where there was a significant difference between an extracted set and the analyzed set
(the 2-tailed t-test), the sampling procedure was repeated.

4.3. Datasets and Analysis of Somatic Mutations

Somatic mutation data from the ICGC and TCGA cancer genome projects were extracted from
the Sanger COSMIC Whole Genome Project v75 (http://cancer.sanger.ac.uk/wgs). The ICGC/TCGA
datasets are almost exclusively passenger mutations, and they are unlikely to be subject to selection
to promote cellular proliferation. Thus, they are more likely to reflect the original AID/APOBEC
mutational spectrum [23]. The tissues and cancer types were defined according to the primary tumor
site and the cancer project in question [12,13]. A dataset of somatic mutations in mitochondrial DNA
in various cancer types was extracted from [32]. In this set, no excess of mutations in known mutable
motifs is to be expected, because the mutation landscape in mitochondrial DNA is shaped by its
very specific mode of replication [32]. The mitochondrial mutation set can, therefore, be used as a
negative control.

DNA sequences surrounding the mutated nucleotide represent the mutation context.
We compared the frequency of known mutable motifs for somatic mutations with the frequency
of these motifs in the vicinity of the mutated nucleotide. Specifically, for each base substitution, the
121 bp sequence centered at the mutation was extracted (the DNA neighborhood). We used only the
nucleotides immediately flanking the mutations, because the AID/APOBEC enzymes are thought
to scan a very limited region of DNA to deaminate (methyl)cytosines in a preferred motif [16,57,58].
This approach does not exclude any specific area of the genome, but rather uses the areas within each
sample where mutagenesis has occurred (taking into account the variability in the mutation rates across
the human genome) and then evaluates whether the mutagenesis in these samples were enriched
for AID/APOBEC motifs [58]. This approach was thoroughly tested, and the high accuracy of the
analysis was demonstrated [58]. The mean weight of the mutable motifs (Supplementary Figure S1)
in the positions of somatic mutations was compared to the mean weight of the same motifs in the
DNA neighborhood using the t-test (2-tail test) and Monte Carlo test (MC, 1-tail test) similar to the
consensus method, as previously described [58].

4.4. Impact of AID/APOBEC Mutagenesis

In order to estimate the proportion of mutated sites that are likely to be caused by the
AID/APOBEC enzymes, we applied a mixture model of two normal distributions [43] to distributions
of weights of somatic mutation contexts. An example of such a distribution is shown in Figure 5B.
This approach is based on the method of estimating the protein coding density in a corpus of DNA
sequence data, in which a ‘protein-coding coding statistic’ (which is similar to distributions of weights
of somatic mutation contexts) is calculated for a large number of windows of the sequence under
study. The distribution of the statistic is decomposed into two normal distributions and assumed
to be distributions of the coding statistic in the coding and non-coding fractions of the sequence

http://cancer.sanger.ac.uk/wgs
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windows [43]. The distribution with the largest mean was assumed to reflect the fraction of protein
coding fragments [43]. Similarly, the fraction of sites in a distribution with the largest mean was
assumed to be the fraction of mutations induced by the AID/APOBEC enzymes. The results were
considered to be reliable only if no significant difference was found between the observed and expected
distributions according to the χ2 test. The suggested classification approach for normal distributions
had been tested by Fickett and Guigo and showed good accuracy [43]. All the details of the suggested
methodology and underlined statistical Bayesian framework were previously described for analyses
of normal and binomial distributions [43,44].

Heatmap visualization analysis for each of the AID/APOBEC pseudo-mutable motifs groups
was performed. The R (https://www.R-project.org/) software package heatmap.2 (https://CRAN.
R-project.org/package=gplots) was employed to generate the heatmaps for each group. For each
group, a specific range of values was established in grayscale representation, from the lowest values
to the highest values. For the pseudo-mutable motifs in somatic mutation in the C:G sites group,
the range was from 0.01 to 0.84 with intervals between 0.05. Values <0.01 were denoted as white.
For the pseudo-mutable motifs in somatic mutation in the C:G>T:A sites group, the range was from
1 to 1.573 with intervals between 0.01. Values <1 were denoted as white. For the pseudo-mutable
motifs in somatic mutation in the C:G>C:G sites group, the range was from 1 to 1.802 with intervals
between 0.01. Values <1 were denoted as white. For the pseudo-mutable motifs in somatic mutation in
the C:G>A:T sites group, the range was from 1 to 1.362 with intervals between 0.02. Values <1 were
denoted as white.

4.5. Control Experiment 1: Analysis of Somatic Mutations in Mitochondrial DNA

In the first control experiment, we analyzed the sequence context of somatic mutations in
mitochondrial DNA. In this set, no excess of mutations in known mutable motifs was to be expected,
because the mutation landscape in mitochondrial DNA is shaped by its very specific mode of
replication [32]. Thus, the mitochondrial mutation set can be used as a negative control. No significant
excess of AID/APOBEC mutable motifs was found (Supplementary Table S2). This is consistent with
a previous study [32]. In all the studied tissues, the ratio of the mean weight of the mutated sites vs.
the mean weight of the non-mutated sites was less than or close to 1; this is expected when there is
no correlation between mutable motifs and mutation (Supplementary Table S2). We observed only a
single case where the Monte Carlo test yielded a significant P-value (P = 0.031, APOBEC3B/brain), but
this result was not confirmed by use of the t-test and is likely to be an isolated false positive. Thus, the
weight matrix appears to be a reliable method for the analysis of somatic mutations.

4.6. Control Experiment 2: Correlation between the Matrices of Shuffled Sites of Mutations and the Sites of
Somatic Mutation in Cancer Cells

In order to allow for differences in nucleotide content between the yeast and human genomes, we
used normalized weight matrices (see above). To test the robustness of the normalization, a simple
control experiment was designed: we randomly shuffled the sequences of the AID/APOBEC mutation
sites (Supplementary Table S1). We identified rare cases of a significant deviation from the expected
value of the ratio (1.0, the ratio is the mean weight of the mutated sites divided by the mean weight of
the non-mutated sites), but those cases constituted only 2.6% of all the studied cases (Supplementary
Table S3). This result establishes that the weight matrix technique yields an expected proportion of
false positives (the expected false discovery rate should be around 5% according to the standard in
the field [33]) and hence is robust with respect to the biased nucleotide composition of mutated sites
in the yeast genome. However, the results for colon, skin, and stomach cancers may not be reliable
for some APOBECs (the fractions of false positives were found to be large, for example, 0.96 for
APOBEC3C/skin; Supplementary Table S3). In general, the APOBEC3C weight matrix tends to yield
the largest number of false positives, suggesting that this matrix might be problematic. We conclude
that such controls should always be performed when starting work with a new mutation set.

https://www.R-project.org/
https://CRAN.R-project.org/package=gplots
https://CRAN.R-project.org/package=gplots


Cancers 2019, 11, 211 14 of 19

4.7. Control Experiment 3: Correlation between Matrices of Randomly Sampled Sites from the Yeast Genome
and Somatic Mutations in Cancer Cells

To check for a potential influence of nucleotide content biases and the extent of a correlation
between positions in yeast and human genomes, we randomly extracted sequences from the yeast
genome, maintaining the nucleotide composition and size of sequence sets for each set of mutation
sites. Weight matrices were derived from these sampled sites. We identified numerous examples
of a substantial deviation from the expected values that produced significant results that should be
considered to be false positives (Figure 6 and Supplementary Table S4), because we did not expect
any meaningful association between randomly sampled sites and somatic mutations. The APOBEC3C
weight matrix yielded a large number of significant yet spurious results (false positives) for all the
studied tissues (Figure 6 and Supplementary Table S4) and therefore cannot be recommended for the
analysis of somatic mutation. This effect may have been due to the much smaller number of mutations
in the dataset, a lack of highly informative positions and a high A/T content of sites for APOBEC3C
(Figure 1). The results for APOBEC3C are likely to be false positives in this and previous control
experiments and were included in the Supplementary Materials only.
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Figure 6. Fraction of random matrices with a significant correlation between AID/APOBEC
pseudo-mutable motifs (randomly sampled sites from the yeast genome) and the sequence context of
somatic mutations in C:G sites. For the actual data, see Supplementary Table S2. The intensities of the
gray color correspond to the fractions of cases with a significant correlation between pseudo-mutable
motifs (represented as weight matrices) and the context of somatic mutations in C:G sites.

The analysis of mutations in various tissues suggested that the weight matrix technique may also
produce misleading results for bladder, cervix, and skin tumors (Figure 6). The skin tissue consistently
produced a high rate of false positives in control experiments 3 and 4; thus, weight matrices should
be used with great caution for this tissue. The analysis of nucleotide frequencies for the region ±3
suggested that skin, cervix, and bladder tumors are characterized by a high frequency of T nucleotides
around the sites of mutation (Supplementary Table S5), and this is likely to be a reason for the high
rate of false positives. It should be noted that other techniques are also likely to produce a high rate
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of false positives for these tissues, although this type of control experiment has, to our knowledge,
never been performed before except for analysis of somatic mutations in normal tissues [21]. The likely
reason for high rates of false positives is that APOBEC mutable motifs tend to be A/T-rich (even C-rich
APOBEC3G sites contain excessive amounts of A and T nucleotides in positions −3, +1, +2, and +3;
Figure 1 and Supplementary Figure S1). We attempted to take this into account by removing sites
with a high A/T content (≥50% A+T in the 10-nucleotide region around sites of somatic mutations,
Supplementary Table S4). Although there was a substantial improvement in the accuracy of prediction
(rates of false positives were much smaller, Supplementary Table S4), problems with the accuracy of
prediction for skin tumors persisted (Supplementary Table S4).

4.8. Control Experiment 4: Analysis of Somatic Mutations in Human Immunoglobulin Genes

Somatic mutations in human immunoglobulin genes are known to be associated with AID
mutable motifs [35], and these mutations can be used as a positive control set. Indeed, a significant
association between the AID mutable motif and mutations was found in all three studied sets of
somatic mutations [34,35] (Table 3), suggesting that the AID weight matrix is a reliable descriptor
of AID-induced mutagenesis. The APOBEC1/3A/3B/3G weight matrices did not, however, yield
significant results for all the studied cases (Table 3). This is consistent with the absence of any traces of
APOBEC1/3A/3B/3G-induced mutation in the somatic hypermutation profiles of immunoglobulin
genes [36]. The results of all four control experiments suggested that the weight matrix technique is
applicable to studied APOBECs.

Table 3. Correlation between the AID/APOBEC mutable motifs and the sequence context of somatic
mutations in fragments of human immunoglobulin genes.

Locus Number of
Mutations Test APOBEC1 APOBEC3A APOBEC3B APOBEC3G AID

VH26 708

Ratio 0.931 0.986 0.919 0.908 1.162
t-test NSE # NSE NSE NSE 11.1 *

MC test <0.001
Fraction 0.477

JH4 intron,
control

individuals
177

Ratio 0.927 0.957 0.887 0.870 1.331
t-test NSE NSE NSE NSE 11.9 *

MC test <0.001
Fraction 0.559

JH4 intron,
XP-V

patients
235

Ratio 0.981 1.008 0.957 0.930 1.266
t-test NSE NSE NSE NSE 9.6 *

MC test <0.001
Fraction 0.366

#—NSE (no significant excess) indicates the absence of a significant excess of mutations in mutable motifs, suggesting
that there is no association between mutagenesis and the motifs. The significance of any excess was measured
using the Student t and Monte Carlo (MC) tests. The bold font and asterisk (*) denote that the corresponding P <
0.003 (critical value = 3.1); this is a conservative estimate of the critical overall value of the t-test having allowed for
multiple testing by means of the Bonferroni correction (3 × 6 = 18). The “Ratio” is the mean weight of the mutated
sites divided by the mean weight of the non-mutated sites. The predicted fraction of mutations induced by the
AID/APOBEC proteins (“Fraction”) is shown when a significant excess of somatic mutations in the mutable motif
comparisons was detected; all the cases where there was a significant difference between the observed and expected
distributions (P > 0.05) were discarded.

5. Conclusions

For the first time, we have adopted the weight matrix (sequence profile) approach for the analysis
of mutations in cancer genomes, and we provide evidence for this method being a more precise
descriptor of mutations than the commonly used sequence consensus approach. Control experiments
using shuffled sites and constrained samples of randomly sampled sequences from the yeast genome
yielded a low level of false positives.

We confirm that while mutational footprints of APOBEC1, APOBEC3A, APOBEC3B, and
APOBEC3G are prominent in many cancers, mutable motifs characteristic of the action of the humoral
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immune response somatic hypermutation enzyme, AID, are the most widespread feature of the somatic
mutation spectra attributed to APOBECs in cancer genomes. The AID and APOBEC3A mutable motifs
are the most prominent features of the C:G>T:A transitions that constitute the vast majority of somatic
mutations in studied cancers. We also demonstrated an abundance of APOBEC3A/3B/3G mutable
motifs in DNA contexts of C:G>A:T transversions. A potential association of AID and APOBEC3A in a
certain type of blood cancers is another interesting outcome of our study. Overall, the weight matrix
approach revealed that somatic mutations are significantly associated with at least one AID/APOBEC
mutable motif in the studied cancer types.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/2/211/s1,
Figure S1:AID/APOBEC weight matrices W(b,j).itle; Figure S2: The overall distribution of fraction of somatic
C:G>T:A mutations associated with AID/APOBEC deamination (APOBEC1, APOBEC3A, ABOPEC3B, and AID
deaminases); Table S1: Datasets of mutations induced by overexpression of AID/APOBEC enzymes in the
yeast genome; Table S2: Control study: correlation between AID/APOBEC mutable motifs and the context of
somatic mutations in C:G sites in mitochondrial DNA; Table S3: Control study: fractions of random matrices
with a significant correlation between AID/APOBEC pseudo-mutable motifs (shuffled sites of mutations) and the
context of somatic mutations at C:G sites; Table S4: Control study: fraction of random matrices with a significant
correlation between AID/APOBEC pseudo-mutable motifs (randomly sampled sites from the yeast genome) and
the context of somatic mutations at C:G sites; Table S5: Nucleotide composition of the DNA context of somatic
mutations (±3 nucleotides); Table S6: Correlation between AID/APOBEC mutable motifs and the context of
C:G>T:A somatic mutations; Table S7: Correlation between AID/APOBEC mutable motifs and the context of
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