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Abstract: Background: Several approaches have been suggested to be useful in the early detection
of colorectal neoplasms. Since metabolites are closely related to the phenotype and are available
from different human bio-fluids, metabolomics are candidates for non-invasive early detection of
colorectal neoplasms. Objectives: We aimed to summarize current knowledge on performance
characteristics of metabolomics biomarkers that are potentially applicable in a screening setting for
the early detection of colorectal neoplasms. Design: We conducted a systematic literature search
in PubMed and Web of Science and searched for biomarkers for the early detection of colorectal
neoplasms in easy-to-collect human bio-fluids. Information on study design and performance
characteristics for diagnostic accuracy was extracted. Results: Finally, we included 41 studies in our
analysis investigating biomarkers in different bio-fluids (blood, urine, and feces). Although single
metabolites mostly had limited ability to distinguish people with and without colorectal neoplasms,
promising results were reported for metabolite panels, especially amino acid panels in blood samples,
as well as nucleosides in urine samples in several studies. However, validation of the results is
limited. Conclusions: Panels of metabolites consisting of amino acids in blood and nucleosides in
urinary samples might be useful biomarkers for early detection of advanced colorectal neoplasms.
However, to make metabolomic biomarkers clinically applicable, future research in larger studies
and external validation of the results is required.

Keywords: metabolomics; biomarkers; early detection; colorectal neoplasms; sensitivity; specificity;
human bio-fluids

1. Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide among men and the second
most common in females [1]. Although it progresses slowly over a long period of time, it is often
detected at advanced stages when prognosis is already poor [2]. CRC often develops without obvious
early symptoms, and a large proportion of the at-risk population does not take advantage of screening
offers. Colonoscopy—today’s gold standard for the early detection and removal of precancerous
lesions—is invasive, inconvenient for the patients, and costly [3]. Established non-invasive tests,
such as fecal occult blood tests (FOBT), have high specificity but limited sensitivity, especially with
respect to the detection of precursors of CRC, such as adenomas.
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Therefore, there is need for the discovery of novel non-invasive screening methods and biomarkers
that can identify CRC and its precursors in easily accessible biospecimens [4]. Recently, early detection
of CRC in blood samples has drawn increasing attention among researchers. For example, the US
Food and Drug Administration (FDA) recently approved a test that investigates methylation patterns
in free circulating DNA in plasma [5]. One promising approach for biomarker detection with high
diagnostic performance is metabolomics, the analysis of small molecular weight metabolites of different
biochemical classes in the body [6]. Metabolites are closely related to the phenotype and mirrors the
processes that are happening in the cell or the organism. The most readily accessible bio-samples
such as stool, urine, and blood have great potential for discovery of early cancer biomarkers or even
precursors such as adenomas [6]. On the other hand, the metabolomic profile is highly independent
from influencing factors such as the environment or diet, which makes the application in biomarker
discovery challenging [7].

A number of studies have assessed the potential of metabolomics for the early detection
of adenomas and CRC and partly reported very promising results [8–11]. However, the large
heterogeneity in study populations, biospecimen, analysis, analytical and statistical methods, and the
extent of internal and external validation make comprehensive evaluation of the current state of
knowledge difficult. We therefore carried out a systematic review in order to provide a comprehensive
overview on the current state of knowledge in this promising field.

2. Methods

2.1. Systematic Literature Research

We conducted systematic literature research on biomarkers in non-invasive (urine, stool) or
minimally invasive (blood) collectable bio-samples that might be promising for early detection of
colorectal neoplasms. The search was conducted in PubMed and Web of Science on 26 April 2018 with
the following search terms ((biomarker OR biomarkers OR metabolite OR metabolites OR metabolome
OR metabolomic OR metabolomics OR metabolic) AND (Urine OR urinary OR blood OR plasma
OR serum OR sera OR stool OR fecal OR feces OR urine-based OR blood-based OR plasma-based
OR serum-based) AND (sensitivity OR specificity OR accuracy OR auc OR roc OR performance OR
detection OR predictivity OR receiver operating characteristic) AND (“Colorectal neoplasm” OR “colon
neoplasm” OR “colonic neoplasm” OR “Rectal Neoplasm” OR “colorectal cancer” OR “colon cancer”
OR “colonic cancer” OR CRC OR “Colorectal tumor” OR “colon tumor” OR “colonic tumor” OR
adenoma)) searching for “title/abstract” in the PubMed database specifically. We used the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement flow diagram for
systematic reviews to show at each phase the number of records and reasons for exclusion [12].
Cross references identified from original papers and reviews were also included.

2.2. Exclusion Criteria

After the removal of study duplicates and articles that were not available in English language,
we screened remaining titles and abstracts for eligible studies according to the predefined criteria.
We removed records when the topics were not related to the review question (e.g., when the articles
addressed other cancer types or other diseases). Furthermore, we excluded treatment trials and articles
that used approaches other than metabolomics or focused on advanced or metastatic CRC cases.
We looked at the remaining studies in more detail and further excluded reviews and papers not related
to the topic (e.g., investigation on fecal immunochemical tests, volatile compounds) or studies using
tissue samples rather than blood, urine, or stool samples for biomarker detection. Studies that did not
contain enough statistical data or did not report on diagnostic performance were also not eligible.
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2.3. Data Extraction

We extracted details on study design and characteristics (year, type of study participants, samples
size, gender distribution, and stage distribution) and on the metabolomics pattern found in the
different bio-fluids, as well as the corresponding diagnostic performance characteristics (sensitivity,
specificity, area under the curve (AUC), and p-value) from each article. If sensitivity and specificity
were not reported directly, we used additional information to calculate these values whenever
possible. Data were independently extracted by two different reviewers (VE, MB), and eventual
initial disagreements were solved by further review and discussion among them.

2.4. Quality Assessment of Diagnostic Accuracy Studies

The QUADAS (Quality Assessment of Diagnostic Accuracy Studies) tool was applied to assess
study quality and to evaluate risk of bias and concerns regarding applicability [13]. The risk of bias and
concerns regarding applicability for every study were evaluated by two coauthors (VE, MB). The risk
of bias included the four domains “patient selection”, “index test”, “reference standard”, and “flow
and timing”, and the section regarding applicability included the three domains “patient selection”,
“index test”, and “reference standard”. Answering different signaling questions specific for this review,
each category was ranked as high, low, or unclear, respectively.

3. Results

3.1. Study Selection

We conducted a systematic literature research and retrieved 1197 records in the PubMed database
and 2491 articles in Web of Science. The workflow of study selection and exclusion followed the
PRISMA guidelines (Figure 1). After removal of duplicates (n = 1009) and articles that were not
available in English (n = 65), the remaining 2680 articles were screened through title and abstract.
After exclusion of non-eligible papers, 151 articles were left for careful full-text screening. Full text
articles were further excluded if they were reviews or not related to the topic, if they were studies on
tissue samples, or did not report enough statistical data on diagnostic performance. In total, 39 full
text articles were eligible and an additional 8 articles were included as cross references. In summary,
47 original articles were considered in this systematic review.

3.2. Study Design and Population Characteristics

Table 1 gives an overview of study design and population characteristics of the 47 studies on
metabolomics-based biomarkers for early detection of CRC and advanced adenomas. Out of these,
27 studies reported on blood-based biomarkers (17 serum, 9 plasma, and 1 dried blood spot), 16 on
urinary markers, and 4 on fecal biomarkers. Most of the included articles presented a case-control
study design (40 studies), and the majority of the studies were conducted in an Asian population
(32 studies). Technologies used were mass spectrometry (MS, 37 studies), nuclear magnetic resonance
(NMR) spectroscopy (8 studies), enzyme linked immune-sorbent assay (ELISA, 1 study), and an
enzymatic assay (1 study). The numbers of cases ranged from 320 CRC cases [14] to 11 CRC cases in
the smallest study [15], and the number of controls ranged from 633 healthy controls in a screening
setting [16] to 10 controls in the smallest studies [15,17]. Age ranged from 22 to 93 years among the
CRC cases and from 18 to 95 years among controls.

Whenever possible, performance characteristics were extracted with a healthy control group
as the reference group. One study only used diseased controls [18], and some studies additionally
combined healthy individuals with people with benign colorectal diseases [19–22]. Uchiyama et al.
combined carriers of adenomas with healthy controls to distinguish from CRC cases but reported on
characteristics to distinguish adenomas from healthy controls as well [23]. Performance characteristics
of metabolites and panels for specific study population subgroups are presented in Supplementary
Table S1 and Supplementary Table S2.
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3.3. Diagnostic Performance of Potential Biomarkers

Potential biomarkers for early detection of CRC were found in different bio fluidic sample types
(blood, urine, feces) and vary in their biochemical classes. Most of the included studies (35 out of 47)
used a panel of metabolites to discriminate diseased from control participants; a few reported only on
performance characteristics for single metabolites (12 studies), but the composition of the panels and
potential markers differed (Table 2, Supplementary Table S3). Internal validation was performed by
subsampling, bootstrapping, or cross-validation in 25 studies.
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Diagram for systematic literature research using the PubMed and Web of Science databases.
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Table 1. Study characteristics.

Characteristics of the Studies Training Set (if Applicable) Validation Set (if Applicable)

First Author,
Year

Study Type
Country

Study
Group

Population
n

Age
(Range/SD)

Male
(%)

Stage
(0)/I/II/III/IV/(?)

Population
n

Age
(Range/SD)

Male
(%)

Stage
(0)/I/II/III/IV/(?)

Dried blood spot

1 Jing, 2017 [18] Case-control
Japan

CRC
P

85
81

61.0 (22–92)
57.9 (29–79)

59
58 10/22/31/22

Serum

2 Zhang, 2018
[22]

Case-control
China

CRC
Enteritis

Cn

55
34
52

63.5 (±4.2)
56.9 (±8.2)
60.8 (±6.4)

56
56
38

n.a.

3 Guo, 2017 [24] Case-control
China

CRC
Cn

144
144

62 ± 11/63 ± 9
62 ± 11/63 ± 10

46
46

I + II/III + IV/(?)
58/77/(9)

4 Hata, 2017 [25] Case-control
China

CRC
Cn

225
916

n.a.
n.a.

60
62 (21)/70/49/71/13/(1)

5 Uchiyama,
2017 [23]

Case-control
Japan

CRC
A

Cn

56
59
60

70.4 1

69.9 (±8.2)
67.7 (±9.2)

50
51
50

14/14/14/14

6 Farshidfar,
2016 [14]

Case-control
Canada

CRC
A

Cn

320
31

254

n.a.
59.5 (±6.0)
61.7 (±9.3)

n.a.
68
58

47/60/71/142

7 Zhang, 2016
[26]

Case-control
China

CRC
BCD
Cn

59
0

69

59.1 (±11.4)
n.a.

57.9 (±10.4)

58
n.a.
52

1/3/23/15
80
55

116

59.5 (±10.3)
58.2 (±10.9)
58.9 (±10.4)

45
62
62

21/14/23/14

8 Gu, 2015 [27] Case-control
USA

CRC
Cn

28
28

56 med (29–88)
58 med (18–80)

50
50 1/2/6/19

9 Zhu, 2014 [28] Case-control
USA

CRC
P

Cn

66
76
92

58 med (27–88)
56 med (37–86)
57 med (18–80)

45
49
49

I + II/III/IV
21/17/28

10 F. Li, 2013 [29] Case-control
China

CRC
Cn

52
52

56 med (24–91)
52 med (22–88)

54
54

Early/late
26/26

11 Ritchie, 2013
[30]

Screening
Canada

CRC
Cn

98
4825 57 med (18–92) 2 45 2 30/22/34/12



Cancers 2018, 10, 246 6 of 24

Table 1. Cont.

Characteristics of the Studies Training Set (if Applicable) Validation Set (if Applicable)

First Author,
Year

Study Type
Country

Study
Group

Population
n

Age
(Range/SD)

Male
(%)

Stage
(0)/I/II/III/IV/(?)

Population
n

Age
(Range/SD)

Male
(%)

Stage
(0)/I/II/III/IV/(?)

12 Tan, 2013 [31] Case-control
China

CRC
Cn

62
62

60.1 (24–82)
59.4 (31–75)

55
45 16/25/17/4 39

40
61.8 (36–80)
55.9 (35–76)

59
0 10/18/9/2

13 Ikeda, 2012
[32]

Case-control
Japan

CRC
Cn

12
12

71.3 med (63–83)
58.5 med (45–74)

67
42 3/4/5/0

14 Leichtle, 2012
[33]

Case-control
Germany

CRC
Cn

59
58

59 med (45–90)
58 med (38–75)

63
45 5/18/20/16

15 Ma, 2012 [34] Case-control
China

CRC
Cn

30
30

65.03 mean

(53–72)
64.97 mean

(53–72)

60
60 3/13/8/6

16 Nishiumi, 2012
[35]

Case-control
Japan

CRC
Cn

60
60

67.7 mean (36–88)
64.5 mean (39–88)

65
65 (12)/12/12/12/12 59

63
64.8 mean (31–84)
62.8 mean (47–73)

51
51 (15)/11/3/11/19

17 Ritchie, 2010
[36]

Case-control
Japan, USA

CRC
Cn

112
110

62.0 (28–90) 3

n.a.
56
36 23/38/35/11/(5) 110

110
69.2 (35–91) 3
55.8 (26–86) 3

57
59

0+I/II/III/IV/(?)
22/39/36/9/(4)

18 Ludwig, 2009
[37]

Case-control
UK

CRC +A
Cn

38
19

67 (±13)
63 (±10)

n.a.
n.a.

A + B/C + D
18/20 (+ 8 A)

Plasma

19 Liu, 2018 [38] Case-control
China

RC
A

Cn

155
85
80

57.0 (±11.8)
55.0 (±10.9)
51.2 (±12.5)

51
26
24

32/38/50/35

20 Nishiumi, 2017
[39]

Case-control
Japan

CRC
Cn

282
291

67.0 mean (40–93)
66.8 mean (41–88)

60
61 (79)/80/123/0/0

21 Shen, 2017 [40] Case-control
China

CRC
Cn

25
10

n.a. (31–80)
n.a. (18–22)

64
50 n.a.

22 Crotti, 2016
[41]

Case-control
Italy

CRC
Cn

48
20

67 (49–90)
62 (35–83)

56
50 11/9/16/12

23 Cavia-Saiz,
2014 [42]

Case-control
Spain

CRC
Cn

78 4

70
n.a.
n.a.

69
n.a.

I + II/III/IV
11/24/43/4

24 S. Li, 2013 [43] Case-control
China

CRC
AP
Cn

120
120
120

55.7 (±11.8)
54.5 (±14.2)
55.7 (±7.5)

59
63
68

I + II/III + IV/(?)
15/93/(12)
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Table 1. Cont.

Characteristics of the Studies Training Set (if Applicable) Validation Set (if Applicable)

First Author,
Year

Study Type
Country

Study
Group

Population
n

Age
(Range/SD)

Male
(%)

Stage
(0)/I/II/III/IV/(?)

Population
n

Age
(Range/SD)

Male
(%)

Stage
(0)/I/II/III/IV/(?)

25 Miyagi, 2011
[44]

Case-control
Japan

CRC
P

Cn

199
34

995

63.7 (±9.5)
55.3 (±7.9)
62.4 (±9.5)

57
21
57

(8)/63/48/59/19/(2)

26 Okamoto, 2009
[45]

Case-control
Japan

CRC
Cn

49
49

64.1 (40-78)
59.6 (40–69)

78
78 (2)/7/19/14/6/(1) 13

54
57.5 (33–75)
55.8 (40–69)

31
26 2/3/8/0

27 Zhao, 2007 [46] Case-control
USA

CRC
Cn

89
83

62.0 (±14.1)
46.3 (±15.4)

64
45

I + II/III + IV/(?)
37/49/(3)

44
42

62.9 (±10.5)
45.4 (±16.6)

70
48

I+II/III+IV/(?)
16/26/(1)

Urine

28 Nakajima, 2018
[47]

Case-control
Japan

CRC
Benign

Cn

201
14
17

68.7 (±0.8)
65.0 (±3.1)
42.1 (±2.8)

58
79
76

(1)/27/28/109/34
Tis 2

29 Deng, Chang,
2017 [48]

Screening
Canada

CRC/A
Cn +
HPP

1/154
530

59.9 mean (±7.4)
56.1 mean (±8.2)

61
42 n.a.

30 Deng, Fang,
2017 [19]

Screening
China

A
Cn

345
316

65.1 mean (±6.6)
61.8 mean (±7.4)

57
26 n.a.

31 Wang, 2017
[49]

Case-control
China

CRC
Cn

55
40

n.a. (27-84)
59 (28-78)

47
48

I + II/III + IV
23/32

32 Rozalski, 2015
[50]

Case-control
Poland

CRC
A

Cn

56
15
72

65 med

66 med

54 med

58
53
41

n.a.

33 Wang, 2014
[51]

Screening
Canada

A
Cn

162
422

59.1 (±0.6)
55.7 (±0.4)

59
43 n.a. 81

211
60.4 (±0.8)
56.1 (±0.6)

62
42 n.a.

34 Eisner, 2013
[16]

Screening
Canada

HPP/A/
CRC
Cn

110/243/2
633

58.9 mean (±8.2)
56.2 mean (±8.1)

55
42 n.a.

35 Hsu, 2013 [52] Case-control
China

CRC
Cn

26
45

65.3 (±14.0)
n.a.

46
n.a. 3/6/10/7

36 Yue, 2013 [17] Case-control
China

CRC
Cn

29
10

n.a.
n.a.

n.a.
n.a. n.a.

37 Chen, 2012 [53] Case-control
China

CRC
Cn

20
14

n.a. (37–87)
68 med (50–86)

50
57

I + II/III + IV
8/12
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Table 1. Cont.

Characteristics of the Studies Training Set (if Applicable) Validation Set (if Applicable)

First Author,
Year

Study Type
Country

Study
Group

Population
n

Age
(Range/SD)

Male
(%)

Stage
(0)/I/II/III/IV/(?)

Population
n

Age
(Range/SD)

Male
(%)

Stage
(0)/I/II/III/IV/(?)

38 Cheng, 2012
[54]

Case-control
China

CRC
Cn

61
62

59 med (24–83)
60 med (31–75)

58
50 15/25/17/4 40

41
63.5 med (36–80)
57 med (35–76)

60
0 9/20/10/1

39 Wang, 2010
[21]

Case-control
China

CRC
BCT
Cn

50
34
34

n.a.
n.a.
n.a.

n.a.
n.a.
n.a.

n.a.

40 Johnson, 2006
[20]

Case-control
USA

CRC
BCD
Cn

58
28
72

60.9 (±10.0)
38.8 (±11.7)
60.9 (±7.5)

55
46
74

n.a.

41 Feng, 2005 [55] Case-control
China

CRC
Cn

52
62

63 med (26–87)
59 med (24–78)

52
53

A/B/C/D
5/22/18/7

42 Hiramatsu,
2005 [56]

Case-control
Japan

CRC
BGD
Cn

248
51
52

n.a.
n.a.

(22–52)

n.a.
n.a.
52

(20)/40/60/107/21

43 Zheng, 2005
[57]

Case-control
China

CRC
A

Cn

52
10
60

60.0 med (26–87)
n.a.

52 med (21–71)

56
n.a.
52

7/23/15/7

Feces

44 Lin, 2016 [58] Case-control
China

CRC
Cn

68
32

56 (±21)
57 (±23)

53
47

I + II/III/IV
20/2523

45 Amiot, 2015
[59]

Cohort
France

ACN
Cn

33
22

59.4 med (±6.9)
52.0 med (±12.0)

76
68 n.a.

46 Phua, 2014 [15] Case-control
China

CRC
Cn

11
10

64.5 mean (56–80)
57.4 mean (48–79)

64
40

A/B/C/D
0/6/5/0

47 Bezabeh, 2009
[60]

Screening
China

CRC
Cn

111
412

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

Abbreviations: (A)A, (advanced) adenoma; ACN, advanced colorectal neoplasia; AP, adenomatous polyps; BCD, benign colorectal disease; BCT, benign colorectal tumor; BGD, benign
gastrointestinal disease; Cn, controls; CRC, colorectal cancer; HPP, hyperplastic polyp; med, median; P, polyps; RC, rectal cancer; Tis, tumor in situ. 1 Mean age calculated from available
subgroup data. 2 The numbers account for the whole study population without distinguishing between cases and controls. 3 Training set participants from Genomics Collaborative,
Seracare 1, and Osaka participants, validation set from Chiba and Seracare 2 study. Mean age calculated from available subgroup data. 4 Inconsistency in reporting the numbers of
included CRC patients.
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Table 2. Performance characteristics of single metabolites and panels of potential biomarkers.

First Author, Year
Metabolites Diagnostic Performance

Outcomes Am A/ FA CH Others Sn Sp AUC-No AUC with Validation p-Value

Pep Validation SS CV BS EV

Biomarker panels

Dried blood spot

Jing, 2017 [18] CRC 4 4 0 0 81.2 84.0 0.91 <0.05

Serum

Zhang, 2018 [22] CRC 0 2 0 0 n.a. n.a. 0.90 <0.05

Guo, 2017 [24] CRC ♂
CRC ♀

0
0

5
2

0
0

0
0

77.3
80.8

92.4
85.9

0.90
0.90

n.a.
n.a.

Farshidfar, 2016 [14] CRC 9 7 12 13 85.0 86.0 0.91 0.91 <0.00001

Y. Zhang, 2016 [26] CRC 0 6 0 0 93.8 92.2 0.98 <0.001

H. Gu, 2015 [27] CRC 8 0 0 0 65.0 95.0 0.91 <0.05

Zhu, 2014 [28] CRC 7 3 3 0 96.0 80.0 0.93 0.93 1 <0.05

F. Li, 2013 [29] CRC 0 9 0 0 86.5 96.2 0.96 <0.05

Tan, 2013 [31] CRC 6 1 3 0 83.7 91.7 n.a. <0.05

Ma, 2012 [34] CRC 3 0 3 0 93.3 2 96.7 2 n.a. <0.05

Nishiumi, 2012 [35] CRC 3 0 1 0 83.1 81.0 n.a. <0.05

Ritchie, 2010 [36] CRC 0 3 0 0 75.0 90.0 0.91 <0.05

Ludwig, 2009 [37] CRC 0 1 4 0 70.0 95.0 n.a. n.a.

Plasma

Nishiumi, 2017 [39] Stage 0/I/II 3 3 2 0 99.3 93.8 1.00 0.000781

S. Li, 2013 [43] CRC 0 3 0 0 88.3 80.0 n.a. <0.05

Miyagi, 2011 [44] CRC 10 0 0 0 n.a. n.a. 0.87 3 <0.001

Okamoto, 2009 [45] CRC 6 0 0 0 n.a. n.a. 0.91 <0.05

Zhao, 2007 [46] CRC 0 4 0 0 82.0 93.0 n.a. <0.001
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Table 2. Cont.

First Author, Year
Metabolites Diagnostic Performance

Outcomes Am A/ FA CH Others Sn Sp AUC-No AUC with Validation p-Value

Pep Validation SS CV BS EV

Urine

Nakajima, 2018 [47] CRC 2 0 0 0 n.a. n.a. 0.79 <0.0001

Deng, Chang, 2017 [48] AP 0 1 2 0 82.4 4 36.0 4 0.69 <0.05

Deng, Fang, 2017 [19] AP 7 2 8 0 82.6 42.4 0.72 n.a.

Wang, 2017 [49] CRC I/II 3 0 1 0 87.5 91.3 0.93 <0.01

Rozalski, 2015 [50] CRC 0 0 3 0 78.6 75.0 0.78 <0.0001

Wang, 2014 [51] AP 7 2 8 0 82.7 51.2 n.a. n.a. <0.05

Eisner, 2013 [16] P 2 0 2 0 64.0 65.0 0.72 <0.01

Hsu, 2013 [52] CRC 0 0 6 0 69.0 98.0 n.a. <0.01

Yue, 2013 [17] CRC 0 9 0 1 100.0 80.0 n.a. <0.05

Chen, 2012 [53] CRC 8 0 4 0 n.a. n.a. 1.00 <0.01

Cheng, 2012 [54] CRC 4 1 2 0 97.5 100.0 1.00 1.00 <0.001

Wang, 2010 [21] CRC 4
0

5
0

0
7

0
0

n.a.
n.a

n.a
n.a

0.96
0.89

<0.05
<0.05

Feng, 2005 [55] CRC 0 0 2 0 71.2 93.3 n.a. <0.01

Zheng, 2005 [57] CRC 0 0 14 0 71.0 96.0 n.a. <0.05

Feces

Amiot, 2015 [59] ACN 2 4 1 0 n.a. n.a. 0.94 <0.0001

Phua, 2014 [15] CRC 0 1 2 0 n.a. n.a. 1.00 <0.05

Bezabeh, 2009 [60] CRC 3 2 0 0 85.2 86.9 0.92 0.92 3 n.a.

Single markers

Serum

Hata, 2017 [25] CRC 0 1 0 0 83.3 84.8 0.91 <0.05
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Table 2. Cont.

First Author, Year
Metabolites Diagnostic Performance

Outcomes Am A/ FA CH Others Sn Sp AUC-No AUC with Validation p-Value

Pep Validation SS CV BS EV

Uchiyama, 2017 [23] CRC

0
0
0

1 His

1 C7

1 C8

1 C10

0

0
0
0
0

0
0
0
0

89.0
76.0
71.0
63.0

82.0
71.0
75.0
82.0

0.89
0.83
0.79
0.74

<0.01
<0.01
<0.01
<0.01

Ritchie, 2013 [30] CRC 0 1 0 0 85.7 ~52.1 5 n.a. <0.05

Ikeda, 2012 [32] CRC
1 Ala

0
1 Gln

0
0
0

0
1 GluL

0

0
0
0

54.5
75.0
81.8

91.6
75.0
66.7

n.a. <0.05

Leichtle, 2012 [33] CRC 1 0 0 0 n.a. n.a. 0.71 <0.001

Plasma

Liu, 2018 [38] RC/A 1 0 0 0 43.5 98.8 0.71 <0.05

Shen, 2017 [40] CRC 0
0

1 PG

1 SM
0
0

0
0

1.00
1.00

1.00
1.00

1.00
1.00

<0.05
<0.05

Crotti, 2016 [41] CRC 0 1 0 0 87.8 80.0 0.82 <0.01

Cavia-Saiz, 2014 [42] CRC 1 0 0 0 85.2 100.0 0.92 <0.001

Urine

Johnson, 2006 [20] CRC 0 1 0 0 90.0 45.0 0.64 <0.05

Hiramatsu, 2005 [56] CRC 1 0 0 0 75.8 96.0 n.a. <0.0001

Feces

Lin, 2016 [58] Early stage 0
0

1 Ace

1 Suc
0
0

0
0

94.7
91.2

92.3
93.5

0.99
0.94

0.99
0.94

<0.001
<0.001

The numbers in the column of the metabolites indicate how many metabolites were used for the biomarker panel from each biochemical subclass. In case of single markers, the biochemical
subclass of the marker is listed. Abbreviations: (A)A, (advanced) adenomas; Ace, acetate; ACN, advanced colorectal neoplasms; Ala, alanine; Am A, amino acids, AP, adenomatous polyps;
AUC, area under the curve; BS, bootstrapping; C7, benzoic acid; C8, octanoic acid; C10, decanoic acid; CH, carbohydrates; CV, cross validation; EV, external validation; FA, fatty acids;
Gln, glutamine; GluL, glucuronic lactone; His, histidine; LOOCV, leave one out cross validation; MCCV, Monte Carlo cross validation; P, polyps; pep, peptides; PG, phosphatidylglycerol
(34:0); RC, rectal cancer; SM, sphingomyelin (38:8); Sn, sensitivity; Sp, specificity; SS, subsampling; Suc, succinate. 1 Monte Carlo cross validation (MCCV). 2 Sensitivity and specificity
calculated from available data. 3 Leave-one-out cross validation (LOOCV). 4 Additional results for different cut-off values can be read from the original article. 5 Specificity was calculated
for the intended to screening population (40–74 years olds in the colonoscopy population).
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For the blood-based markers, 14 (out of 27) studies were internally validated. Blood-based markers
can be found either in serum or plasma samples or in dried blood spots. The latter methodology
has some advantages, as smaller blood volumes are needed, no immediate processing is required,
and transport and storage are very easy [18]. The biomarker pattern investigated by dried blood
spots consisted of 4 amino acids and 4 acylcarnitines and showed good performance characteristics
with 81.2% sensitivity and 84.0% specificity [18]. However, the majority of CRC patients in this
study (53 out of 85, 62%) were in an advanced stage (III or IV) of the disease. The apparent best
performance characteristics for blood based panels were reported in a study from Nishiumi et al. [39] for
a combination of 8 metabolites (99.3% sensitivity, 93.8% specificity, and AUC 0.996) to differentiate early
stages from healthy controls, but the pattern was not validated (Figure 2a,b). The highest sensitivity and
specificity were reported for a single marker, but the study population was small, healthy controls were
young (18–22 years), and no validation was performed [40]. Hata et al. (2017) and Ritchie et al. (2013)
both found gastrointestinal tract acid 446 (GTA-446) to be a promising new biomarker with sensitivity
of 83.3% and specificity of 84.8%, 85.7%, and 52.1%, respectively [25,30]. Decanoic acid was also found
to be a promising biomarker candidate according to two independent studies with good characteristics
(sensitivity 87.87%, specificity 80.0%, 71.0%, and 75.0%, respectively) [23,41].

The majority of the studies investigating urinary biomarkers found a panel to be more appropriate
than single metabolites (14 patterns, 2 single metabolites). The results from three Canadian papers are
based on the same study setting [16,48,51]. The study with the highest sensitivity included 10 different
metabolites, of which one was unknown and six metabolites were included in which the chemical
formula (confirmed by MS) was known but structures were not further classified [17]. Performance
characteristics were internally validated by subsampling, and sensitivity was 100% at 80.0% specificity,
but samples sizes were low. The highest specificity (100.0%) was reported for a cross-validated panel
of seven metabolites with 97.5% sensitivity (AUC 0.998) [54]. Deng, Fang et al. (2017) validated
a biomarker panel that was suggested by H. Wang et al. in 2014, and they found similarly high
sensitivity [48,51]. N1, N12-Diacetylspermine was found to be an individual biomarker candidate by
two different studies [47,56]. Performance indicators of urine and stool-based biomarker panels can be
found in Figure 3.

Biomarkers in stool samples for early detection of colorectal neoplasms were all internally
validated. One study based on a three metabolite panel reported an AUC of 1.0 [15], but population
size was very small (11 CRC cases and 10 controls). Another metabolomics panel found among
participants of a true screening study was able to detect advanced colorectal neoplasms with good
performance characteristics (AUC 0.94) [59].
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Table 3 summarizes results for metabolites that were assessed three times or more often in
combination as potential markers in blood samples. Some studies focused primarily on amino
acids [27,33,45] or on fatty acids and other lipid derivatives [25,26,29,30,36,41,43,46]. Some metabolites,
e.g., arginine, histidine, or tyrosine, were consistently found to be downregulated in blood samples
from CRC patients compared to those from healthy controls, but results from other metabolites
are not as clear and further research is needed. The metabolites, which were most identified as
promising biomarkers in urine samples, were nucleosides (Table 4). The nucleoside concentration
in the urine of CRC cases was higher compared to controls, and, consequently, urinary excretion of
nucleosides is increased in diseased status. The most often identified metabolites in stool samples
were glutamate/glutamic acid and butyrate/butyric acid, which were detected to be significantly
different [58–60] in cases such as participants with CRC or advanced colorectal neoplasms, compared
to healthy individuals (Table 5). Excretion of glutamine and glucose in CRC stool samples was reported
to be decreased, but results on the other metabolites are not consistent regarding their deregulation.
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Table 3. Metabolites assessed three times or more across different publications on blood biomarkers.

First Author, Year Amino Acids Carbo-
Hydrates Fatty Acids
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Liu, 2018 [38]
Zhang, 2018 [22]

Guo, 2017 [24]
Hata, 2017 [25]
Jing, 2017 [18] ↓ ↓ ↑R ↑R ↓

Nishiumi, 2017 [39] ↓ ↑ ↓ ↑
Uchiyama, 2017 [23] ↓

Shen, 2017 [40]
Crotti, 2016 [41]

Farshidfar, 2016 [14] ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Zhang, 2016 [26]

Gu, 2015 [27] ↓ ↑ ↑ ↓ ↓ ↓R ↓
Cavia-Saiz, 2014 [42]

Zhu, 2014 [28] ↓ ↓ ↓ ↓ ↑
F. Li, 2013 [29] ↓
S. Li, 2013 [43] →
Tan, 2013 [31] ↓ ↓ ↓ ↓ ↓ ↑

Ikeda, 2012 [32] ↑ → ↑ → → → →
Leichtle, 2012 [33] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Ma, 2012 [34] ↓ ↓ ↓ ↑
Nishiumi, 2012 [35] ↑ ↑

Miyagi, 2011 [44] ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↓
Ritchie, 2010 [36]

Ludwig, 2009 [37] → → →
Okamoto, 2009 [45] ↑ ↑ ↑ ↓ ↓

Zhao, 2007 [46] ↓
Abbreviations: ↑, increased levels in cases compared to healthy individuals; ↓, decreased levels in cases compared to healthy individuals;→, significant differences between cases and
healthy individuals (not reported if increased or decreased); R, ratio. Empty lines indicate that this specific metabolite was not investigated in the corresponding study.
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Table 4. Metabolites assessed three times or more across different publications on urine biomarkers.

First Author, Year Amino Acids Carbohydrates
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Nakajima, 2018 [47]
Deng, Chang, 2017 [48]

Deng, Fang, 2017 [19] → ↓ → → → →
Wang, 2017 [49]

Rozalski, 2015 [50]
Wang, 2014 [51] → ↓ → → → →
Eisner, 2013 [16] ↑ ↑ ↓ ↓

Hsu, 2013 [52] ↑ ↑
Yue, 2013 [17]

Chen, 2012 [53] ↓ ↓
Cheng, 2012 [54]
Wang, 2010 [21] ↑ ↑ ↑ ↑

Johnson, 2006 [20]
Feng, 2005 [55] ↑

Hiramatsu, 2005 [56]
Zheng, 2005 [57] ↑ ↑ ↑ ↑

Abbreviations: ↑, increased levels in cases compared to healthy individuals; ↓, decreased levels in cases compared
to healthy individuals;→, significant differences between cases and healthy individuals (not reported if increased
or decreased). Empty lines indicate that this specific metabolite was not investigated in the corresponding study.

Table 5. Metabolites assessed two times or more across different publications on fecal biomarkers.

First Author, Year Amino Acids CH Fatty Acids
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Lin, 2016 [58] ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↑
Amiot, 2015 [59] ↓ ↓ ↓ ↑ ↓ ↑

Phua, 2014 [15]
Bezabeh, 2009 [60] → → → →

Abbreviations: ↑, increased levels in cases compared to healthy individuals; ↓, decreased levels in cases compared
to healthy individuals;→, significant differences between cases and healthy individuals (not reported if increased
or decreased); CH, carbohydrates. Empty lines indicate that this specific metabolite was not investigated in the
corresponding study.

3.4. Quality Assessment of Diagnostic Accuracy Studies

We assessed risk of bias and concerns regarding applicability using the QUADAS-2 tool.
The results are presented in Supplementary Table S4, and an overview is presented in Supplementary
Figure S1. The risk of bias for the ‘patient selection’ section was high in 38 out of the 47 included
studies, as most of the studies used a case-control study rather than screening cohort designs. However,
the risk was low for ‘index test’ in 25 out of 47 studies. Many studies accounted for the pre-analytical
validity, but validation, especially external, is often missing. The risk of bias for the ‘reference test’
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was often rated as ‘unclear’, as it is often not reported clearly if the healthy controls underwent any
form of endoscopy to ensure a healthy bowel status. The risk of bias for ‘flow and timing’ was low for
21 (out of 47) and unknown for the remaining studies. It is favorable when bio-fluids are collected
before a reference standard is conducted. There are only minor concerns regarding applicability for the
‘index test’, as these index tests match our review question. In the section ‘patient selection’, concerns
regarding applicability were high for the majority (39 out of 47 studies). Again for the ‘reference
standard’, concerns regarding applicability were low for the most studies or unclear.

4. Discussion

In this systematic review, we identified a large number of studies focusing on single metabolomic
biomarkers or biomarker panels for detection of colorectal neoplasms, some of which reported good
diagnostic performance characteristics. Most of the included studies were conducted in Asian countries
and had a case-control study design. A MS-based approach with various modifications was the most
frequently used platform. Generally, better diagnostic performance was reported for biomarker panels
than for single biomarkers. Although the included studies report that different metabolite panels have
best diagnostic performance characteristics, some consistency with respect to certain metabolites could
be identified. Most of the studies focused on amino acids in blood samples and on nucleosides in
urine samples as promising biomarker candidates. However, most of the findings lack a reliable form
of validation.

4.1. Metabolomic Biomarkers of Cancer

Metabolomics is a promising approach for cancer detection, since cancer can be considered a
metabolic disease and, so far, only few metabolic pathways seem to be altered during cancer state,
which are aerobic glycolysis, glutaminolysis, and one-carbon metabolism [61]. Metabolomics represents
downstream products in the cellular cascade and an integration of different approaches; for example,
metabolomics with proteomics might be useful [62] and improved AUC values were shown when
protein and metabolite biomarkers were combined, whereas the well-known CEA marker only had
moderate performance when used as a single marker [63].

4.2. Influences on Metabolomics Profiles

Metabolites are closely related to the phenotype representing the processes in an organism.
However, the metabolic profile is not a status but more a dynamic picture changing with the influence
of the host itself or the environment, diet, or lifestyle factors [7]. Urine samples were more affected
by diet than serum samples [64]. It could be shown that different types of diet affect the urinary
metabolite composition [65]. However, it is estimated that diet plays only a minor part in changes of
serum metabolites, and there are other factors contributing more to the variation such as gut microbiota
composition [66]. It could be shown that the gut microbiota is different in patients with CRC compared
to healthy controls [59,67] and is directly involved in carcinoma development [68,69]. The differences
in the microbiota among diseased individuals and healthy controls might be responsible for differences
in the metabolome of stool samples between CRC cases and healthy people, as bacteria are involved
for example in metabolism of short-chain fatty acids [68]. It could be shown that the microbiota
composition may be useful to distinguish even adenoma cases from healthy controls [70].

Other major confounding factors are lifestyle factors like smoking and physical activity. It was
shown that various metabolites in blood samples were associated with the smoking status and number
of cigarettes consumed per day [71]. Moreover, another study has shown that tobacco has influence on
the metabolic profile, besides being directly associated with elevated risk of CRC [72]. Smoking itself
is a well-known major risk factor for CRC [73,74]. Dependent upon the type and intensity of exercise
and training status, physical activity which is associated with reduced risk of developing colorectal
neoplasms [75,76] also influences the metabolite profile of blood and urine [77].
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Controlling and reporting on potentially influencing factors is essential to reduce confounding
variables [78]. Factors such as gender and age have an influence on body metabolite composition [79].
Next to these biological factors, time of sample collection is important because of the variation by
the circadian rhythm [80]. In contrast to urine, serum metabolite profiles show less diurnal variation
and less inter- and intra-subject variability [7]. Metabolite measurement is challenging because of the
heterogeneity of the biochemical classes. Therefore, it is not possible to measure all metabolites with
a single method. Different MS-based or NMR spectroscopy-based methods are used to enable the
detection of a broad metabolite spectrum [7]. However, a good agreement between most laboratories
in their performance of the methods in a targeted MS-approach was seen [81]. Other used technologies
such as conventional ELISA assay can mostly assess one substrate at a time but are able to quantitatively
assess the analytes. New multiplex assays enable detection of several substrates at a time [82].

Technical aspects, such as pre-analytics, have a great influence on the measured metabolic
profile. An essential part is the time frame and temperature between sample collection and freezing.
It was shown for urine samples that a full day storing at room temperature or on cool packs altered
metabolite concentration, and that more than 2 freeze and thaw cycles affected the metabolic profile
significantly [83]. Blood samples show a different picture. Previous freeze-and-thaw experiments
indicate sufficient stability for the majority of the metabolites [84–86]. Metabolites in serum remained
stable over a 4-months period frozen at −80 ◦C [87]. The biological reproducibility was good in
plasma samples for the majority of metabolites over a 1-year period after storage in liquid nitrogen [88].
However, storage at room temperatures affected the blood metabolic profile, as well as urinary
metabolites [84]. As handling aspects influence the composition of the metabolome, it is important to
standardize protocols on sample collection, pre-analytical sample handling, and storage conditions to
keep variations as low as possible. In particular, measures to ensure identical pre-analytics for cases
and controls are indispensable for valid evaluation of diagnostic performance.

4.3. Comparison of Blood versus Urine

Blood and urine are “easily accessible” body fluids representing the systemic metabolomics
profile. A limitation of these systemic samples compared to tissue samples is that the solid tumor itself
is not directly analyzed. Cells and cell components leaking into the peripheral fluids and organs lead
to a dilution of the target analytes in addition to other non-tumor components that can be found in
the fluids [89]. Analysis of blood can be more complex than of urine, as urine contains fewer proteins,
and high abundant proteins must be depleted from blood prior to analysis [90]. However, as urine
is more affected by day–night cycles or diet, collection time is critical and correct documentation
essential [91]. Blood is the primary carrier of circulating metabolites in the body, and both serum and
plasma are considered for early detection analysis depending on the technology chosen [91]. As serum
samples contain higher concentrations of metabolites, investigation of serum samples show more
positive results than plasma sample investigations which demands even more careful validation of the
results [85,92]. The composition of plasma and serum metabolites appears to be very similar, but some
metabolites, for example eicosanoids, increase during the clotting process in serum [93].

4.4. Limitations

There are several limitations that make the interpretation and implementation of metabolomics
studies difficult. An issue of particular concern is the lack of standardization [94]. The Standard
Metabolomics Reporting Structures (SMRS) group tried to standardize protocols for metabolomics
studies beginning with study design, sample collection, and preparation to ensure their application in
the future [95]. The lack of standardization might limit the comparability of the included studies in
this systematic review.

Another limitation is the lack of independent validation of the biomarkers in controlled clinical
settings or, even better, in a true screening cohort in asymptomatic people for early detection of
cancer [96]. Most of the studies report no validation of their biomarker panel. The lack of validation
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may often result in overestimation of the performance of biomarker panels due to overfitting.
In other studies, only internal validation was used, in which case generalizability remains an open
issue of potential concern. Most of the studies are conducted in relatively small sample sizes,
limiting the power for discovery of valid biomarkers with adequate control for multiple testing [94].
Before the implementation of metabolomics for early detection in clinical practice, major efforts are
needed to set up true screening cohorts with large population sizes under standardized conditions.
Moreover, the majority of the studies were conducted among Asian populations, which may limit the
generalizability and transferability to other ethnic groups.

Besides limitations of the studies included in this review, this systematic review may be limited by
publication bias, less than perfect identification of relevant studies, and lack of detail and heterogeneity
of information provided by the individual study publications.

5. Conclusions

Deaths from colorectal cancer could be mostly prevented by early detection and treatment of the
cancer and its precursors. Although effective screening offers have been established, adherence to
these offers remains limited due to their invasiveness (e.g., colonoscopy) or due to their being based
on collection of stool samples (e.g., fecal immunochemical tests for hemoglobin). Blood or urine-based
tests could be an attractive alternative if they were able to detect colorectal cancer and its precursors
with good diagnostic performance. Metabolomics approaches are promising, as they are closely
related to the phenotype, which means to directly detectable effects and changes in a biological system.
A panel of metabolites seems to be more promising for use as biomarkers for advanced colorectal
neoplasms than a single marker. We discovered consistency in findings with regards to amino acids in
blood samples and nucleosides in urinary samples. Still, heterogeneous results demand more research
on that topic before metabolomics biomarkers are ready for use as screening biomarkers in clinical
settings. In particular, larger studies conducted in true screening settings and external validation of
the findings are needed. To further improve diagnostic performance of non-invasive tests for early
detection of CRC or its precursors, the combination of different approaches such as metabolomics and
proteomics should be considered.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/10/8/246/s1,
Figure S1: QUADAS overview; Table S1: performance characteristics of single metabolites and metabolomics
panels of potential biomarkers with additional outcomes; Table S2: additional potential biomarkers and biomarker
panels for detection of adenomas, advanced colorectal neoplasms, polyps, or early stage CRC; Table S3:
biochemical affiliations of potential biomarkers and biomarker panels; Table S4: QUADAS tool.
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