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Abstract: Undifferentiated nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr
virus (EBV) infection. In addition, heavy infiltration of leukocytes is a common characteristic of
EBV-associated NPC. It has long been suggested that substantial and interactive impacts between
cancer and stromal cells create a tumor microenvironment (TME) to promote tumorigenesis.
The coexistence of tumor-infiltrating lymphocytes with EBV-infected NPC cells represents a distinct
TME which supports immune evasion and cancer development from the early phase of EBV infection.
Intracellularly, EBV-encoded viral products alter host cell signaling to facilitate tumor development
and progression. Intercellularly, EBV-infected cancer cells communicate with stromal cells through
secretion of cytokines and chemokines, or via release of tumor exosomes, to repress immune
surveillance and enhance metastasis. Although high expression of miR-BARTs has been detected in
NPC patients, contributions of these more recently discovered viral products to the establishment of
TME are still vaguely defined. Further investigations are needed to delineate the mechanistic linkage
of the interplay between viral and host factors, especially in relation to TME, which can be harnessed
in future therapeutic strategies.
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1. Introduction

Nasopharyngeal carcinoma (NPC) is a rare cancer in most parts of the world, but has a particularly
high incidence in Southeast Asia and Southern China, especially in the Guangdong Province [1].
According to the World Health Organization (WHO) classification, NPC can be distinguished into two
main subtypes: Non-keratinizing and keratinizing squamous cell carcinoma [2]. In Southern China,
the non-keratinizing NPC is the predominant subtype and is closely associated with Epstein-Barr virus
(EBV) infection [1,3,4].

The EBV is a ubiquitous virus that infects >90% of the global population [5–8]. EBV serology
reveals a close association between NPC and EBV [8,9]. While latent EBV infection is rarely detected in
normal nasopharyngeal epithelium, it is consistently detected in pre-invasive nasopharyngeal lesions
as well as invasive NPC, suggesting that EBV infection is an early event in NPC development [10].
In addition to EBV infection, a familial history of NPC is another risk factor for the disease.
Environmental risk factors including consumption of Cantonese-style preserved food such as salted
fish, occupational exposures to formaldehyde, and phorbol ester contamination of water supplies in
endemic areas have also been proposed [6,11,12]. It has been postulated that these environmental
factors can induce DNA damage to cells and promote viral replication of EBV in latently infected
B-cells. This may lead to increased rate of EBV infection of premalignant nasopharyngeal epithelium
and contribute to the high incidence rate of NPC in endemic areas.
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NPC cells demonstrate latency type II of EBV infection with the expression of a limited set of
latent viral proteins, including the latent membrane proteins (LMP1 and LMP2A/B) and nuclear
antigen (EBNA1) [13,14]. In addition, NPCs also express high levels of non-adenylated EBV-encoded
small RNAs (EBERs 1 and 2). Abundant expression of microRNAs encoded from the BamHI-A region
of the viral genome (miR-BARTs) is another distinctive feature of NPC [15–17]. There are many
studies reporting how the EBV-encoded viral products interfere with host signaling to promote NPC
pathogenesis, which will be summarized here.

The oncogenic property of EBV is supported by its ability to immortalize and transform
primary B-cells in vitro [7,8,18]. While the EBV can efficiently infect, immortalize and transform
B-lymphocytes [19,20], most epithelial cells are not susceptible to EBV infection in vitro [15,21].
Moreover, most EBV-infected NPC cell lines established in vitro readily lost their EBV genomes
upon propagation, suggesting that EBV infection per se does not confer selective growth advantage to
NPC cells propagated in culture [22,23]. However, EBV episomes are readily detected and maintained
at high levels in NPC patients. This indicates EBV infection may confer growth advantage to NPC
cells within the tumor microenvironment (TME) in vivo. The elucidation of the nature of this selective
growth advantage will provide important insights to the role of EBV infection in NPC pathogenesis.
There is growing evidence to support that EBV-infected NPC cells can secrete cytokines and exosomes
containing viral products to modulate the function of stromal cells in TME to facilitate NPC progression
and evade host immune attacks.

2. Alterations of Intracellular Cell Signaling in EBV-Infected NPC Cells

EBV activates multiple cellular signaling pathways in NPC cells [24]. The modulation of host cell
signaling plays important roles in suppressing senescence and apoptosis, promoting cell growth and
facilitating malignant transformation of infected cells. The roles of viral products expressed in the
latency II program including LMP1/LMP2, EBNA1 and miR-BARTs in promoting NPC development
and progression will be reviewed here [15,17,23].

2.1. The Tumorigenic Property of EBV-Encoded Latent Proteins

2.1.1. LMP1 Alters Multiple Cell Signaling Pathway and Reprograms Cell Metabolism in NPC Cells

The LMP1 has been well documented as a viral oncoprotein in EBV-associated malignancies [25].
Distinct LMP1 variants are associated with NPC in the endemic region [26,27]. While the explanation
of the prevalence of specific LMP1 variants in endemic NPC remains to be sought, there is evidence
suggesting that immune selection mechanism may be involved [28]. Compared to the B95.8-LMP1
strain (derived from infectious mononucleosis), key amino acid changes were observed in the
more prevalent LMP1 variants in NPC patients. These changes may potentially alter the human
leukocyte antigen (HLA)-restricted epitopes of different LMP1 variants [28]. This is likely to affect the
immunogenicity of the LMP1-expressing NPC cells and render the cytotoxic T-cell activity less effective.
A phenotypic distinction between epithelial cells expressing B95.8-LMP1 and 2117-LMP1 (a prevalent
LMP1 strain associated with NPC in HK) has also been demonstrated [26,29]. The B95.8-LMP1 was
also shown to be more cytotoxic than 2117-LMP1 in cells. This could be the reason for the selection of
2117-LMP1 as the dominant LMP1 variant in EBV-associated NPC. LMP1 is a potent activator of NF-κB
signaling through the two activating regions in its carboxy-terminal cytoplasmic domain, CTAR1 and
CTAR2 [30]. The NPC-derived 2117-LMP1 is also more potent than the B95.8-LMP1 in activating
nuclear factor-κB (NF-κB) signaling [26].

The oncogenic roles of LMP1 have been studied extensively and reviewed in details [7,8,15,23,25,31].
Interestingly, expression of LMP1 is common in high-grade dysplastic lesions in the nasopharyngeal
epithelium infected with EBV and has been implicated in facilitating the expansion of EBV-infected cell
populations at early stage of NPC development [23]. An earlier study showed that expression of LMP1
inhibited epithelial differentiation by upregulating the expression of cluster of differentiation (CD) 40
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and intercellular adhesion molecule-1 (ICAM-1) [32]. LMP1 suppressed the formation of cross-linked
envelopes and the terminal differentiation of infected epithelial cells. Besides, LMP1 was shown to
induce the expression of Id1 through the activation of NF-κB signaling [33]. Since Id1 is a potent
negative transcriptional regulator of p16INK4a, LMP1 may help to suppress the onset of replicative
senescence in epithelial cells by inhibiting the CDK4/p16INK4a regulatory pathway.

Furthermore, a relatively novel role of LMP1 in reprogramming the cellular metabolism is
emerging. It was found to enhance aerobic glycolysis to promote NPC pathogenesis [34,35]. Aerobic
glycolysis, also known as the Warburg Effect, is the reprogramming of cellular metabolic pathways in
cancer cells to accommodate the cell growth and proliferation. The metabolic shift towards aerobic
glycolysis involves increased expression of glycolytic enzymes, upregulation of glucose transporters,
and inhibition of mitochondrial metabolism [36]. LMP1 could upregulate hexokinase 2 (HK2) via
activation of c-Myc, upregulation of HK2 could also promote aerobic glycolysis and facilitate growth
of tumor cells by blocking apoptosis under hypoxic conditions [35]. More recently, our laboratory has
demonstrated that LMP1 can activate mTORC1 signaling to accelerate aerobic glycolysis and enhance
NPC malignancy via the mTORC1/NF-κB activation of Glut-1 signaling cascade [34]. The fact that
LMP1 contributes to the reprogramming of cancer metabolism further strengthens the role of EBV
infection in adapting to alterations of host intracellular factors to promote NPC pathogenesis.

2.1.2. Multiple Latent EBV-Encoded Proteins (LMP1, LMP2A, EBNA1) Promote Invasive and
Metastatic Properties of NPC Cells

Metastasis is common in NPC and is the major cause of treatment failure in patients [37,38].
Metastasis is a highly complicated and multi-step process during which cancer cells need to pass
through a sequence of events from shedding into circulation for transportation, surviving a tough
environment within the blood vessels and capillaries, arresting in the new destination organ, to
finally initiating and maintaining the growth and survival of the metastatic tumor [39]. The epithelial-
mesenchymal transition (EMT) is regarded as a critical mechanism to enhance cell motility and initiate
metastatic progression [40]. Multiple EBV-encoded viral products including LMP1, LMP2A and
EBNA1 are involved in promoting NPC metastasis.

LMP1 is able to promote NPC metastasis via different mechanisms. It has been shown that LMP1
can upregulate the formation of focal adhesion (FA) complexes to promote epithelial cell migration [41].
LMP1 expression is positively correlated with the expression of Snail (a common EMT marker) in NPC
tissues, and LMP1 expression in human nasopharyngeal cells was shown to induce Snail expression,
thus promoting EMT [42]. As a potent activator of NF-κB, LMP1 promotes the transcription of tumor
necrosis factor α-induced protein 2 (TNFAIP2). TNFAIP2 associates with actin to form actin-based
membrane protrusions and contributes to LMP1-induced cell motility [43]. LMP1 is found to be
associated with activation of matrix metalloproteinase 9 (MMP9), which can degrade type IV collagen
in the basement membrane to facilitate cancer invasion. Correlation of MMP9 expression and lymph
node metastasis was also reported [44]. Apart from directly modulating host signaling cascades,
LMP1 can also promote metastasis by altering host miRNAs levels. LMP1 can induce pro-metastatic
miR-10b to promote NPC metastasis [45]. Furthermore, LMP1 could also downregulate the tumor
suppressor miR-204 to enhance the activity of Cdc42, which mediates cellular invasive properties
such as focal complex formation, integrin localization, and MMP expression [46]. A recent study also
demonstrated that through the suppression of miR-203 in an NF-κB-dependent manner, LMP1 can
induce activation of cadherin 6 (CDH6) to act as the synergic node of multiple pathways to promote
EMT [47]. Runt-related transcription factor 2 (RUNX2) can also be upregulated by LMP1 in similar
manner, and high levels of CDH6 and RUNX2 have been identified in NPC tissues from patients with
bone metastasis [47].

LMP2A expression can also be detected in NPC cells [48,49], and interestingly, it is mainly
localized at the invasive tumor front [50]. It was also shown that expression of LMP2A can induce the
expression of EMT-like molecular alteration in NPC cells and increase the stem cell-like population,
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hence promoting the cellular invasiveness and metastatic abilities of NPC cells [50]. In NPC biopsy
samples, the LMP2A level has been correlated with the level of pro-metastatic cellular protein
integrin-α-6 (ITGα6) [51]. Similar to LMP1, LMP2A can also increase MMP9 levels, but through
the enhanced production of transcription factor Fra-1 via the ERK1/2 pathway [52]. Another way that
LMP2A is involved in promoting EMT in NPC is via induction of the PI3K/Akt/mTOR pathway to
phosphorylate 4EBP1. The activated 4EBP1-eIF4E axis can then upregulate expression of metastatic
tumor antigen 1 (MTA1), which promotes EMT via the Wnt1 pathway and β-catenin activation [53].
A more recent study has shown that EBV-encoded viral proteins including LMP2A can markedly
upregulate sphingosine kinase 1 (SPHK1), which can produce sphingosine-1 phosphate (S1P) [54].
And via the SPHK1/S1P/S1PR axis, Akt can be activated to promote cell migration in EBV-associated
NPC [54].

Another EBV-encoded viral product, EBNA1, is expressed in all forms of latency in EBV-infected
cells and is required to maintain EBV genome copy numbers in EBV-associated NPC [31,55]. Multiple
oncogenic properties of EBNA1 are reported and reviewed in detail elsewhere [14,55]. EBNA1 is also
implicated in contributing to the metastatic process of NPC. EBNA1 can enhance the activity of the
AP-1 transcription factor and hence increase the expression of factors such as vascular endothelial
growth factor (VEGF) and hypoxia-inducible factor 1 alpha (HIF-1α), and has been shown to promote
angiogenesis in vitro [56]. Expression of EBNA1 has also been found to be associated with lymph node
metastasis and able to upregulate the EMT mediators zinc finger E-box binding homeobox 1 (ZEB1)
and ZEB2 [57]. The aforementioned study also showed that EBNA1 can upregulate S1P to promote
NPC cell migration [54].

2.2. The Multiple Roles of EBV-Encoded BART microRNAs in NPC

2.2.1. The EBV-Encoded BART microRNAs Contribute to Viral Latency Maintenance and Promote
Cell Survival

Viral proteins such as LMPs are highly immunogenic and their expressions in NPC biopsies
are often low and heterogeneous. In contrast, another set of non-immunogenic EBV-encoded
products—BART-microRNAs (miR-BARTs)—is consistently detected in high abundance in primary
NPC tumors and the established NPC cell line, C666-1 [16,58–63], EBV-encoded miRNAs have been
found to constitute a considerable portion (commonly > 30%) of total miRNAs in NPC samples and
EBV-positive NPC cell line, C666-1 [60,61]. The miR-BARTs are expressed at high levels in NPC
while miR-BHRF expression (commonly expressed in EBV-infected B cells) is much lower [58–60].
Although the expression of individual miR-BARTs is shown to be highly variable, the overall miR-BART
expression profiles are generally consistent across NPC biopsy samples, NPC xenografts and the EBV
positive C666-1 NPC cells [16,58,61]. Interestingly, while abundant expression of miR-BARTs is
commonly observed in NPC biopsies, it is hard to maintain the miR-BARTs at high levels in in vitro
and ex vivo systems [62,63]. This once again suggests that the specific TME in the in vivo environment
is essential in the regulation of expression of miR-BARTs.

These miR-BARTs have been reported to directly and indirectly regulate viral gene expressions
to maintain viral latency and to promote cell survival. An early study using EBV-infected gastric
carcinoma cell lines reported that miR-BART20-5p can directly target lytic genes BZLF1 (Zta) and
BRLF1 (Rta) to stabilize viral latency [64]. While in NPC-related studies, a DNA double-strand
break repair gene—ataxia telangiectasia mutated (ATM), was found to be involved in promoting
viral lytic replication in nasopharyngeal epithelial cells [65]. Consistent with this, a recent study has
demonstrated that four miR-BARTs (miR-BART5-5p, miR-BART7-3p, miR-BART9-3p, miR-BART14-3p)
co-operatively suppress ATM activity to inhibit BZLF1 expressions in viral lytic replication [66]. These
have demonstrated the potentials of miR-BARTs in maintaining EV viral latency in infected cells.

Besides, miR-BARTs also modulates LMP1 levels in NPCs to promote cell survival. Heterogeneous
levels of LMP1 have been detected in NPC biopsy samples [7]. LMP1 could promote tumorigenicity at
low expression level [67]. In contrast, elevated levels of LMP1 are often cytotoxic in epithelial cells and
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sensitize NPC cells to chemotherapeutic agents and inhibit cell growth [68,69]. Cluster 1 miR-BARTs
have been shown to negatively regulate LMP1 to optimize its levels of expression in NPCs to promote
cell survival [70].

2.2.2. miR-BARTs Support NPC Progression by Targeting Growth- and Apoptosis-Related Factors

Apart from maintaining viral latency, numerous studies have supported the ability of miR-BARTs
to promote NPC growth and proliferation while inhibiting apoptosis in EBV-associated NPC cells. One
of the abundantly-expressed miR-BARTs, miR-BART7, was able to increase the rate of proliferation
significantly when overexpressed in EBV-negative NPC cell lines [71]. Silencing miR-BART7-3p was
shown to reduce NPC cell growth in vitro and in vivo [72]. Another EBV miRNA, miR-BART3-5p,
has also revealed an ability to simulate the cell proliferation rate by targeting 3’-untranslated region
(UTR) of deleted in cancer 1 (DICE1) [73]. The DICE1 is known to have a tumor suppressor gene
function and inhibits colony formation in tumor cells [74]. The expression of DICE1 and miR-BART3-5p
has been shown to be inversely correlated, and miR-BART3-5p was able to stimulate cell proliferation
by counteracting the function of DICE1 [73]. A more recent report further demonstrated the ability
of miR-BARTs to potentiate tumor growth in an in vivo system. Upon introduction of tumor cells
into mice models, the expression of all miR-BARTs was upregulated in tumors developed in vivo [62].
The miR-BART-expressing tumors were more aggressive, incurring a 10-fold higher tumor burden in
immunocompromised mice compared with control tumors in vivo, and growing almost twice as fast
as the control tumors [62].

While the mutation rate of canonical p53 is low in Chinese NPC [75,76], a study has shown that
miR-BARTs have another way to target p53-related apoptotic pathways [77]. The miR-BART5 has been
shown to target a pro-apoptotic protein, the p53 upregulated modulator of apoptosis (PUMA), which
is a critical mediator of p53-dependent and -independent apoptosis pathways that can be induced
by various stress stimuli. Notably, miR-BART5 is abundantly expressed in all NPC tumors whereas
PUMA-β expression is undetectable in many NPC samples. The C666-1 NPC cells expressing lower
levels of PUMA-β are also more resistant to apoptosis [77].

In 2011, Marquitz and colleagues discovered another pro-apoptotic target of miR-BARTs, the Bcl-2
interacting mediator of cell death (Bim), which belongs to the same BH3-only family as PUMA.
Immunoblots and luciferase reporter assays showed that the combined expression of the Cluster I
miR-BARTs was sufficient to downregulate Bim at the protein level, and addition of Cluster II
miR-BARTs could further reduce the expression of Bim. Yet no individual miR-BART has been
identified with potent suppressive effects on Bim. It has been suggested that the negative regulation of
Bim requires binding of the entire 3’-UTR by multiple miRNAs [78]. Proceeding from the Marquitz
findings, Cullen’s group conducted a larger-scale study to determine if the highly expressed miR-BARTs
in EBV-transformed epithelial cells have anti-apoptotic functions. Through multiple assays they
identified a series of at least seven pro-apoptotic mRNA targets of miR-BARTs. Target knockdown
assays demonstrated causal relationships between the mRNA targets and the observed reduction
in apoptosis, including miR-BART3 targeting DICE1 and CASZ1a, miR-BART6 targeting OCT1,
miR-BART16 targeting CREBBP and SH2B3, and miR-BART22 targeting PAK2 and TP53INP1 [79].
Except for DICE1 which had been previously reported [73], the group concluded that the remaining
six were newly identified targets [79]. A more recent study presented another pro-apoptotic target of
miR-BARTs: the central executioner of apoptosis, Caspase 3 (CASP3). Several BART microRNAs were
shown to be able to repress CASP3 protein, among which miR-BART22 showed the most significant
repressive effects [80].

2.2.3. miR-BARTs Promote Invasive and Metastatic Properties of NPC Cells

In addition to their function in promoting cell survival, a number of miR-BARTs have
demonstrated the ability to promote EMT and have pro-metastatic effects. For instance, miR-BART9
was reported to have no effect on tumor growth or proliferation, but could promote mesenchymal-like
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characteristics in NPC cells [81]. Apparently, miR-BART9 could specifically target and downregulate
E-cadherin, which led to a redistribution of β-catenin [82]. This induced nuclear translocation of
β-catenin triggered NPC cells to adopt a more motile and mesenchymal-like morphology. The ectopic
expression of miR-BART9 in NPC cells was also able to upregulate the expression of multiple MMPs;
and the cells also harbored lower levels of α-catenin (an epithelial marker) but a higher expression
of vimentin (a mesenchymal marker) [81]. Other than targeting E-cadherin, miR-BART7-3p is able
to induce EMT by targeting PTEN. miR-BART7-3p can regulate PI3K/Akt/GSK-3β and lead to the
expression and relocalization of two important EMT-associated molecules: Snail and β-catenin [83,84].
Another study showed that miR-BART1 could also inhibit the expression of PTEN and was able
to increase cell migration in vitro, and transplantation of these NPC cells into nude mice showed
increased liver and lymph node metastases [85]. miR-BART1 induces tumor metastasis by activating
PTEN-dependent pathways, and this effect was additive when both miR-BART1-3p and miR-BART1-5p
were expressed [85]. There is also verification that miR-BART10-3p can upregulate the expression
of β-catenin and Snail by targeting the β-transducin repeat-containing (BTRC) gene [86]. The BTRC
gene encodes β-transducin repeat-containing E3 ubiquitin protein ligase (βTrCP), which recognizes
β-catenin and Snail as degradation substrates. By inhibiting βTrCP-mediated ubiquitination, β-catenin
and Snail are able to accumulate in NPC cells. MiR-BART10-3p can reduce the expression of epithelial
markers while increasing the expression of mesenchymal markers, indicating the ability to promote
EMT and metastasis [85].

Research has also shown that rather than individual miR-BARTs, all cluster 2 miR-BARTs can
cooperate to downregulate the N-myc downstream regulated gene 1 (NDRG1) [87]. NDRG1 is
expressed at low levels in B cells but at high levels in primary epithelial cells, acting as an epithelial
cell-specific metastasis suppressor [87]. NDRG1 is shown to be endogenously downregulated in
C666-1, which naturally expresses high levels of miR-BARTs [16,87].

3. Intercellular Interaction of EBV-Infected NPC Cells with Stromal Cells in TME

3.1. Cell Types Present in the TME of NPC

There are many reports supporting an important role of TME in NPC pathogenesis. The TME
has cellular components and non-cellular ECM (extracellular matrix). In this review, we will focus
our discussion in the composition, recruitment and involvement of cellular components of TME in
immune suppression, growth and invasive properties of NPC.

A major characteristic of the NPC-TME is the presence of significant population of CD45+

tumor-infiltrating lymphocytes (TILs) in the NPC tumor stroma [88]. While the prognostic value of the
massive infiltration of leucocytes remains to be determined, it has been demonstrated as a common
feature of NPC primary tumors but less common in metastatic lesions [89]. The presence of infiltrating
leucocytes may be more critical for the development of primary NPC. Advanced and metastatic NPC
may be less dependent on these infiltrating leucocytes. The majority of lymphocyte infiltrates in
NPC biopsies is CD3+ T-lymphocytes. Although the CD4+:CD8+ ratios vary across NPC specimens,
together they generally comprise over 50% of the infiltrating lymphocytes in NPC [90]. Small subsets
of B-lymphocytes, monocytes and macrophages, natural killer (NK) cells, and neutrophils are also
detected in the TME of NPC [88,90]. The recruitment and activity of infiltrated leucocytes are believed
to be determined by the concentration of different cytokines and chemokines present in TME. Increased
levels of interleukin (IL)-6, IL-8, IL-10, and interferon (IFN)-γ and decreased levels of IL-2 are generally
detected in NPC patients and biopsies and may be involved in the recruitment and activity of these
infiltrating leucocytes [91–94]. In NPC, the role of the infiltrating leucocytes as pro- or anti-tumorigenic
may be dependent on the real-time compositions and balances of the cytokine/chemokine profiles as
well as the ratios of different immune cells present in the TME. The situations are further complicated
by heterogeneous expression of latent EBV gene products in NPC cells and the disrupted latency in
small subsets of NPC cells [23,95]. Nevertheless, great effort has been invested in studying the role of
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host-tumor interactions in establishing the dynamics of infiltrating leucocytes and their contribution to
the immune evasion of EBV-infected NPC cells [88].

3.2. Recruitment of TME Cells

NPC cells and EBV-encoded viral products play important roles in triggering the release of various
pro-inflammatory cytokines to promote the accumulation and homing of lymphocytes and other
immune cells to TME. NPC cells express IL-18 [96] and CXCL-10 [97]. IL-18 and CXCL-10 may activate
and induce IFN-γ production by CXCR3+ T-cells which in turn may stimulate CD68+ macrophages to
produce IL-12 and IL-18, which can reciprocally stimulate IFN-γ production from T-cells and NK cells.
IFN-γ can also enhance CXCL10 production by malignant epithelial cells [96,97], forming positive
regulatory loops to promote inflammation and leukocyte infiltration. The EBV-encoded LMP1 can also
induce CXCL-10 expression via NF-κB signaling [97].

Disrupted latency could be detected in small subsets of NPC cells with the expression of the EBV
lytic transactivator, Zta [95]. The Zta can bind to the IL-8 promoter and induce IL-8 expression from
the NPC cells [98]. IL-8 is known to be a potent chemoattractant for neutrophils, which are suggested
to be the first immune cells invoked and recruited into the inflamed tissues [99–101]. Zta was also
shown to manipulate neighboring monocytes to release IL-10 into the TME [102]. Zta can upregulate
two immune-modulators in NPC cells: granulocyte-macrophage colony-stimulating factor (GM-CSF)
and prostaglandin E2 (PGE2). The release of GM-CSF and PGE2 into the TME has a synergic effect
in enhancing IL-10 production from monocytes [102]. The IL-10 has long been known as a potent
immunosuppressive cytokine that can effectively inhibit the cytotoxic function of activated CD8+

cells to promote survival of EBV-infected NPC cells [103]. Activated monocytes produce two potent
chemokines, CCL2 and CCL3, to attract various leukocytes into TME [104].

The EBV-encoded LMP1 has been reported to upregulate multiple cytokines and promote
leukocyte infiltration into tumor sites [105–107]. Endogenous LMP1 in NPC cells can upregulate
IL-8, macrophage inflammatory protein (MIP)-1α and MIP-1β to attract various types of leucocyte
infiltration [106]. IL-8 can attract peripheral neutrophils and CXCR1+CD8+ T-cells; MIP-1α can
recruit CD8+ T-cells and monocytes; and MIP-1β can recruit CD4+ and regulatory (Treg) T-cells [106].
As described earlier, LMP1 plays a role in mediating aerobic glycolysis in NPC [34]. A recent study
showed that the recruitment and expansion of myeloid-derived suppressor cells (MDSCs) in NPC
TME can be induced by LMP1-mediated glycolysis [105]. LMP1 mediates aerobic glycolysis through
GLUT1 stabilization. The metabolic reprogramming of NPC by LMP1 alters cellular signaling and
results in increased cyclooxygenase (COX)-2 expression, phospho-p65 and Nod-like receptor family
protein 3 (NLRP3) inflammasomes. This gives rise to the increased release of IL-1β, IL-6, and GM-CSF
into the TME and eventually leads to MDSC induction and expansion in TME [105].

Another group of consistently expressed EBV-encoded products, EBERs, also plays a role in
constructing the TME. EBERs can induce inflammation in NPC via toll-like receptor 3 (TLR3) [108].
EBER activates the TLR3 pathway, and results in the production of inflammatory cytokines via NF-κB
signaling. The recruitment and activation of macrophages induced by the inflammatory cytokines leads
to development of TME to support tumor growth. Interestingly, a positive loop between EBER and
LMP1 via NF-κB has also been demonstrated to reinforce the role of the inflammation-to-oncogenesis
transition in NPC development [108].

The majority of the leucocytes infiltrating NPC comprises T-lymphocytes, among which the
subsets of T-helper (Th)-1, Th-2, Th-17, and Treg and cytotoxic T-cells (CTLs) play different roles in
the TME. Compared with healthy controls, fewer circulating CD3+ CD45RA+naïve (Tnaïve) and CD4+

CD25−convention (Tconv) T-cells were found [94]; a significantly higher percentage of CD25+ Treg

cells from both the CD4+ and CD8+ lineages were found in PBMCs and TILs from NPC patients;
and IL-17-producing (CD8+ T17) cells were detected at lower levels in NPC patients than in healthy
controls [94,109]. The CD8+ Treg cells were found to be secreting high levels of IFN-γ and IL-10 but
low levels of IL-2 and IL-17, while the CD8+ T17 produced high levels of IFN-γ and IL-17, intermediate
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levels of IL-10, and low levels of IL-2 [109]. The CD8+Treg cells were shown to be able to inhibit
CD4+ Tnaïve cell proliferation through cell–cell contact in vitro [109]. It is noteworthy that naïve and
memory Treg cells express CCR4 and CCR6 on their cell surfaces, which show strong chemotactic
responsiveness to corresponding chemokines CCL22 and CCL20, respectively [110,111]. High levels of
CCL20 (MIP-3α) are reported in NPC biopsies and patient serum [91,109], which may be responsible
for the chemotaxis of Treg towards TME. In Hodgkin’s lymphoma the expression of EBNA1 has been
shown to upregulate the production of CCL20 and induce the migration of Treg cells [112], but this has
yet to be confirmed in NPCs. In addition to the direct secretion of chemokines into the TME, it has
been reported that malignant NPC cells can release exosomes for the transport of products into the
TME [17,113]. NPC-derived exosomes in the TME can promote the chemotaxis of CD4+ CD25+ FoxP3+

Treg cells [114]. A complex composition of infiltrated leucocytes in TME and their reciprocal interaction
with EBV-infected NPC is emerging. Other stromal cells including activated fibroblasts and endothelial
cells are also present in TME. Elucidation of their interactive relationship and roles in the development
of NPC are future challenges.

3.3. Role of TME Cells and Viral Factors in Immune Evasion

In NPC, massive leucocytes infiltration appears not to be involved in elimination of malignant
cells, but instead facilitating tumor development [88]. In patients with the undifferentiated NPC
type, abnormal T-cell activity has been detected. CD4+ T-cells in the peripheral blood of patients
were defective in IL-2 production while showing a moderate increase in IL-10 production, which
is consistent with a dysregulated Th-1/Th-2 balance [115]. This may also contribute to the IL-2lo

IL-10hi environment reported in NPC [91–94]. CD38/C1.7+ activated CD8+ T-cells predominate in the
peripheral blood of patients and their secretion of IFN-γ and perforin was impaired, which may lead
to inefficient antiviral and antitumor responses in NPC [115]. The IL-2lo IL-10hi environment may also
contribute to the expansion of T-lymphocytes with impaired anti-tumor activity. A higher percentage
of TILs were found to exhibit CD4+ CD25+ surface markers, which are designated to become Treg

cells. TILs expanded in IL-2lo conditions lacked cytotoxicity activity hence they were unable to lyze
autologous EBV-infected targets and failed to produce IFN-γ [94]. Interestingly, it has been reported
that overall immunocompetence is preserved in NPC patients as EBV-specific CTLs can be reactivated
from the patient’s blood. The activated CTLs can still traffic to tumor sites but are selectively rendered
non-functional at the NPC tumor site [94]. Overcoming this immune suppression at TME at NPC site
may offer effective treatment options for NPC.

The IL-10 appears to be an important immunosuppressive cytokine that helps malignant NPC cells
to evade immune regulation. IL-10 may reduce antigen-specific T-cell proliferation by downregulating
the class II MHC antigen on the antigen-presenting cells and by inhibiting the activity of CTLs and
IL-2 production from T-helper cells [116]. The importance of IL-10 in mediating immune evasion may
also be indicated by the fact that BCRF1, an EBV-encoded protein induced by lytic infection, is strongly
homologous to IL-10 [117]. It has been coined as viral IL-10 (vIL-10) as it is functionally similar to
endogenous IL-10 and is reported to exhibit immunosuppressive activity [118,119]. EBV-encoded
viral products EBER and LMP1 have been significantly associated with IL-10 expression in NPC
biopsy samples, and the upregulation of IL-10 appears to be associated with Fas-L production in NPC
cells [120]. Upregulated production of Fas-L (CD95-L) may trigger T-cell apoptosis via crosslinking
with Fas (CD95) expressed on the T-cells, triggering activation-induced cell death (AICD) in T-cells,
hence protecting tumor cells [121,122]. Interestingly, NPC cells also express Fas and may also enter into
AICD after binding with Fas-L [123,124]. Yet NPC cells may avoid AICD by consistently expressing
abundant levels of CD40 which can bind to the CD40-L (CD154) produced by infiltrating T-cells to
rescue NPC cells from AICD [123]. The LMP1 which has been shown to be a functional homologue of
CD40 may play a similar role to rescue NPC cells from AICD [125].

In addition to the aforementioned functions, LMP1 may also play a role in inducing T-cell
apoptosis by upregulating programmed death-lignand1 (PD-L1) expression on the NPC cell
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surface [126]. Cross-linking of PD-L1 on tumor cells and PD-1 on T-cells can suppress T-cell attack [127].
Upon EBV infection, LMP1 can mediate the upregulation of PD-L1 by activating STAT3, AP-1, and
NF-κB signaling. IFN-γ has also been shown to induce PD-L1 transcription via JAK-STAT signaling
in NPC cells [126]. While high levels of IFN-γ can help to recruit leukocytes to the TME, IFN-γ also
exhibits growth-inhibitory effects. Resistance to such inhibitory effects may be supported by EBV viral
factors: EBERs can avert the blockade of protein synthesis induced by IFNs [128]; LMP2s can enhance
turnover in the intracellular pool of IFN-receptors via endosomal-mediated degradation and thus
attenuate the inhibitory effects of IFN-γ on NPC cells [129].

3.4. The Role of TME in Promoting NPC Metastasis

As discussed earlier, NPC is a highly metastatic cancer, and lymph node metastases are common
at diagnosis [37,38]. There are evidence suggesting that EBV-infected NPC cells interacts with
TME components to facilitate metastasis. An increased presence of FoxP3+ Treg cells and CD68+

tumor-associated macrophages (TAMs) has been found in EBV-positive NPC specimens and associated
with poor prognosis [130,131]. Both cell types are also shown to interact with NPC cells to promote
metastasis. Receptor activator of nuclear factor-kappa B (RANK) signaling is known to play a critical
role in the metastasis of various cancers [132,133]. Treg cells are also reported to be pro-metastatic by
producing ligands of RANK, and thus triggering the migration of epithelial cancer cells that express
RANK [132,133]. A recent study has shown that NPC metastases express high levels of RANK, despite
unavailable results in primary NPC tumors [134]. Along with the evidence of higher circulating Treg

cells in NPC patients [88], it is likely that Treg cells can produce RANKL to promote the migration of
primary NPC cells via RANK-RANKL signaling.

Another recent study has revealed an interacting loop between NPC cells and TAMs in driving
NPC metastasis [135]. EBV-associated NPC cells can produce VEGF and GM-CSF to attract monocytes
to a tumor site and induce TAM-lineage differentiation, respectively. TAMs are potent producers of
CCL18, which can further enhance NF-κB signaling in NPC cells, heighten the release of VEGF and
GM-CSF, and induce EMT, forming a forward-feeding loop to drive NPC metastasis [135]. In vivo
mice studies have also clearly shown that such an interplay between NPC and TAMs induces EMT
in humanized but not in immunodeficient NOC/SCID mice [135]. This further demonstrates the
significance of TME in NPC oncogenesis.

3.5. Exosome-Modulation of TME for Immune Evasion and Metastasis

Exosomes released by EBV-infected NPC cells may also play a role in immune evasion. A study on
NPC exosomes (NPC-Exo) has shown that they contain viral product LMP1 and immunomodulatory
protein galectin-9 [136]. LMP1 can induce broad anergic effects on immune cells such as the inhibition
of T-cell proliferation, NK cytotoxicity, and IFN-γ release [137], while galectin-9 can suppress Th1
activity [138]. LMP1 has been shown to inhibit T-cell proliferation more efficiently than galectin-9
does [136]. NPC-Exo containing LMP1 demonstrated more potent effects in inhibiting the proliferation
of CD4+CD25− Tconv cells, thus suppressing the expansion of functional helper T-cells in the TME [114].
In the same study, NPC-Exo also promoted the conversion of Tconv into Treg, further suppressing the
anti-tumor responses of leukocyte infiltrate. Compared to healthy donor-derived exosomes, NPC-Exo
more efficiently induced the expansion of the Treg population, which was also shown to function in
producing immunosuppressive cytokines and suppressing PBMC proliferation [114].

While various EBV-encoded viral products such as LMP1, EBNA1, and EBERs have shown
important roles in modulating the TME and immune evasion, the role of BART transcript products
in intercellular communication within the TME is emerging. miR-BARTs have also been detected in
NPC patient plasma samples and in NPC-Exo [139]. However, the detailed transportation mechanisms
and fates of these exosomal microRNAs are yet to be discovered. In terms of biological functioning,
microRNAs are potent regulators of protein expression. It would be interesting to determine whether
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individual miR-BARTs or their clusters can be transported into stromal cells and modulate the TME to
contribute to NPC progression.

Exosome-mediated metastasis has already been implicated in several human malignancies,
as tumor-derived exosomes were reported to carry pro-EMT factors such as TGF-β, HIF-1α, and
β-catenin, which can enhance the metastatic properties of recipient cells [140]. In the context of
NPC, LMP1 has been shown to play a role in upregulating HIF-1α levels in LMP1+-NPC-Exo [141].
Through the incorporation of exosomal HIF-1α into neighboring NPC cells, the transcriptional-active
HIF-1α can trigger an EMT program and increase N-cadherin levels while decreasing E-cadherin
levels in cells. The exosome-treated cells have been shown to exhibit more invasive phenotypes and
activity [141]. NPC-Exo has also been shown to contain MMP-13, which are known to digest the ECM
and facilitate the protrusion of invasive cancer cells [142]. In addition, NPC-Exo carries the oncogenic
HS1-associated protein X-1 (HAX-1), which can accelerate NPC tumor growth and angiogenesis [143].
Compared to exosomes derived from nasopharyngeal epithelial cell lines (NP69 and NP460), the
EBV+NPC cell line (C666-1)-derived exosomes were shown to contain upregulated levels of the
pro-angiogenic protein ICAM-1 and the CD44 variant isoform 5 (CD44v5), as well as downregulated
levels of the angio-inhibitory protein thrombospondin-1 [144]. C666-1-derived exosomes were also able
to promote the migration and invasiveness of HUVECs and alter the expression patterns of angiogenic
proteins in HUVECs, further demonstrating the potential of NPC-Exo to influence neighboring cells
to promote metastasis [144]. Given the hints that LMP1 plays a part in determining the content and
release of NPC-Exo, such as increased levels of HIF-1α in exosomes [141], it would be interesting
to know whether specific viral products also play a part in regulating the packaging of NPC-Exo in
different situations.

4. Conclusions and Future Perspectives

The association of EBV infection with undifferentiated NPC has been well established. Several
EBV-encoded viral genes including LMP1, LMP2A/B, EBNA1 have been implicated in NPC
pathogenesis by altering host cell signaling. Interestingly, EBV-infected NPC cells do not exhibit
selective growth advantages in vitro as evidenced by the common loss of EBV episomes in NPC cells
propagated in culture. Yet, EBV infection is universally associated with NPC in patients. Heavy
infiltration of leukocytes is a common characteristic of EBV-associated NPC. Together with the other
stromal cells, they form a unique TME which has been postulated to play an important role to support
growth and progression of NPC cells in patients. More and more evidences have emerged to support
a role of EBV infection in immune evasion and anti-apoptosis which may give growth advantages
of EBV-infected cells during NPC pathogenesis. However, the potential mechanisms of miR-BARTs
in repressing immune surveillance and promoting metastasis of NPC remain to be fully elucidated.
The essential role of TME of NPC in the maintenance of persistent EBV infection and regulation
of viral gene expression is emerging. Many studies have reported the influence of EBV-encoded
gene products on stromal cells in the TME of NPC through secretion of cytokines and chemokines.
The release of tumor exosomes from EBV-infected NPC cells may be an important means to modulate
properties and behaviors of stromal cells in TME to impact on NPC pathogenesis and progression.
Further investigation is needed to clearly define the components of NPC-Exo and the mechanisms
that modify the TME. Revelation of the exosomal transportation of viral factors in circulations may
also provide new opportunities to develop biomarkers for the prognosis of EBV-associated NPC,
especially in predicting metastatic potentials. Taken together, delineation of the intricate interactions
of EBV-infected NPC with stromal cells in the TME will be one of the future directions in the research
of EBV and NPC, and this may reveal novel targets for effective treatment of NPC in patients.
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