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Abstract: Patients with anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma
(ALCL) mount a humoral and cellular immune response against ALK. More than 90% of children
and adolescents with ALK-positive ALCL have detectable anti-ALK antibodies in serum or plasma,
and the antibody titer inversely correlates with the risk of relapse. ALK-specific CD8 and CD4 T cell
responses have been described in patients with ALK-positive ALCL. Vaccination with ALK DNA led
to protection against lymphoma growth in a murine model. Collectively, these data suggest that the
ALK-specific immune response is involved in the control of the disease. The characteristics of the
humoral and cellular immune response against ALK as well as tumor immune escape mechanisms
have been increasingly investigated. However, tumor and host factors contributing to the individual
immune response against ALK are still largely unknown. Depending on the individual strength
of the immune response and its determinants, individualized immunological approaches might
be appropriate for the consolidation of ALCL patients. Strategies such as ALK vaccination could
be effective for those with a pre-existing anti-tumor immunity, while an allogeneic blood stem cell
transplantation or check-point inhibition could be effective for others.

Keywords: anaplastic large cell lymphoma; ALK; ALK-positive ALCL; immune response;
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1. Introduction

Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL) is a
biologically defined disease of children and young adults [1]. It accounts for 10–15% of pediatric
and adolescent non-Hodgkin lymphomas [2]. As a T cell lymphoma, defined by so-called
hallmark cells and the expression of CD30, ALCL is categorized in several histological subtypes.
ALK-positive ALCL is distinguished from ALK-negative systemic ALCL and CD30-positive cutaneous
lymphoproliferations by the expression of ALK. The latter two entities are exceedingly rare in children.
Almost 90% of ALK-positive ALCLs in children carry a characteristic t(2;5) (p23;q35) chromosomal
translocation, leading to the intracellular expression of the oncogenic fusion protein nucleophosmin
(NPM)-ALK [3–5]. ALK fusion proteins are constitutively active tyrosine kinases with an essential role
in lymphomagenesis and tumor survival [6–8].

Clinically, ALK-positive ALCL is characterized by a high incidence of B-symptoms (60%) and
extra-nodal involvement (60%), particularly in the skin, lung, bone, and soft tissue [9–17]. Almost
90% of cases manifest as nodal disease, but extra-nodal and general symptoms are often concomitant,
mimicking other diseases, such as pneumonia, chronic infections, autoimmune disease, or bone
tumors. Current standard therapies for ALCL in children and adolescents, most commonly based

Cancers 2018, 10, 114; doi:10.3390/cancers10040114 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
http://www.mdpi.com/journal/cancers
http://www.mdpi.com/2072-6694/10/4/114?type=check_update&version=1
http://dx.doi.org/10.3390/cancers10040114


Cancers 2018, 10, 114 2 of 13

on short-pulse chemotherapy courses, reach event-free survival rates of 70% [11,15–18]. Several new
treatment options including ALK kinase inhibitors and anti-CD30 drug conjugates are now available,
all of which have been shown to induce remissions in a high proportion of relapsed patients [19–23].
However, their role for long-term disease control or for the front-line treatment of ALCL patients still
needs to be defined in clinical studies, especially since the induction of remission is not a surrogate
marker for cure or long-term disease control in ALCL. Patients with relapsed ALK-positive ALCL still
have a 60% survival chance with very different re-inductions and consolidations [24–27]. However, it
is currently unclear which consolidation could be effective for individual relapsed patients. Long-term
low-dose chemotherapy approaches, such as vinblastine monotherapy or allogeneic blood stem cell
transplantation (SCT), might be potential options to treat these patients.

Wildtype ALK is a tyrosine kinase receptor belonging to the insulin receptor super family. During
embryogenesis, ALK is highly expressed mainly in the nervous system but its presence in adult normal
tissue is almost absent [3,28]. The limited expression of ALK in immune-privileged sites and the central
role of ALK fusion proteins in the development and maintenance of ALCL suggest that ALK has the
potential to serve as an attractive target for cancer immunotherapy. Studies on the immunogenicity
of the ALK oncoprotein revealed both ALK-specific antibodies and T cell responses in ALK-positive
ALCL patients. In this review, we summarize the current knowledge of the immune response against
ALK in patients with ALK-positive ALCL (Figure 1) and the potential for the development of a clinical
ALK-directed immunotherapy.

Figure 1. Current understanding of the immune response against anaplastic lymphoma kinase (ALK) in
patients with ALK-positive anaplastic large cell lymphoma (ALCL). On the left, the primary anti-tumor
response is shown. ALK (red squares) is processed and presented by dendritic cells (DCs) to cells of
the adaptive immune system. Cytokines (small circles) and other factors shape the type of the immune
response. Long-term remission is characterized by the presence of an immunologic memory. Putative
mechanisms and factors that could lead to immune escape and relapse are shown in the lower right.
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2. Clinical, Laboratory, and Pathological Hints towards an Immune Reaction against ALCL

Clinical, histopathological, and clinical laboratory observations provided the first hints that ALCL
might provoke an immune response in patients.

More than 60% of children and adolescents with ALK-positive ALCL present with B-symptoms,
suggesting an unspecific stimulation of the immune system by the lymphoma [11,16]. More direct
clinical hints towards a possible involvement of the immune system in the control of ALCL have
been observed even before the molecular pathogenesis of ALCL was discovered. A very peculiar
observation is a so-called “wax and wane” course of the disease before final diagnosis in some patients.
A clear lymphoma may disappear without therapy to grow again within weeks and sometimes months.
These courses indicate that the immune system might initially control the lymphoma but finally fails.
ALK-positive ALCL usually relapses within a few months after the end of initial therapy. However,
very late relapses of ALK-positive ALCL between five and up to 20 years from initial diagnosis have
also been observed. One could hypothesize that this reflects a weakening immunological control,
especially since in some of these patients the disease reappeared during a time of immunosuppression
such as pregnancy or treatment of an autoimmune disease [29].

The very low relapse rate of 10–20% in patients with progressive or relapsed ALCL after allogeneic
SCT suggests that a graft versus ALCL effect may exist [30–33]. In contrast to almost all other lymphoid
malignancies, allogeneic blood stem cell transplantation can be effective in ALK-positive ALCL patients
with active disease [30,33].

Tumor cells in ALK-positive ALCL cells are often surrounded by abundant reactive bystander
cells which suggest an accompanying immune reaction [34,35]. The amount of tumor cells in a biopsy
might vary between less than 10% and more than 90%. Furthermore, the histological subtype of ALCL
is independently associated with the risk of relapse [10,34,36] and the bystander infiltrate as well as
the surface marker expression on ALCL cells differ according to the subtype [35]. These observations
collectively hint towards a cellular immune interaction between bystander cells and tumor cells.

Pro-inflammatory cytokines are detected in the serum of ALCL patients at the time of
diagnosis [37–39]. An ALCL-typical cytokine signature includes elevated levels of IL-9, IL-10, IL-17a,
HGF, sIL-2R, and sCD30 [39]. Also, more than 10% of patients present with a macrophage activation or
hemophagocytic syndrome, which is associated with a cytokine storm [11,16,40]. These observations
indicate that ALCL is a cytokine-active lymphoma that induces at least an unspecific immune reaction
in patients. Among ALK-positive ALCL patients, the serum concentration of the pro-inflammatory
cytokines IL-6, IFN-γ, IP-10, and sIL-2R correlates with the clinical and biological characteristics as well
as the risk of relapse. This suggests that ALCL cells might influence the immune system of patients,
leading to a different outcome [39].

3. Humoral Immune Response against ALK

Humoral immune responses against tumor-associated antigens have been described in many
cancers [41]. Autoantibody production against tumor antigens can be induced by mutated oncogenes,
the emergence of neo-antigens, protein overexpression, the aberrant expression of proteins that are
not expressed in normal tissue, the release of intracellular tumor antigens after inflammation or cell
death, and aberrant post-translational modifications of proteins [42,43]. In 2000, Karen Pulford and
colleagues investigated the humoral immune response against ALK in patients with ALCL. Using
an indirect immunocytochemical approach, the authors detected circulating antibodies against ALK
in the plasma of eleven ALK-positive ALCL patients but not in healthy controls [44]. The presence
of anti-ALK antibodies in ALCL patients at different time points after diagnosis was confirmed in a
subsequent analysis by the same group [45]. Mussolin et al. described anti-ALK antibodies in the sera
of 25/28 pediatric ALK-positive ALCL patients [46]. Although statistically not significant, patients
with higher ALK antibody titers prior to and after therapy had a trend toward a reduced relapse risk.

The analysis of pretreatment anti-ALK antibodies in 95 ALK-positive pediatric ALCL patients,
enrolled in clinical studies with comparable short-pulse chemotherapies, confirmed that more than
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90% of the patients had measurable anti-ALK antibody titers at diagnosis compared to only one of 99
controls [47]. When categorizing patients’ anti-ALK antibody titers into low (≤1/750), intermediate
(1/750 to <1/60,750) and high (≥1/60,750) titers, a significant correlation with clinical and biological
risk factors was demonstrated. The anti-ALK antibody titers inversely correlated with the risk of
relapse. The cumulative incidence of relapse was 11 ± 6% for patients in the high titer group compared
to 31 ± 8% and 63 ± 10% for those in the intermediate and low titer groups, respectively (p < 0.001;
Figure 2). If the antibody titers are regarded as a “readout” for the strength of the overall immune
response against ALK, this correlation can be interpreted as an involvement of the patients’ immune
response against ALK in the control of the disease.

Figure 2. Cumulative incidence of relapse of patients with ALK-positive ALCL according to the
anti-ALK antibody titer (adapted from Reference [47]).

A systematic analysis of the course of anti-ALK antibody titers was performed during standard
short-pulse chemotherapy in 122 pediatric NPM-ALK positive ALCL patients [48]. The persistence of
the anti-ALK titer above 1/750 at the end of therapy as well as a moderate reduction of anti-ALK titers
compared to pretreatment values predicted a protection against relapses [48]. The measurement of the
ALK antibody titer may be useful as a prognostic parameter for risk stratification or as a surrogate
marker for the measurement of the strength of patients’ ALK-specific immune response. Combining
the biological risk factors, anti-ALK antibody titer and minimal disseminated disease, allowed the
identification of pediatric NPM-ALK-positive ALCL patients with a very low risk of relapse [49].

The presence of anti-ALK antibodies was also observed in ALCL patients with variant ALK
fusion partners, ALK-positive diffuse large B cell lymphoma, and in ALK-positive non-small cell lung
carcinoma (NSCLC) [50,51]. Epitopes within the intracytoplasmic domain of ALK recognized by ALK
autoantibodies were described in nine ALK-positive NSCLC patients [51]. Whether the strength of the
humoral immune response against ALK is associated with the recognition of specific epitopes in the
ALK protein needs to be further evaluated.

It is not clear so far whether ALK-specific autoantibodies may act against tumor cells or are
merely a surrogate marker for the strength of the patients’ overall cellular immune response against
ALCL. A direct anti-tumor effect of autoantibodies has been shown for antibodies against cell surface
antigens. Examples include HER2 autoantibodies that suppress the activity of the HER2 receptor
in some patients with HER2-positive breast or ovarian cancer after vaccination with HER2 specific
peptides [52]. However, ALK fusion proteins are expressed exclusively intracellularly. Therefore,
autoantibodies against ALK might not have direct anti-tumor activity but rather represent a surrogate
marker for the ALK-specific T cell response. This is supported by the observation that the vaccination
of B cell-deficient BALB/C mice with ALK plasmid DNA showed a protection against tumor growth
and a cytotoxic T cell response after challenge with ALK-positive lymphoma cells [53].
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4. Cellular Immune Response against ALK

ALK is spontaneously recognized as tumor antigen in ALK-positive ALCL patients. Several
studies demonstrated the presence and persistence not only of an antibody response to ALK but also
of ALK-specific CD8 and CD4 T cells in patients with ALK-positive ALCL.

4.1. CD8 T Cell Response against ALK

The immunogenic potential of ALK in initiating a cytotoxic T cell (CTL) response was first
demonstrated in a study by Passoni et al. [54]. In a reverse immunological approach, two
HLA-A*02:01-binding ALK-derived predicted peptides were tested for their capacity to initiate a
specific CTL immune response in vivo in HLA-A*02:01 transgenic mice and in vitro in lymphocytes
of HLA-*02-positive donors. Functional anti-ALK CD8 T cell precursors could be detected within
the peripheral T cell repertoire of healthy donors. The generated donor-derived ALK-specific CTLs
induced an antigen-specific HLA-A*02:01 restricted response with significant IFN-γ release. These
cells were able to effectively kill HLA-matched ALCL and neuroblastoma cell lines endogenously
expressing ALK [54]. These findings clearly identified ALK as a tumor antigen with the potential to
elicit antigen-specific CD8 T cell responses.

A CTL response to ALK in ALK-positive ALCL patients was subsequently reported by
Ait-Tahar et al. [45]. In this study, an IFN-γ ELISPOT analysis was used to detect CTL responses
against two ALK-derived HLA-A*02:01-restricted peptides after the short-time culture of mononuclear
cells of seven ALK-positive ALCL patients, two ALK-negative ALCL patients, and six healthy controls.
A significant IFN-γ response was detected in the patients with ALK-positive ALCL but not in the
controls. In two patients the ALK-specific response increased after weekly peptide re-stimulation and
the generated CTLs successfully lysed ALCL cell lines or peptide pulsed cells in vitro in an MHC class
I restricted manner [45]. Since the responsive patients were in clinical remission at the time of analysis,
the anti-ALK CTL response after single stimulation indicates the presence of long-lived memory T
cells with possible protective immunity.

The natural frequency and functional phenotype of circulating anti-ALK CD8 T cell precursors in
the peripheral blood of healthy donors and ALK-positive ALCL patients was assessed by tetrameric
MHC/peptide analysis, IFN-γ ELISPOT assay, and in vitro lysis of ALK-positive target cells [55]. High
frequencies of ALK-specific CD8 T cells were found in both patients and healthy donors. However,
the immunological phenotype of anti-ALK CD8 T cells revealed effector and memory cells only in
patients. In healthy donors, the CD8/ALK tetramer positive lymphocytes showed a predominantly
naïve phenotype. To evaluate the functional potential of the memory cells and to investigate a potential
secondary immune response, the CTLs were stimulated once with the ALK-derived peptide p280-89.
The patients CTLs released IFN-γ and GM-CSF and successfully killed the ALK-positive ALCL cell
lines, demonstrating their functional activity [55].

Memory CD8 T cells are required for protective anti-tumor immunity [56–58]. Reinforcing the
immunological memory to ALK might, therefore, provide the basis for vaccination strategies.

Chiarle et al. examined the in vivo potential and clinical relevance of vaccination with ALK cDNA
against ALK-positive ALCL in mice [53]. BALB/c mice were vaccinated with plasmids encoding for
the cytoplasmic portions of ALK and subsequently challenged with ALK-positive lymphoma cells.
The immunization led to a long-lasting local and systemic lymphoma protection in ALK-vaccinated
mice. The protection elicited ALK-specific IFN-γ responses and CD8 T cell-mediated cytotoxicity. The
potential of the ALK vaccine was also assessed in a therapeutic setting. Mice were first challenged
subcutaneously with lymphoma cells followed by vaccination. A significant protection against
lymphoma growth was only detected in mice with limited tumor burden (up to 1 × 105 cells). However,
the combination of chemotherapy (a single dose of doxorubicin) with following ALK vaccination
significantly enhanced the survival of mice challenged intravenously with 1 × 106 ALK-positive
lymphoma cells before therapy [53]. This study showed the potential of a vaccination against ALK in
preventing lymphoma growth in vivo. Of note, a DNA-based ALK vaccination also showed a strong



Cancers 2018, 10, 114 6 of 13

ALK-specific CTL immune response that inhibited primary tumor growth in grafted and primary
mouse models of ALK-positive lung cancer [59]. The immunological targeting of ALK thus provides a
potent therapeutic option to treat ALK-positive human cancers.

As a prerequisite for the clinical development of immunotherapeutic strategies, we recently
examined NPM-ALK-specific CD8 T cell responses in NPM-ALK-positive ALCL patients in remission
after chemotherapy [60]. To circumvent HLA-preselection and to ensure endogenous NPM-ALK
peptide processing, we used autologous dendritic cells (DCs) transfected with in vitro transcribed
NPM-ALK mRNA as antigen presenting cells (APCs) to stimulate donor-derived CD8 T cells. The
stimulated CD8 T cells were then analyzed in an IFN-γ ELISPOT assay. Three out of five ALCL
patients, but none of the healthy donors, had HLA-C-restricted CD8 T cell responses to NPM-ALK.
One patient exhibited a CD8 T cell response after short-time stimulation, indicating a reactivation
of persisting ALK-specific memory cells. Of note, the three patients with measurable ALK-specific
CD8 T cells had a high anti-ALK antibody titer prior to therapy and a persistent titer at the time of
analysis [60]. This confirms both sustained ALK-specific humoral and CD8 T cell responses in patients
in clinical remission up to nine years after diagnosis.

Taken together, these in vitro and in vivo data reveal the existence of ALK-specific CD8 T cell
responses in ALK-positive ALCL. The possible role of these CTLs in lymphoma protection, however,
needs to be investigated in more detail.

4.2. CD4 T Cell Response against ALK

The presence of IgG antibodies and CD8 memory T cells against ALK in patients suggests the
involvement of CD4 T cells in the anti-ALK immune response [61,62]. A study by Ait-Tahar et al.
provided the first evidence of ALK-specific CD4 T cells in ALK-positive ALCL patients [63]. Using an
IFN-γ ELISPOT assay, the authors showed that two in silico selected DRB1-restricted ALK-derived
peptides were immunogenic in ALK-positive ALCL patients but not in ALK-negative ALCL patients
or healthy controls. Mononuclear cells from all ALK-positive ALCL patients exhibited a significant
IFN-γ response to the peptides, which could be intensified following repeated stimulation. The CD4
T cell-mediated and DRB1-restricted nature of the anti-ALK response was demonstrated by CD4 T
cell depletion and the addition of anti-HLA-DR antibodies, which abrogated the IFN-γ release to both
peptides. Peptide-specific CD4 T cell lines raised from one patient recognized and lysed ALK-positive
tumor cell lines in an MHC class II restricted manner [63]. The majority of ALK-positive ALCL patients
were in clinical remission and exhibited an antibody response to ALK at the time of analysis. Therefore,
the presence of a significant CD4-mediated IFN-γ response suggests the existence of effector/memory
CD4 Th1 subsets in ALK-positive ALCL patients. This might play an important role in protective
tumor immunity as well as in the maintenance of the CTL memory response and the production of
antibodies against ALK.

The paucity of data regarding ALK-specific CD4 T cell response in ALK-positive ALCL patients
demands further characterization of the CD4 T cell response in these patients.

5. Immune Escape Mechanisms

In cancer patients, a protective anti-tumor response is impaired. Cells of the immune system may
not detect tumor antigens or recognize them as self rather than foreign. Also, immunosuppressive
factors from the tumor microenvironment or the tumor itself might dampen tumor-reactive effector
cells [64,65]. While the characteristics of the immune response against ALK as well as its
possible clinical impact are increasingly unraveled, little is known about the factors influencing
the inter-individual differences in the strength of the immune response. Currently, there are only
a few hints regarding host factors influencing the immune response against ALK. The observation
that more girls with ALCL mount a high antibody titer compared to boys indicates an influence of
host factors in the immune response [47]. Patients with persistent ALK antibody titers at the end
of chemotherapy have a reduced relapse risk compared to those with a low or no titer [48]. This
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observation indicates that the influence of chemotherapy on the immune response against ALK might
depend on the individual patient’s immune system. Polymorphisms in genes involved in immunity are
under investigation. Whether differences in the bystander infiltrate in ALCL are caused by differences
in the host immune response or by different immune subversion modalities employed by the ALCL is
not known.

However, even if neoplastic cells are visible to the immune system, during carcinogenesis,
cancer cells acquire complex immune escape mechanisms protecting themselves from immune
surveillance. Some ALK-dependent immune escape mechanisms have been described for ALK-positive
ALCL. A direct molecular link between ALK activation and suppression of the anti-tumor immune
response has been shown by the Wasik group. In this study, it was demonstrated that NPM-ALK
induces the expression of immunosuppressive programmed death-ligand 1 (PD-L1) in ALCL cells
through STAT3 [66]. In another study, the inhibition of ALCL-associated allogeneic T cells could be
experimentally reversed by PD-L1 blockage [67].

ALK-positive ALCL cell lines have been shown to secrete TGF-beta, IL-10 and express FoxP3 [68].
Elevated concentrations of IL-10 in the sera of children with ALK-positive ALCL before treatment
correlated with the presence and quantity of circulating tumor cells [39]. It was shown that IL-10
decreases the expression of MHC class II molecules on monocytes or dendritic cells [69–71]. However,
whether IL-10 secreted by ALK-positive tumor cells affects MHC class II expression in ALCL patients
has not been shown directly.

6. Therapeutic Implications

The increasing evidence for the existence and clinical relevance of an autologous immune response
against ALK implies that immunotherapeutic approaches might be an effective therapeutic intervention
for the treatment of ALK-positive ALCL patients.

Certain chemotherapeutic drugs exhibit immune stimulatory effects. By applying this knowledge,
classical therapies could be further developed to a backbone with less acute and long-term toxicity.
Even the current intensive polychemotherapy may boost the anti-tumor immune response in some
patients, as suggested by the persisting ALK-antibody titers and observations of measurable anti-ALK
T cell responses after—but not before—chemotherapy in a few patients [48,72]. Cyclophosphamide and
anthracyclines are examples of chemotherapeutic drugs included in the classical ALCL chemotherapy
strategies that lead to immunogenic cell death [73]. Among 54 chemotherapeutic drugs tested for
their pharmacological effects on the maturation, survival, and growth of dendritic cells, the tubulin
inhibitor vinblastine was shown to be the most potent inducer of DC maturation [74,75]. Thus, the
observed efficacy of vinblastine monotherapy in patients with relapsed ALCL [27,76] might be due to
dual action: its direct cytotoxic effect and its augmentation of the patients’ anti-tumor immunity by
inducing the phenotypic and functional maturation of DCs. A low toxicity vinblastine monotherapy
should, therefore, be studied for the front-line treatment of low-risk ALCL patients. In addition to the
low risk of toxicity and late effects, this would allow for an outpatient treatment of ALCL patients.

The classical immunotherapy in leukemia and lymphoma is allogeneic SCT. Its efficacy as a
consolidation therapy for children with ALCL relapses has been well established [30–33]. Given
the overwhelming indications for a strong graft versus ALCL effect, reduced intensity conditioning
regimen should be developed for the allogeneic SCT against ALCL.

Since ALK-positive ALCLs express PD-L1 [66,67], immune checkpoint inhibitors, such as
nivolumab or pembrolizumab, might increase the armamentarium of drugs for the treatment of
ALCL. The observed efficacy of the PD1 inhibitor nivolumab for refractory disease in two patients
highlights the possible clinical implications [77,78]. Whether this efficacy regarding remission induction
translates into a cure must be evaluated in clinical trials.

More specific immunotherapies targeting ALCL surface markers or ALK include anti-CD30
chimeric antigen receptor (CAR) T cells, vaccination strategies against ALK, and possible ALK-specific
T cell therapies. CD30-specific CAR T cells have been tested in mouse models and a phase I clinical
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trial so far [79]. One patient with relapsed ALK-positive ALCL reached remission after four doses
of CD30-specific CAR T cells [80]. The possible therapeutic use of CAR T cells directed against the
extracellular domain of ALK is being explored against ALK-expressing neuroblastoma [81]. ALK
fusion proteins in ALCL, however, do not contain the transmembrane and extracellular domains and
are expressed exclusively intracellularly. Therefore, ALK-directed CAR T cells are not a therapeutic
option for ALK-positive ALCLs.

Chiarle et al. showed the in vivo potential of a vaccination therapy with truncated ALK DNA,
as well as this approach in combination with chemotherapy, in a mouse model [53]. The preclinical
efficacy and existence of a “boostable” autologous response against ALK in humans call for the
design of an ALK epitope-directed vaccination study in patients in remission after chemotherapy. The
most suitable patients would be those with a pre-existing immune response, i.e., those with a low
relapse risk suffering from late relapses. Patients with a very weak immune response against ALK
usually relapse very early, within three months after therapy, which makes them less suitable for a
vaccination approach.

Tools for the selection and cultivation of antigen-specific T cells for adoptive immunotherapy
have been established for several cancers [82]. However, whether ALK-specific T cells can be selected
from patients and augmented for therapeutic use has not been studied yet.

7. Conclusions

The available data suggest that immunotherapies targeting ALK have a high potential to
revolutionize treatment strategies for ALK-positive ALCL in the future. One of the major challenges is
the definition of the most suitable immunotherapy for an individual patient. It is currently unclear
which group of patients might benefit from a vaccination or unspecific immune stimulation for the
induction of life-long tumor control and which patients require an allogeneic SCT for cure. The
deciphering of the host and tumor factors influencing the strength and efficacy of an autologous
immune response against ALK-positive ALCL might help individual decision-making regarding
consolidation therapy in the future.

Vaccination against ALK presumably has a very low safety risk and likely needs a pre-existent
boostable immune response to be effective in the time before relapses occur. Vaccination studies could,
therefore, be of benefit and should be studied for adults and children with low-risk ALCL. The focus
for studies against very high risk or relapsed ALCL might include the optimization of allogeneic SCT
and check-point inhibitors.

Both the cellular and humoral immune response in ALCL has become increasingly elucidated in
the past years. However, more work is needed to further unravel the immunology of ALK-related
malignancies. For the successful development of a vaccine, the antigenic ALK epitopes recognized by
cells of the adaptive immune system need to be characterized.
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