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Abstract: Radiomics and texture analysis represent a new option in our biomarkers arsenal.
These techniques extract a large number of quantitative features, analyzing their properties to
incorporate them in clinical decision-making. Laryngeal cancer represents one of the most frequent
cancers in the head and neck area. We hypothesized that radiomics features can be included as a
laryngeal cancer precision medicine tool, as it is able to non-invasively characterize the overall tumor
accounting for heterogeneity, being a prognostic and/or predictive biomarker derived from routine,
standard of care, imaging data, and providing support during the follow up of the patient, in some
cases avoiding the need for biopsies. The larynx represents a unique diagnostic and therapeutic
challenge for clinicians due to its complex tridimensional anatomical structure. Its complex regional
and functional anatomy makes it necessary to enhance our diagnostic tools in order to improve
decision-making protocols, aimed at better survival and functional results. For this reason, this
technique can be an option for monitoring the evolution of the disease, especially in surgical and
non-surgical organ preservation treatments. This concise review article will explain basic concepts
about radiomics and discuss recent progress and results related to laryngeal cancer.
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1. Introduction

Head and neck cancer represents the sixth most common malignancy worldwide, with around
800,000 new cases and 320,000 deaths in 2015 [1]. Laryngeal squamous cell carcinoma (LSCC) represents
between 30-50% of all neoplasms in the head and neck, with 157,000 new cases diagnosed worldwide
in 2012 [2]. These tumors mean a unique set of diagnostic and therapeutic challenges. The complex
regional anatomy, the presence of critical structures surrounding this area, the variable appearance of
primary and recurrent tumors, the significant anatomic changes related to tumor response, and high
intratumoral heterogeneity make the treatment of these patients quite difficult.

Contrast-enhanced computed tomography (CT), magnetic resonance imaging (MRI), and positron
emission tomography (PET) imaging are routinely acquired during the diagnosis and staging process of
head and neck cancer patients. The immense data volume gathered from multiple imaging modalities
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in existing clinical datasets can greatly facilitate exploratory radiomic analysis. The heterogeneous
composition of head and neck cancers can also be captured in a non-invasive procedure, which can
serve as an essential adjunct to clinical decision-making.

The suffix “omics” characterizes different sources of large data volumes whereby this suffix is
preceded by the defining name of the original materials of data collection. This leads, for example, to
the description of the “genomics” in the context of genetic expression analysis, and protein analyses
become “proteomics” or “metabolomics” when the metabolome is analyzed. In analogy, the newly
defined “radiomics” field finds its way into clinical research where a large amount of data from
radiological imaging become available for analysis [3].

Radiomics is an overall image analysis approach, the goal of which is to extract large amounts of
quantitative information from radiological medical images using a variety of computational methods.
Extracted image features include measurements of intensity, shape, and texture [4]. Specifically, texture
analysis represents a set of tools to improve characterization of tumor heterogeneity consisting of
extracting texture indices from different imaging modalities as CT, MRI, or fluorodeoxyglucose (FDG)
PET/CT [5]. These imaging modalities allow clinicians to extract a large amount of quantitative
features whose subsequent analysis and selection can be incorporated in clinical decision-making.
These biomarkers complement, facilitate, and accelerate the advancement towards cancer precision
medicine. Radiomics techniques are also able to non-invasively characterize the overall tumor
accounting for heterogeneity, and quantitative imaging features can work as a prognostic or predictive
biomarker, which can be derived from routine standard-of-care imaging data, providing clinicians
with a fast, low-cost, and repeatable instrument for longitudinal monitoring [6,7].

Several studies have assessed radiomic features for different cancer types extracted from different
imaging modalities [8-13]. Additionally, some studies have investigated the reproducibility and
variability of radiomic features across different clinical settings [8,14-16], while others have reported
the significant predictive and prognostic power of radiomic features. The relation between radiomic
features and tumor histology [17-19], tumor grades or stages [18], patient survival [8,9,20-22],
metabolism [23], and various other clinical outcomes have also been reported [9,18,24,25]. Furthermore,
some radio-genomic studies have reported associations between radiomic features and underlying gene
expression patterns [8,11,13,26,27]. These reports indicate that radiomics could improve individualized
treatment selection and monitoring.

Radiomics represents a non-invasive and relatively cost-effective technique [8,28] that can expand
the scope of medical imaging in clinical oncology, and its application can provide important day-to-day
information regarding rapid anatomic change and tumor response during the course of treatment.
However, several key components are necessary to transition radiomics and texture analysis in larynx
cancers from exploratory studies to large-scale implementation as a clinical toolset. This is the reason
why in this review the authors try to summarize and expose the most relevant concepts and challenges
of the technique and its application in laryngeal cancer.

1.1. Radiomics and Texture Analysis Software Available

The most common image features are those based simply on voxel intensity values within a
region of interest (ROI). Similar but unique features may also be extracted from histograms of intensity
values and Gaussian functions fitted to these histograms. However, other spatial features may be
calculated from the shape of the ROL Texture features in the head and neck are based on the same
matrices that are utilized in other sites. Examples of these include the gray-level co-occurrence matrix
(GLCM), the gray-level run length matrix (GLRLM), the neighborhood intensity difference matrix
(NIDM), neighborhood gray-level dependence matrix (NGLDM), and the intensity size-zone matrix
(ISZM) [29-34]. Other feature extraction methods are based on filters such as Fourier transform,
Gabor transform, Laplacian of Gaussian filter (LoG), and multi-scale wavelet decompositions [35-38].
After processing the ROI according to the parent matrix or filter method, statistical features such as
coarseness, business, correlation, entropy, and energy are calculated.
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There are multiple open-source, in-house developed, and commercial software solutions that
facilitate the exploration and development of radiomics in head and neck cancer.

1.1.1. Open-Source Software

e IBEX (Imaging Biomarker Explorer): developed by Zhang et al., described as an “open
infrastructure software platform that flexibly supports common radiomics workflow tasks such as
multimodality image data import and review, development of feature extraction algorithms, model
validation, and consistent data sharing among multiple institutions.” [39]. IBEX is compatible
with CT, PET, and MRI modalities.

e MazDa is another open-source solution for texture analysis that has been validated through
multi-institutional studies [40]. This software is built primarily for MRI texture analysis and
supports various feature selection methods for model generation.

e Chang-Gung Image Texture Analysis (CGITA) is yet another open-source texture analysis tool,
built in the MATLAB environment. The software supports numerous heterogeneity indices,
user-defined calculations, and batch processing with a focus on molecular imaging. CGITA
supports CT, PET, and MRI images [41].

1.1.2. In-House Development of Radiomic Analysis

Beyond open-source software tools, a number of groups have also developed in-house tools
for radiomic analyses, often in the MATLAB environment; however, they are not publicly available
to our knowledge [14,42—45], thus cannot be validated. One such example is a modified version of
Computational Environment for Radiotherapy Research (CERR) used for texture analysis.

1.1.3. Commercial Solutions Software for Radiomic Analysis

e  TexRAD is a commercial software that uses a LoG special filter to delineate fine, intermediate, and
coarse textures in a ROI for subsequent analysis. This software contains various decision support
tools for thoracic and gastrointestinal imaging and has also demonstrated applicability in head
and neck cancer textural analysis [46].

1.2. Radiomics Workflow

e High-quality, standardized imaging data must be acquired. The region of interest (ROI),
represented by the tumor, metastasis, or parts of it is manually/automatically identified, and the
volume of interest (VOI) is defined.

e  Collections of datasets from clinical practice can be gathered to perform retrospective analysis in
order to obtain the basic radiomic feature extraction and statistical and predictive systems for
prospective analysis.

e  Definition and segmentation of the ROL: In each subject, capture of radiomic imaging data can be
performed using a manual, semiautomatic or automatic approach.

e Radiomic feature extraction: These features are extracted from the tumor ROI concerning
information about image shape, intensity, and texture. Features can be constructed by statistical
means, such as co-occurrence matrices, or by selecting the coefficients of image transformations,
such as wavelet-based image decomposition and analysis.

e  Multi-source fusion data analysis: Defining associations between radiomic features and clinical
data, outcome, treatment responses, histopathological data. Mixed analysis, e.g., including gene
expression (“radiogenomics”) is achieved through data fusion schemes like canonical correlation
analysis (CCA).

e  Machine learning algorithm application: Predictive/discriminant functions can be trained and
validated over the radiomic feature collected from retrospective data in order to be refined and
applied in prospective studies. Model building procedures include logistic regression, support
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vector machines (SVM), random forests (RF), and artificial neural networks including deep learning
approaches. Radiomics can be fused with survival analysis for prognostic studies. [8,47-49].
(Figure 1)

Larynx Cancer Patient

Medical Background, medical record, Examination

Standart Imaging Acquisition
(CT, MRI, PET/CT)

Segmentation
(Automatic, Semi-automatic, Manual)

Generation of Radiomics Features
(Voxel/Pixel, Grey Scale, etc)

Data collection
(Features, Outcome, Histology, Genomics)

I Statistical Data analysis I

Radiomics Signature I

Figure 1. Workflow for creation of a radiomic signature in a larynx cancer patient.

2. Radiomics and Laryngeal Cancer

In the last few decades, treatment approaches for larynx squamous cell carcinoma have shifted
toward organ-preserving strategies, with the aim of limiting functional impairments associated with
total laryngectomy and improving patient’s quality of life [50]. While organ-preserving trials have
provided strong evidence that well-selected patients may benefit from organ-preservation strategies,
there remains substantial controversy on the optimal management of these patients [51]. In fact, despite
improvement in radiotherapy techniques and systemic treatments, relapse rates in locally advanced
laryngeal cancer after organ-preserving treatment remain high, with rates of loco-regional recurrence
at 5 years reaching 30-40% [52-54]. In addition, observational data suggest that five-year survival rates
in laryngeal cancer have decreased [55].

The larynx anatomy represents one of the most complex localizations in the head and neck region,
due to the presence of important structures surrounding the larynx. Radiomics can provide a more
comprehensive characterization of entire tumors, and hence are likely to capture the intra-tumor
heterogeneity. This is the reason why a better tumor characterization through the use of imaging
biomarkers has the potential to provide insightful information for outcome prediction, treatment
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selection, and disease progression in those patients. Therefore, it can be considered as a crucial factor
for precision oncology and related research [56-58].

Radiomics, with special emphasis in image texture analysis, has demonstrated exciting promise
in several distinct areas in larynx cancer research. Some of them are summarized next.

e  Tumor segmentation and pathologic classification in surgical and non-surgical patients.

e Anatomical extension:  Paraglottic space, thyroid cartilage, cryco-aritenoid joint,
cryco-thyroid membrane.

e  Risk stratification.

e  Prognostic or predictive biomarker.

e  Monitorization of alterations in normal tissue as a sequelae of radiotherapy dose deposition.

We have identified eight studies including patients with larynx cancer in the indexed literature
search (Table 1). Guezennec, C. et al. evaluated the prognostic value of texture indices related to overall
survival (OS). In this study 32/284 (11%) patients with larynx cancer were included. The imaging
acquisition method was the FDG PET/CT, and the discriminant features were metabolic tumor volume,
correlation, entropy, energy, and coarseness [5]. Ulrich, E. et al. evaluated the utility of radiomic feature
analysis from 18F-fluorothymidine positron emission tomography (FLT PET) obtained at baseline in
prediction of treatment response in patients with head and neck cancer. In this study 2/30 (6.7%) with
larynx cancer were included. The authors considered nine discriminant features. Their results suggest
that the most homogenous lesions at baseline were associated with better prognosis [4].

From the group of Bogowicz, M. et al. we identified three papers. In one of them the authors tried
to show the association of post-radiochemotherapy (RCT) PET radiomics with local tumor control.
To this effect, the authors evaluated the models against two radiomics software implementations, 11 out
128 (9%) patients with larynx cancer were included, and the study showed the potential of post-RCT
FDG-PET radiomics for early identification of patients with a high risk of local tumor recurrence [57].
In another study, the authors tried to predict local tumor control after RCT of head and neck squamous
cell carcinoma and Human Papilloma Virus (HPV) status using CT radiomics. A population of patients
and healthy controls were included. A radiomic signature, comprising three features, was significantly
associated with local control showing that tumors with the most heterogeneous CT density distribution
are at risk for decreased local control [58]. In a third study, the authors compared the use of PET and
CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma. Eight
percent of patients with larynx cancer were included and 569 radiomic features were extracted from
both contrast-enhanced CT and 18F-FDG PET. The authors concluded that the most homogenous
tumors in CT density with a focused region of high FDG uptake indicated better prognosis. However,
the CT radiomics-based model overestimated the probability of tumor control in the poor prognostic
group [59].

Ou, D. et al. developed a radiomics signature model to estimate overall survival in patients with
locally advanced head and neck squamous cell carcinomas treated with concurrent chemoradiotherapy
or bioradiotherapy to assess its incremental value to HPV and clinical risk factors for individual OS
estimation and also to explore its predictive value. The imaging acquisition method used was the
CT. A total of 544 radiomics image features were defined and were divided in four groups: (I) tumor
intensity, (II) shape, (III) texture, and (IV) wavelet features, but it was found that only 24-feature-based
signature significantly predicted for OS and progression-free survival (PFS). Patients with larynx
cancer were included in the study, but the number of patients was not described [60]. Zhang, H. et al.
examined the association between overall survival and the baseline CT imaging measurements and
clinical variables. The study includes 21/72 (29%) with a locally advanced larynx cancer. The imaging
acquisition was performed using a CT, which demonstrated that primary mass entropy and skewness
measurements were associated to OS. After the multivariate Cox regression analysis incorporating
clinical and imaging variables, results indicated that primary mass size, N stage, primary mass entropy,
and skewness measurements were independently associated to OS [46]. Finally, Kuno, H. et al. tried
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to assess the utility of texture analysis for the prediction of treatment failure in primary in head &
neck squamous cell carcinoma (HNSCC) treated with RCT. In this study 19/62 patients (31%) with
larynx cancer were included. The imaging acquisition method was the CT, and the multivariate
analysis revealed that three histogram features (geometric mean, harmonic mean, and fourth moment)
and four gray-level run-length features (short-run emphasis, gray-level nonuniformity, run-length
nonuniformity, and short-run low gray-level emphasis) were significant predictors of outcome after
adjusting for clinical variables [61].

Table 1. Studies about radiomics and textural analysis including larynx cancer patients.

Ref. Num.ber of Image Acquisition Treatment Significant Features Study Objective
Patients
Fluorodeoxyglucose Surgery,
(FDG).p931tron radlochemptherap Y Metabolic tumor volume, Prognostic value of
- emission (RCT), Radiotherapy . s
[5] 32 tomography (RT), palliative (not correlation, entropy, texture indices over
(PET)/computed specified by energy, and coarseness. overall survival (OS).
tomography (CT) localization)
Evaluate the utility
. of radiomic feature
Nine features were .
1 . s analysis from FLT
F-fluorothymidine considered significant. PET obtained at
positron emission Their results suggested L
[4] 2 RCT . baseline in
tomography (FLT that homogenous lesions L
. . prediction of
PET) at baseline were associated treatment response
with better prognosis. . . P
in patients with head
and neck cancer.
80 PET radiomic features
yielded intraclass
correlation coefficient >0.8
in the comparison between
the implementations. The
change of implementation
caused high variability of ~ Association of post
57] 1 FDG PET/CT RCT concor'dan'ce index (CI? in (RCT) PET radiomics
the univariable analysis. with local tumor
However, both final control.
multivariable models
performed equally well in
the training and validation
cohorts (CI > 0.7)
independent of radiomics
implementation.
Develop a radiomics
signature to estimate
OS in patients with
locally advanced
head & neck
squamous cell
544 radiomics image carcinoma (HNSCC)
features were defined and  treated with
[60] Not cT RCT/Bio-Radiotherapy were divided in four concurrent RCT or
specified (BRT) groups: (I) tumor intensity, BRT and assess its

(I) shape, (III) texture, and
(IV) wavelet features.

incremental value to
Human Papilloma
Virus (HPV) and
clinical risk factors
for individual OS
estimation and also
to explore its
predictive value.
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Ref. NIl’I;:lil:::;sOf Image Acquisition Treatment Significant Features Study Objective
Primary mass entropy and
skewness measurements
with multiple spatial filters
were associated with OS.
Multivariate Cox Examine the
Cisplatin, regression analysis association between
5-fluorouracil, and  incorporating clinical and  overall survival and
[46] 21 CT docetaxel (TPF) imaging variables the baseline CT
Induction indicated that primary imaging
Chemotherapy (ICT) mass size, N stage, measurements and
primary mass entropy and  clinical variables.
skewness measurements
with the 1.0 spatial filter
were independently
associated with OS.
Multivariate analysis
revealed that three
histogram features
(geometric mean,
harmonic mean, and
fourth moment) and four Assess the utility of
gray-level run-length texture analysis for
[61] 19 CT Not specified featuresr (short-run the predictiqn of .
emphasis, gray-level treatment failure in
nonuniformity, run-length  primary HNSCC
nonuniformity, and treated with RCT.
short-run low gray-level
emphasis) were significant
predictors of outcome after
adjusting for clinical
variables.
A radiomic signature,
comp.risi.nfg, three features, This study aimed to
was significantly ;
. . predict local tumor
associated with local control (LC) after
[58] 4 CT RCT control shpwmg that RCT of HNSCC and
tumors with the most .
heterogeneous CT densit HPV status using CT
ereroger . Y radiomics.
distribution are at risk for
decreased local control.
569 radiomic features were
extracted from both
contrast-enhanced CT and
18F-FDG PET. The most
homqgenqus tumors in CT Comparison of PET
density with a focused L
. ) and CT radiomics for
[59] 10 CT/18F-FDGPET/CT RCT region of high FDG uptake prediction of local

indicated better prognosis.
However, the CT
radiomics-based model
overestimated the
probability of tumor
control in the poor
prognostic group.

tumor control in
HNSCC.

However, it is necessary to be cautious when interpreting or comparing these results. Studies

included all kind of head and neck tumors making it difficult to perform a proper meta-analysis or
to extract any type of conclusion or propose any statement. Larynx cancer has a different behavior
compared with other head and neck tumors; for this reason, new studies related exclusively to
larynx cancer must include radiomics features as a valid biomarker in the diagnosis and follow-up
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of larynx cancer patients. Moreover, software available should be easily accessible, measurable, and
reproducible, so their stability with regard to the measurements should be verified. To do this, the
evaluation should be performed in a representative, possibly large and standardized cohort where
well-defined parameters are sufficiently assessed. After definition of the biomarker signature, it should
also be reevaluated in a second cohort, preferably independent in another institution. Furthermore, a
prospective validation is necessary in order to confirm the reliability of this technique.

3. Precision Medicine, Big Data, and Machine Learning in Larynx Cancer

The aim of precision medicine is to accurately define diseases in order to find personalized and
individual therapies. This approach should improve healing, reducing the spectrum of side effects [3].
Large data volumes are acquired during the disease evolution, thus providing various options for the
definition of appropriate biomarkers or marker patterns in different stages of the disease, on different
steps of the analysis, and of most diverse materials and data sources. To exploit this big amount
of retrospective data, using mathematical algorithms, a quantitative high-throughput extraction of
radiological features based on meta-datasets (DICOM format) should be carried out to evaluate all
those image features that cannot be perceived with the human eye against the clinical outcome as the
final objective reference for predictive analysis, thus creating a place for radiomics and texture analysis
in the spectrum of precision medicine [62] (Figure 2).

I Radiomics Extraction |

[Histogram Foalumsl Data Analysis Machine Ieafnlng sigorithm
application

ROI Extraction

@ BN e .
N © e LN
@ N - NN
L
L

Texture Features

Figure 2. Radiomics analysis workflow. Image segmentation is performed on computed tomography
(CT) images. Experienced radiologists delineate the volume of interest covering the whole tumor by
stacking up the region of interest slice by slice. Radiomics features are extracted including shape- and
size-based features, first-order histogram features, and textural features. The data are analyzed, and
clinical application is tested.

The development of “big data” and “machine learning” techniques have increased our possibilities
to identify the different characteristics of a disease containing information about prognosis and diagnosis
with regard to the status, the outcome, and the therapeutic response. Those variables can be analyzed
in the context of clinical data and the course of the disease while the clinical data still serve as diagnostic
and prognostic parameters, helping clinicians to improve decision-making protocols looking for
precision medicine.

According to the definition proposed in “Big data in health research: An EU action plan”, “Big
data in health” encompasses high volume, high diversity, biological, clinical, environmental, and
lifestyle information collected from single individuals to large cohorts, in relation to their health
and wellness status, at one or several time points [63]. However, big data come from a variety of
heterogeneous information sources, such as clinical trials, electronic health records, patient registries,
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or clinical databases, posing big problems for interoperability and fusion of the information towards
building decision support systems (DSS) with clinical value.

Machine learning can be broadly defined as the collection of computational methods using data to
improve performance or make accurate prediction. These programmable methods can learn from the
data, and hence automate and improve the prediction process. Recently Parmar et al. assessed a large
panel of machine-learning methods for overall survival prediction of head and neck cancer patients.
They investigated 12 machine-learning classifiers belonging to the 12 classifier families: Bagging
(BAG), Bayesian (BY), boosting (BST), decision trees (DT), discriminant analysis (DA), generalized
linear models (GLM), multiple adaptive regression splines (MARS), nearest neighbors (NN), neural
networks (Nnet), partial least square and principle component regression (PLSR), random forests (RF),
and support vector machines (SVM). In this study the authors demonstrated the also showed high
prognostic performance and stability of machine learning methods applied to Radiomics features [64].

In head and neck cancer and larynx cancer field, the routine non-contrast-enhanced CT performed
for radiotherapy planning can constitute nowadays the basis for radiomics development. Examples
are especially aimed at providing a prognostic biomarker in different head and neck cancers [18,64,65].
MRI can also provide a higher number of features suitable for diagnostic and prognostic purposes,
especially with functional sequences, such as diffusion-weighted imaging (DWI) and apparent diffusion
coefficients (ADC). The large amount of data generated can be used to elaborate an algorithm for
automatic diagnosis of laryngeal cancer and to predict outcome based on pre- and post-RCT treatment,
using those CT or MRI during the follow-up.

At this moment, machine learning or big data are not used commonly in head and neck or larynx
cancer research. This can be explained by the limited numbers of patients still recruited mainly for
traditional clinical studies. However, some specific machine learning and big data techniques are
finding an increasing application in radiomics [66].

4. Radiomics Limitations

Nowadays, variations in radiomics workflow among different researchers lead to obtaining
different results, compromising the reproducibility of the technique. Moreover, this makes it more
difficult to establish a validated and useful radiomic signature.

4.1. Imaging Acquisition

The type of machine used during the image acquisition, the different slice thickness, reconstruction
matrices, configurations, fields of view, the time point of the administration and type of contrast as well
as the time point of the investigation itself during the course of illness may lead to relevant differences
in the image. All these parameters have an important correlation with the VOI sizes and the ROI
definition during segmentation affecting radiomic markers [7].

4.2. Image Segmentation

Image segmentation represents one of the most important steps during radiomic workflow. It
can be performed manually, semiautomatically or automatically. Manual segmentation represents a
time-consuming procedure. This also needs to be carried out by a specialist, and a high interobserver
variability can be expected. Automatic segmentation represents a more reproducible and faster way
to do our segmentation and is very useful for large imaging datasets. Semiautomatic segmentation
needs an interaction between the observer and software. Most often, the observer needs to define the
VOI and may refine the semiautomatic segmentation results manually. Although some automatic and
semiautomatic segmentation methods exist, they are not suitable for every VOI and thus need to be
upgraded for certain problems and used with standardized adjustments when they are applied [7].
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4.3. Feature Extraction

Imaging features are extracted from the VOI areas defined by the segmentation. Every feature
represents one part from the whole radiomic concept. The tumor intensity is quantified by an intensity
histogram that displays the three-dimensional fractional volume data for the range of voxel values.
Shape data contain values like the total volume, surface area, compactness, and actual form of the
lesion. Texture-based features are compiled by mathematical algorithms that deliver second-order
statistics or co-occurrent matrix features. Hundreds of values may be generated containing information
about additional qualities like densities, homogeneity, grey shades, clusters, correlations between those
in different settings, and much more.

A common challenge in radiomics is to define a non-redundant set of imaging biomarkers from the
vast number of extracted features, and to improve the radiomic performance, redundancies should be
excluded [7]. To do this, after feature extraction, the use of some statistical methods or supporting our
workflow with machine learning allows us to select the most precise features reducing the spectrum to
those validated.

4.4. Image Processing

To make a successful image processing procedure, an appropriate bioinformatics approach must
be chosen that is able to cope with big data, to obtain a reproducible and solid biomarker signature.
However, this make it necessary to perform careful data management to improve the study results and
diminish the influence of outliers, blurring values, interobserver variability, and diffuse readings [8].
Hundreds of radiomic features can be extracted from each tumor; as many patients as possible should
ideally be integrated into the study. This is of course often limited—even in multicenter studies.
Commonly, those relevant markers are determined in retrospective cohort studies. When a radiomic
signature has been identified, it should be verified in an independent cohort in a prospective study [6].

5. Future Direction

Nowadays, radiomic features can predict some tumor characteristics linked to survival in some
head and neck cancer [67]. Moreover, some data from the study of Aerts et al. [9] in non-small
cell lung cancer suggest that when the TNM classification is combined with radiomics signature,
the performance is significantly better than TNM alone, suggesting complementary information for
prognosis. However, as the larynx is one of the most complex anatomical and functional organs in
the head and neck region, more studies are necessary to determine how radiomic signatures can
improve phenotype analysis and prognosis prediction in larynx cancer due to its different behavior in
comparison with other head and neck cancers.

6. Conclusions

The metadata summarized in this paper suggest that there is great potential for radiomics
and texture analysis techniques for improving upon multiple aspects of the tumor assessment,
risk stratification, and outcome evaluation aspects in laryngeal cancer therapy. An effort towards
standardization of radiomics algorithms and specific acquisition parameters is necessary for the
oncologic community to define the role of radiomics and texture analysis techniques in a manner that
the clinical practice takes in. New studies about specific head and neck sublocalization are needed,
including the larynx.
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