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Abstract: Despite recent advances in oncology, diagnosis, and therapy, treatment of pancreatic ductal
adenocarcinoma (PDAC) is still exceedingly challenging. PDAC remains the fourth leading cause of
cancer-related deaths worldwide. Poor prognosis is due to the aggressive growth behavior with early
invasion and distant metastasis, chemoresistance, and a current lack of adequate screening methods
for early detection. Consequently, novel therapeutic approaches are urgently needed. Many hopes
for cancer treatment have been placed in the death ligand tumor necrosis factor (TNF)-related
apoptosis-inducing ligand (TRAIL) since it was reported to induce apoptosis selectively in tumor
cells in vitro and in vivo. TRAIL triggers apoptosis through binding of the trans-membrane death
receptors TRAIL receptor 1 (TRAIL-R1) also death receptor 4 (DR4) and TRAIL receptor 2 (TRAIL-R2)
also death receptor 5 (DR5) thereby inducing the formation of the death-inducing signaling complex
(DISC) and activation of the apoptotic cascade. Unlike chemotherapeutics, TRAIL was shown to
be able to induce apoptosis in a p53-independent manner, making TRAIL a promising anticancer
approach for p53-mutated tumors. These cancer-selective traits of TRAIL led to the development
of TRAIL-R agonists, categorized into either recombinant variants of TRAIL or agonistic antibodies
against TRAIL-R1 or TRAIL-R2. However, clinical trials making use of these agonists in various
tumor entities including pancreatic cancer were disappointing so far. This is thought to be caused
by TRAIL resistance of numerous primary tumor cells, an insufficient agonistic activity of the drug
candidates tested, and a lack of suitable biomarkers for patient stratification. Nevertheless, recently
gained knowledge on the biology of the TRAIL-TRAIL-R system might now provide the chance
to overcome intrinsic or acquired resistance against TRAIL and TRAIL-R agonists. In this review,
we summarize the status quo of clinical studies involving TRAIL-R agonists for the treatment of
pancreatic cancer and critically discuss the suitability of utilizing the TRAIL-TRAIL-R system for
successful treatment.
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1. Introduction

Typical characteristics of cancers are self-sufficiency in growth signals, enhanced proliferative
signaling, invasion, metastasis, angiogenesis, replicative immortality, and resistance to cell death [1,2].
Pancreatic ductal adenocarcinoma (PDAC) harbors all of these classical hallmarks. Reduced response
to conventional cytotoxic therapies is the culprit responsible for tumor development and progression
despite therapy [3,4]. A less conventional therapeutic approach for PDAC arises from the stimulation
of extrinsic apoptosis by death ligands. Accordingly, appropriate expression of respective death
receptors (DR) on the plasma membrane and a functional downstream signaling apparatus is required
to successfully stimulate the extrinsic apoptosis cascade reviewed in [4–6]. tumor necrosis factor
(TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) and its pro-apoptotic receptors TRAIL
receptor 1 (TRAIL-R1) and 2 (TRAIL-R2) represent such a death ligand/receptor system. On the one
hand, the TRAIL-TRAIL-R system is expressed by PDAC cells and, on the other hand, capable of
activating apoptosis selectively in tumor cells by binding to its death receptors reviewed in [7].

1.1. Pancreatic Cancer

Adenocarcinomas of the pancreas are nowadays still a significant health problem accounting
for some 367,000 newly diagnosed patients in 2015 a number that keeps rising [8,9]. Compared to
other solid tumor entities, pancreatic cancer has the highest mortality rate and is the fourth leading
cause of cancer-related deaths worldwide [9,10]. Despite recent advances in diagnosis and treatment
of PDAC, prognosis remains very poor, with a 5-year overall survival below 7% and a median survival
upon diagnosis of 6 months [10,11]. This is mainly due to the aggressive phenotype of pancreatic
cancer cells with highly invasive and metastatic potential. The only chance for cure is surgical
resection [12,13]. However, due to vague and unspecific symptoms and lack of biomarkers, in most
cases (80%) diagnosis only occurs at a locally advanced/metastatic and accordingly incurable stage.
For these patients, treatment remains palliative to potentially alleviate symptoms and limit tumor
growth [11,14]. Of note, tumor resected patients with curative interventions also frequently develop
local tumor recurrence and/or metachronous metastases reducing long-term survival and potential
cure [15].

Since 1997, monotherapy with gemcitabine (Gemzar), a synthetic pyrimidine nucleoside prodrug,
was considered as the gold standard of care for PDAC. The nucleoside is an analog of deoxycytidine
and is transferred to its active form by phosphorylation within the cell, eventually preventing
DNA synthesis by incorporation into DNA. The efficacy of the substance is marginal as median
survival is only prolonged by weeks to months. [16,17]. Consequently, combinatorial treatment
strategies with gemcitabine were investigated the following two decades, again with unsatisfactory
outcomes. However, improved response to therapy could be eventually achieved applying either the
FOLFIRINOX (FOL-folinic acid-leucovorin, F-5-fluorouracil (5-FU), IRIN-irinotecan, OX-oxaliplatin)
regimen [18] or the gemcitabine-nab (nanoparticle albumin-bound)-paclitaxel approach [17,19–21].
The folinic acid leucovorin is a vitamin B derivative to reduce side effects of 5-FU, a pyrimidine analog
which incorporates into the DNA molecule and avoids DNA synthesis [22,23]. Irinotecan acts as
DNA topoisomerase I inhibitor, which stops uncoiling and duplication of DNA [24]. Oxaliplatin,
a diaminocyclohexane platinum compound, forms platinum-DNA adducts which block DNA
replication [25]. Nab-paclitaxel is an example of nanotechnological cancer therapy. In this formulation,
paclitaxel, first isolated in 1971 from the Pacific yew and described as an antitumor drug [26] is
linked to albumin nanoparticles thereby increasing the agent’s solubility. The microtubule-stabilizing
activity of paclitaxel enhances microtubule polymerization and G2/M phase arrest of the cells [27,28].
The FOLFIRINOX regimen and gemcitabine-nab-paclitaxel approach are the two combinatorial
regimens which are the present standard treatments for advanced PDAC patients with good
performance statuses. However substantial and severe toxic effects are reported when applying
these regimes [21,29,30]. Meanwhile, therapy benefit for patients is still unsatisfactory. Notably,
owed to the intrinsic or acquired resistance to apoptosis, pancreatic tumor cells are widely insensitive
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to conventional radio- and chemotherapy, mainly narrowing their efficiency [4,15]. Since apoptosis
resistance to cell death is a hallmark of PDAC, only research into responsible molecular mechanisms
will provide new treatment avenues towards targeted therapy [1,4,31].

1.2. TRAIL and TRAIL Receptors

A more in-depth understanding of tumor biology and the interplay between tumor and immune
system promotes research into ‘targeted’ cancer therapy. One step in this direction was the identification
of TRAIL, also referred to as Apo-2 ligand (Apo2L) in the mid-1990s [32,33] and its ability to induce
apoptosis selectively in cancer cells while sparing healthy cells [34,35].

TRAIL is a member of the TNF-superfamily (TNF-SF) with the ability to induce apoptosis in cells
by engagement of the DRs TRAIL-R1/DR4 (also called APO-2 or TNFRSF10A) [36] and TRAIL-R2/DR5
(TNFRSF10B, TRICK2, KILLER) [37] at the plasma membrane. Physiological full-length TRAIL is a
type II transmembrane protein, constitutively expressed in a variety of tissues [32,33]. For many years,
only limited data existed about the responsible proteolytic enzyme(s) involved in TRAIL cleavage
aiding the release of its soluble form. Then, the protease cathepsin E was identified to release the 24
kDa extracellular portion of the ligand from the cell surface [38]. Similar to most TNF family members,
the ligand forms homotrimers engaging three receptors [39,40]. In 1999, the crystal structure of the
extracellular domain of human TRAIL was described, revealing that TRAIL monomers are composed
of two antiparallel β-sheets which form a β sandwich as the core structure. The interplay of the TRAIL
monomer with the adjacent subunits generates a bell-shaped homotrimer [41]. In order to stabilize
and presumably mediate solubility and bioactivity of the ligand, an internal zinc atom interacts
noncovalently with three cysteine residues, one supplied from each ligand monomer [42]. The crystal
structure of TRAIL interacting with TRAIL-R2 revealed the trimerization of the TRAIL-R upon binding
of the TRAIL trimer [39]. In healthy adults, the constitutive plasma concentration of soluble TRAIL is
about 100 pg mL−1. Interestingly, at this concentration TRAIL exhibits no apoptosis-inducing activity
in most cell lines and its function is therefore unknown [43,44].

In addition to TRAIL-R1 and TRAIL-R2, TRAIL can bind the receptors TRAIL-R3 and TRAIL-R4
also referred to as decoy receptor 1 (DcR1) alternative TNFRSF10C, TRID, or LIT and decoy receptor
2 (DcR2) alternative TNFRSF10D, or TRUNDD, respectively, as well as to the soluble receptor
osteoprotegerin (OPG, TNFRSF11B) [5,45–48]. TRAIL-R1 and TRAIL-R2 signal apoptosis via their
conserved death domain (DD) motif [37,47,49,50], whereas the DcRs have been shown to negatively
regulate TRAIL-induced apoptosis [reviewed in 47]. TRAIL-R3 is attached to the plasma membrane
via a glycophosphatidyl (GPI) anchor but lacks an intracellular domain, whilst TRAIL-R4 contains
a truncated intracellular DD [5,36,47,49,50]. Overexpression experiments displayed the inhibitory
potential of TRAIL-R3 and TRAIL-R4 regarding apoptosis induction by ligand scavenging and/or
interaction with the death receptors [51–53] and down-regulation of the decoy receptors sensitized
to TRAIL-induced apoptosis [54,55]. OPG, a soluble receptor identified to bind TRAIL, was initially
demonstrated to regulate osteoclastogenesis by interaction with the receptor activator of nuclear
factor κB ligand (RANKL). Notably, under physiological conditions the affinity of TRAIL for OPG
is significantly weaker compared to the other TRAIL receptors [56,57], suggesting that OPG might
play a subordinate role in modulating TRAIL-signaling. This may hold true since TRAIL present
at low concentrations rather favors high-affinity binding to TRAIL-R2. Overall, the death-inducing
TRAIL-receptors show higher affinity for TRAIL than the decoy receptors [58]. Since TRAIL-R2 exhibits
the highest affinity for TRAIL at 37 ◦C, TRAIL-R2 was initially expected to be the primary inducer of
TRAIL-induced apoptosis. However, this principal concept of TRAIL-R2 is questionable since it was
uncovered that TRAIL-R1 is the primary inducer of apoptosis in pancreatic cancer cells and chronic
lymphocytic leukemia even though TRAIL-R2 is expressed [59–62]. Synthetic TRAIL-R2-specific
TRAIL variants were more efficient than wild-type TRAIL in killing PDAC [63]. Moreover, other
data suggest that in certain scenarios also TRAIL-R2 might be the preferred TRAIL-R, mediating
apoptosis in PDAC [64]. TRAIL-R1 and TRAIL-R2 share high sequence homology to a high degree
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(58% identical) [36,65] and so far, it is still enigmatic why two death-inducing TRAIL-Rs are expressed
in humans. Two splice variants of TRAIL-R2 have been identified (long and short form), which differ
by 29 amino acids in the extracellular domain. Moreover, the predominant occurrence of the long
isoform was reported, whereas the ratio of the two isoforms differs in a tissue-dependent manner [66].

In comparison to the human system, mice only express one receptor capable of inducing
apoptosis termed mTRAIL-R (MK) with 43% and 49% sequence homology to human TRAIL-R1
and TRAIL-R2, respectively [67]. However, the decoy receptors mDcTRAIL-R1 (TNFRS23) and
mDcTRAIL-R2 (TNFRS22) lack a DD and differ substantially in their amino acid sequence from their
human counterparts. Furthermore, they are not able to induce apoptosis [68]. Noteworthy, affinity of
human TRAIL to the murine receptors is weak. Conversely, murine TRAIL interacts strongly with the
human receptors [69].

A graphical representation of TRAIL and its receptors in humans and mice is presented in Figure 1.
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Figure 1. The human and murine tumor necrosis factor (TNF)-related apoptosis-inducing
ligand (TRAIL)-TRAIL-receptor (TRAIL-R) system. TRAIL-TRAIL-R-system in humans. Human
tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) can engage four membrane-bound
TRAIL-Rs and one soluble receptor, while two of these receptors can promote apoptosis
(TRAIL-R1 and TRAIL-R2) and three might serve as decoys. TRAIL-R1 and TRAIL-2 express an
intracellular domain comprising a death domain (DD), required for apoptosis induction. TRAIL-R2
occurs as short or long isoform, distinguishable by the absence or presence of a single TAPE
(threonine/alanine/proline/glutamine) domain. TRAIL-R3 is attached to the membrane via a
glycosylphosphatidylinositol (GPI) anchor and expresses five TAPE domains, but no intracellular
domain. TRAIL-R4 merely expresses a truncated DD incapable of transmitting an apoptotic signal.
Osteoprotegerin (OPG) represents the soluble receptor with low affinity for TRAIL. Cysteine-rich
domains of the receptors are crucial for ligand binding. TRAIL-TRAIL-R-system in mice. Mice
express four receptors for TRAIL, while mTRAIL-R is homologous to human TRAIL-R1 and TRAIL-R2.
mDcTRAIL-R1 and mDc-TRAIL-R2 differ from the human forms. mOPG is the soluble receptor for
TRAIL in the murine system. MPD, membrane-proximal domain.

1.3. Apoptotic Signaling

Apoptosis is a form of programmed cell death (PCD) and the central player in tissue homeostasis
and embryogenesis first described in 1972 [70,71]. This cellular suicide mechanism designates the
elimination of redundant, damaged, or infected cells by phagocytosis. It can be initiated either
intrinsically via DNA damage, growth factor deprivation and cytotoxic stress and is in such cases
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termed intrinsic apoptosis or via extracellular death ligand binding to a death receptor (extrinsic
apoptosis pathway). In all cases, apoptosis results in cell shrinkage, nuclear condensation, DNA
fragmentation, and formation of apoptotic bodies. Caspases orchestrate these phenotypic hallmarks
via cleavage of various target proteins [71–73].

Cancers 2018, 10, x  5 of 27 

 

intrinsically via DNA damage, growth factor deprivation and cytotoxic stress and is in such cases 

termed intrinsic apoptosis or via extracellular death ligand binding to a death receptor (extrinsic 

apoptosis pathway). In all cases, apoptosis results in cell shrinkage, nuclear condensation, DNA 

fragmentation, and formation of apoptotic bodies. Caspases orchestrate these phenotypic hallmarks 

via cleavage of various target proteins [71–73].  

Chemotherapy usually results in the induction of intrinsic apoptosis via p53 in response to DNA 

damage. The functionality of the tumor suppressor p53 is, therefore, a requirement for apoptosis 

induction. However, p53 is inactivated in around 70% of pancreatic tumors. Nevertheless, signaling 

through death receptors to induce apoptosis is still possible in many cases despite p53 inactivation 

[6,10,14,74–77]. In Figure 2, extrinsic and intrinsic apoptosis pathway are summarized.  

 

Figure 2. Apoptotic signaling. (a) Tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-

induced extrinsic apoptosis. Upon TRAIL binding to TRAIL receptor 1 (TRAIL-R1) and/or TRAIL 

receptor 2 (TRAIL-R2) the death-inducing signaling complex (DISC) is formed. In type I cells, the 

signal of DISC-activated caspase-8 is sufficient to activate downstream effector caspase-3 and 

therefore apoptosis, whereas the DISC signal needs amplification by mitochondrial apoptosis via 

caspase-8-dependent cleavage of the B cell lymphoma 2 (Bcl-2) homology domain 3 (BH3) interacting 

domain death agonist (Bid) in type II cells. Truncated Bid (tBid) translocates to the mitochondria and 

triggers the Bcl-2-family members Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist 

killer (Bak) in the mitochondrial outer membrane (MOM), resulting in its permeabilization (MOMP) 

and eventually cytochrome c and second mitochondrial activator of caspases/direct inhibitor of 

apoptosis-binding protein with low pI (Smac/DIABLO) release. Apoptotic protease activating factor-

1 (Apaf-1) complexes with cytochrome c and caspase-9 to build the apoptosome promoting effector 

caspases-3, -6 and -7. (b) Intrinsic death signaling. In response to stress signals, p53 becomes activated 

thereby triggering BH3-only proteins resulting in MOMP. In type I cells, DISC formation is sufficient 

to activate caspase-8 for activation of the executioner caspase-3. In type II cells, DISC formation is 

Figure 2. Apoptotic signaling. (a) Tumor necrosis factor-related apoptosis inducing ligand
(TRAIL)-induced extrinsic apoptosis. Upon TRAIL binding to TRAIL receptor 1 (TRAIL-R1) and/or
TRAIL receptor 2 (TRAIL-R2) the death-inducing signaling complex (DISC) is formed. In type I cells,
the signal of DISC-activated caspase-8 is sufficient to activate downstream effector caspase-3 and
therefore apoptosis, whereas the DISC signal needs amplification by mitochondrial apoptosis via
caspase-8-dependent cleavage of the B cell lymphoma 2 (Bcl-2) homology domain 3 (BH3) interacting
domain death agonist (Bid) in type II cells. Truncated Bid (tBid) translocates to the mitochondria and
triggers the Bcl-2-family members Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist
killer (Bak) in the mitochondrial outer membrane (MOM), resulting in its permeabilization (MOMP)
and eventually cytochrome c and second mitochondrial activator of caspases/direct inhibitor of
apoptosis-binding protein with low pI (Smac/DIABLO) release. Apoptotic protease activating factor-1
(Apaf-1) complexes with cytochrome c and caspase-9 to build the apoptosome promoting effector
caspases-3, -6 and -7. (b) Intrinsic death signaling. In response to stress signals, p53 becomes
activated thereby triggering BH3-only proteins resulting in MOMP. In type I cells, DISC formation
is sufficient to activate caspase-8 for activation of the executioner caspase-3. In type II cells, DISC
formation is enhanced by MOMP to neutralize the caspase-inhibitory protein X-linked inhibitor of
apoptosis protein (XIAP). XIAP binds to and potently inhibits caspase-3, -7 and -9. Several apoptosis
regulation mechanisms are known: Fas-associated death domain (FADD)-like IL-1β-converting enzyme
(FLICE)-inhibitory protein (c-FLIP) and caspase-8 compete for binding to FADD. Thus caspase-8
activation is repressed. In type II cells, binding of Bcl-2, B-cell lymphoma-extra-large (Bcl-XL) or
induced myeloid leukemia cell differentiation protein (Mcl-1) to Bax and Bak, converts them into their
inactive forms. Smac/DIABLO binds to and antagonizes XIAP and thereby ensures potent activation
of caspases-3, -7 and -9.
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Chemotherapy usually results in the induction of intrinsic apoptosis via p53 in response to
DNA damage. The functionality of the tumor suppressor p53 is, therefore, a requirement for
apoptosis induction. However, p53 is inactivated in around 70% of pancreatic tumors. Nevertheless,
signaling through death receptors to induce apoptosis is still possible in many cases despite p53
inactivation [6,10,14,74–77]. In Figure 2, extrinsic and intrinsic apoptosis pathway are summarized.

1.4. TRAIL-Mediated Cell Death Signaling—Extrinsic Apoptosis

The anti-tumor activity of TNF was first identified unknowingly when William B. Coley used dead
bacteria (Coley’s toxins) to treat cancer at the end of the 19th century [78]. 100 years later, Old et al.
demonstrated that this activity was attributable to a polypeptide, produced after bacterial infection.
The hemorrhagic necrosis of treated tumors led to the polypeptide’s naming tumor necrosis factor in the
1970s [79]. TNF was enthusiastically debated as a novel potential anticancer substance for several years.
However, it was revealed that canonical TNF-induced signaling triggers pro-inflammatory signaling
pathways rather than apoptosis in most scenarios. Consequently, systemic application of TNF resulted
in severe systemic inflammatory response syndrome reviewed in [80]. Novel hope was then placed in
the discovery of the death receptor (DR) TNF superfamily receptor 6 (Fas)/apoptosis antigen 1 (APO-1)
also called CD95 and the development of respective agonistic antibodies, reported to induce apoptosis
in a variety of cancer cells [81–84]. Again, initial optimism was destroyed when fulminant and lethal
hepatotoxicity was noted after systemic treatment with anti-Fas [85]. Subsequently, the sequence
homology to TNF and Fas led to the identification and cloning of TRAIL [32,33]. Most striking this
time, was the capability of TRAIL to selectively kill cancer cells in vivo without causing toxicity [34,35].

In response to TRAIL engaged with TRAIL-R1 and/or TRAIL-R2, extrinsic apoptosis is induced by
the assembly of a signaling platform named the death-inducing signaling complex (DISC). In addition
to TRAIL-Rs, this complex comprises the adaptor molecule Fas-associated death domain (FADD) and
the initiator caspase-8/10 [86]. The exact stoichiometry of the TRAIL-DISC was uncovered in 2012
through quantitative mass spectrometry, revealing that three TRAIL-R1/R2 receptors recruit one FADD
molecule which in turn recruits several procaspase-8 molecules [86]. The homotypic interaction of the
death domain (DD) of FADD with the receptors respective DDs represents the bottleneck for activation
of the TRAIL-mediated apoptosis pathway. FADD, in turn, enables the recruitment of procaspase-8
and -10 via homotypic interactions of their death-effector domains (DED) with the corresponding DED
of FADD [3,45,86,87]. Since procaspase-8 contains two DEDs, a model proposed recently suggests
that the first procaspase-8 molecule binds FADD directly, but all further procaspase-8 molecules bind
to the free DEDs of the first procaspase-8 molecule in a growing chain [88]. DISC formation enables
procaspase-8/-10 dimerization and proximity-induced activation required for initiation of the caspase
cascade [3,45,86–89].

The caspase-8 homolog cellular FADD-like IL-1β-converting enzyme (FLICE)-inhibitory protein
(c-FLIP) holds a crucial function in regulating caspase-8 activity within the DISC [90–92]. While this
mechanism of regulation was initially understood to lie in a mere competition of c-FLIP and caspase-8
for binding to FADD, recent results support the idea that high levels of c-FLIP do not prevent direct
caspase-8-FADD binding. The regulation rather occurs by suppressing elongation of caspase-8 chains
and thereby their activation [93]. Due to alternative splicing, several c-FLIP variants exist, of which
the most predominantly expressed ones are c-FLIP long (c-FLIPL) and c-FLIP short (c-FLIPS) [94,95].
c-FLIPL and full-length procaspase-8 are strictly homologous. However, a catalytic cysteine present in
the active site of caspase-8 and required for its proteolytic activity is absent in c-FLIPL. c-FLIPL has
been associated with both death-promoting as well as survival-promoting functions, depending on
expression levels and strength of receptor stimulation [88,93,96]. c-FLIPS comprises only DEDs [95,97]
and was shown to act in an anti-apoptotic manner.

In so-called type I cells, DISC formation is stable enough to sufficiently activate caspase-8
for efficient activation of the executioner caspase-3 resulting in apoptosis. In contrary, in type II
cells, DISC-mediated initiation of the caspase cascade requires enhancement by mitochondrial outer
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membrane permeabilization (MOMP) to neutralize the caspase-inhibitory protein X-linked inhibitor of
apoptosis protein (XIAP), a member of the inhibitor of apoptosis protein (IAP) family. XIAP binds to
and potently inhibits caspase-3, -7 and -9 [98–102].

Pancreatic cancer cells have been classified as type II cells [103,104]. Consistently, members of the
B cell lymphoma 2 (Bcl-2) family have been shown to crucially control extrinsic apoptosis in PDAC,
as reviewed in [105]. The Bcl-2 family member Bcl-2 homology domain 3 (BH3) interacting domain
death agonist (Bid) plays a major role in cross-signaling to mitochondria in response to DR activation.
Upon DISC formation, active caspase-8 cleaves Bid generating truncated Bid (tBid), which translocates
to mitochondria and eventually activates the mitochondrial cascade by triggering the oligomerization
of the Bcl-2-family members Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist killer
(Bak), resulting in MOMP [45,106]. Following the pore formation in the mitochondrial membrane
by Bak and Bax, the release of cytochrome c from the mitochondrial intermembrane space (IMS)
to the cytosol is stimulated [107]. Once cytochrome c is present in the cytosol, apoptotic protease
activating factor-1 (Apaf-1) triggers the assembly of the apoptosome, a stimulation platform for
procaspase-9. Procaspase-9 holds an initiating function after activation through the apoptosome,
promoting activation of effector caspases-3, -6 and -7 which execute apoptosis reviewed in [108].

Several regulation mechanisms are known which counteract excessive apoptosis. On DISC-level,
c-FLIP and caspase-8 compete for binding to FADD. Thus caspase-8 activation is repressed and,
consequently, execution of apoptosis [97]. In type II cells, binding of Bcl-2, B-cell lymphoma-extra-large
(Bcl-XL) or induced myeloid leukemia cell differentiation protein (Mcl-1) to Bax and Bak, converts
them into their inactive forms, thereby preventing MOMP [109,110]. Upon MOMP, in addition to
cytochrome c, the second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding
protein with low pI (Smac/DIABLO) is released. Smac/DIABLO binds to and antagonizes XIAP and
thereby ensures potent activation of caspases 3, 7, and 9 and execution of apoptosis [111,112].

1.5. TRAIL-R Agonists in Clinical Trials

In 1999, in vivo studies in mice, performed by two independent groups, revealed tumor regression
after systemic treatment with recombinant variants of human TRAIL (rhTRAIL) [34,35]. This selective
apoptosis-inducing effect of TRAIL on tumor cells while sparing healthy cells [34] provoked the clinical
development of various TRAIL receptor-targeting agonists intended for cancer therapy. They can
be subdivided into (i) recombinant human TRAIL variants and (ii) agonistic antibodies directed
against TRAIL-R1 or TRAIL-R2 reviewed in [46]. Dulanermin (APO2L.0, AMG-951) is the only
clinically available rhTRAIL ligand. The substance was not clinically evaluated for PDAC. Nevertheless,
its suitability for this tumor entity will be revisited later with the aim to gain insights into the history
of TRAIL-R agonist development. Only a few data are available on TRAIL-R-agonists in clinical
trials for PDAC, these are the agonistic TRAIL-R2-specific antibodies conatumumab (AMG-655) and
tigatuzumab (CS-1008). In the following section of this review article, these substances will be discussed
in detail concerning their suitability for PDAC treatment.

1.6. Recombinant TRAIL

The challenge was to develop stable and active variants of recombinant TRAIL. Similar affinity
for TRAIL-R1 and TRAIL-R2 might present a promising approach potentially enhancing death signals
compared to stimulation of only one receptor. In this context, the death-inducing capacity might also
be influenced by the different preference of TRAIL-R1 or TRAIL-R2 for apoptosis induction, varying
tissue-dependently. Of note, in PDAC TRAIL-R1 is primarily used to trigger apoptotic cell death [59].
However, a potential problem regarding the therapeutic efficacy of recombinant TRAIL might arise
from the fact that serum concentrations of active recombinant TRAIL available for TRAIL-R1 and -R2
binding might be downregulated by its binding to decoy receptors. In order to prolong half-life and
stability of hrTRAIL, N-terminal tags such as poly-histidine tag [33], DYKDDDDK (FLAG) epitope [32]
or leucine zipper (LZ) [34] motifs have been developed. Unfortunately, toxicology studies indicated
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that tagged recombinant TRAIL versions partially provoked hepatotoxicity, while this effect was absent
with the use of non-tagged TRAIL [113].

To date, the only recombinant substance of human TRAIL approved for clinical use is dulanermin,
an untagged variant based on amino acids 114–118 of the extracellular part of TRAIL [35]. Notably,
dulanermin can bind both death-inducing receptors thereby providing a broader activity spectrum.
However, the serum half-life of only 30–60 min actively restricts efficacy of the substance [114].
Dulanermin was clinically approved for non-small-cell lung cancer [115,116], non-Hodgkin’s
lymphoma [117], metastatic colorectal cancer [118–120] and advanced cancer [114] in combination with
chemotherapeutics. However, so far, in contrast to promising preclinical results [34,35], recombinant
TRAIL failed as compared to standard therapy in clinical studies in the tumor entities mentioned.
Although acceptable tolerability [114] was achieved in first in-human studies, significant antitumor
effects were not observed as reviewed in [7,121].

1.7. TRAIL-R-Specific Agonistic Antibodies

Compared to recombinant forms of TRAIL, agonistic TRAIL-R-specific antibodies exhibit
higher stability and prolonged half-lives. Conatumumab (AMG-655), a fully human agonistic
monoclonal antibody (IgG1) directed against TRAIL-R2, was shown to induce apoptosis in vitro
and in pancreatic cancer xenograft models in vivo. Furthermore, AMG-655’s activity cooperated
with the antitumor potential of chemotherapeutics in PDAC in vivo models [122,123]. Following
these encouraging preclinical results, phase I and II studies have been performed in patients with
advanced PDAC [124–126]. AMG-655 was taken into a combination trial with gemcitabine in a phase
Ib study in patients with metastatic pancreatic cancer to evaluate safety and efficacy. The study
resulted in a disease control rate of 69% and a 6-month survival of 76.2% with acceptable tolerance
in accordance with the first-in-human study [124,127]. Based on the results of the phase Ib study of
AMG-655 combined with gemcitabine [124], a randomized placebo-controlled phase II study was
performed in patients with metastatic pancreatic cancer comparing either ganitumab (AMG-479), a fully
human anti-insulin-like growth factor receptor type I (IGF-1R) monoclonal antibody [128] or AMG-655
combined with gemcitabine. Trends were noted towards improved 6-month-survival. However,
12-month survival rate, overall survival, and patients’ response were not superior in comparison to
the gemcitabine monotherapy Trends were noted towards improved 6-month-survival. However,
12-month survival rate, overall survival, and patients’ response were not superior in comparison to
the gemcitabine monotherapy [126]. Tigatuzumab (CS-1008), the humanized form of the agonistic
anti-TRAIL-R2 murine monoclonal antibody TRA-8, was made up of the complementarity-determining
region of the murine mAb and the variable region framework and constant regions of human IgG-1
mAb58′Cl. As with the previously described mAbs, tigatuzumab convinced with promising preclinical
results, including pancreatic cancer cell lines and murine PDAC xenografts [129–134]. In a phase I
trial, tolerability was verified, and antitumor effects seemed to emerge, indicated by the high number
of patients with stable disease [135]. A phase II study examining the combination of tigatuzumab
and gemcitabine in patients with unresectable or metastatic pancreatic cancer was conducted [136].
In a nutshell, the results of the study were comparable to those of previous studies using gemcitabine
monotherapy or in combination with other agents, given an overall survival of 8.2 months [136].

However, the underlying explanation for the clinical failure of TRAIL-R specific antibodies might
be found in their mode of action. Since TRAIL engages TRAIL receptors as trimers, stimulation by
bivalent antibodies results in stimulation of only two DRs and consequently in inadequate DISC
formation reviewed in [46,137]. Moreover, it was uncovered that TRAIL-R1 becomes activated
by membrane-bound TRAIL (memTRAIL) and soluble TRAIL (sTRAIL) whereas TRAIL-R2 is
only activatable by memTRAIL or antibody-crosslinked sTRAIL [138]. Consequently, the capacity
of TRAIL-R antibodies to induce apoptosis in pancreatic cancer might be feeble. In addition,
tumor perfusion might represent a PDAC-specific problem [139–141]. Furthermore, the efficacy
of recombinant antibodies directed against antigens on cancer cells relies on antibody-dependent,
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cell-mediated cytotoxicity (ADCC). Activatory and inhibitory fragment crystallizable (Fc)γ receptors
(FcγRs) on immune cells regulate ADCC by binding to the Fc portion of immunoglobulins reviewed
in [142]. The antitumor effect of the agonistic TRAIL-R2 antibody drozitumab was shown to be
dependent on FcγR-mediated clustering [143]. These data suggest that for the general in vivo efficiency
of agonistic TRAIL-R antibodies cross-linking is crucial.

Potential interference of TRAIL-R-specific antibodies and endogenous TRAIL might also exist,
competing for receptor binding. Intriguingly, dulanermin, the recombinant ligand, and AMG-655,
both unsuccessful in clinical studies with the view of their antitumor efficiency, were demonstrated to
synergize in killing TRAIL-resistant melanoma cells and also to increase antitumor activity in vivo.
The combination of the substances provoked higher-order clustering of TRAIL-R2 thereby intensifying
DISC formation [144,145]. Whether this effect also holds true for pancreatic cancer remains to be shown.

1.8. Dysfunctional TRAIL-Induced Apoptosis in Pancreatic Cancer

Even though anticancer effects of TRAIL in a variety of cancer cell lines has been demonstrated [34,
35], many primary tumor cells are inherently resistant to TRAIL-induced apoptosis [146]. These cells
exploit mechanisms to circumvent death ligand-mediated apoptosis [104,147,148], which are not
entirely understood to date. The decision to live or die is taken at the level of pro and- antiapoptotic
protein ratio in any cell. Notably, TRAIL-induced apoptosis can be inhibited at every step along the
cascade by their respective anti-apoptotic proteins namely DcRs, c-FLIP-isoforms, and anti-apoptotic
members of the Bcl-2-family such as Bcl-2 and Bcl-XL, and inhibitors of apoptosis proteins (IAPs)
(Figure 2) [149]. Consequently, there are several possible mechanisms for tumor cells to harbor or
acquire TRAIL resistance. PDAC cells exhibit resistance to TRAIL-induced apoptosis, primarily a
result of constitutively up-regulated anti-apoptotic proteins such as c-FLIP, TNF receptor-associated
factor 2 (TRAF2), Bcl-XL, and XIAP [103,150,151].

A study identified low expression of O-glycosylation (O-glyc) genes as further potent mechanism
contributing to TRAIL resistance. In PDAC inter alia, a correlation of the peptidyl O-glycosyltransferase
GALNT14 mRNA expression with TRAIL sensitivity attracted attention. O-glyc of TRAIL-R2
triggers ligand-mediated clustering of the receptors and consequent recruitment and activation of
caspase-8 [152]. Recent results demonstrate the enhancing effects on TRAIL-induced apoptosis
mediated by N-glycosylation (N-glyc) of TRAIL-R1 while TRAIL-R2 is deficient of N-glyc sites.
Dysfunction of apoptotic signaling was connected with N-glyc-deficient TRAIL-R1 resulting in lower
receptor aggregation and reduced DISC formation [153]. These data suggest a different promotion of
apoptosis by these two receptors since TRAIL-R1 is N-glycosylated and TRAIL-R2 is O-glycosylated.

The capability to induce apoptosis is reserved for TRAIL-R1 and TRAIL-R2 [5,47,50].
An imbalance between expression levels of non-cell-death-inducing and cell death-inducing TRAIL-Rs
might influence apoptosis signaling [51–55]. The truncated death domain of TRAIL-R4 induces
nuclear factor kappa light chain enhancer of activated B cells (NF-κB), a transcription factor complicit
in pro-inflammatory immune responses, presenting protection against apoptosis [104,154]. NF-κB
was found to be constitutively active in pancreatic cancer cells resulting in elevated levels of XIAP
thereby preventing apoptosis [104,155]. Expression of anti-apoptotic proteins such as TRAF2 and
c-FLIP is also connected with the activation of NF-κB [156,157]. Furthermore, it was demonstrated
that TRAIL-R4 forms heterotrimers with TRAIL-R2 to build ligand-independent inactive structures
to prevent apoptosis or initiate gene-activating pathways such as NF-κB-mediated ones [45,154].
Death- and survival pathways can be switched in clonal populations of cancer cells in response to
the treatment. The result is ‘fractional killing’ of the parental cellular population, while the surviving
resistant fraction is selected. This ‘fractional killing’ by therapeutics is not only stem-cell dependent,
however, significant variability can also arise from natural alterations in protein levels [158]. In this
context, it was revealed that TRAIL-R2 plays an independent dual role in simultaneously mediated
pro-apoptotic and pro-survival signaling [159].
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1.9. TRAIL-Mediated Non-Canonical Signaling

In recent years, it has become evident that above and beyond the classical route of apoptosis
induction, TRAIL can trigger alternative non-cell death pathways (Figure 3). The induction of
NF-κB [65,104,154,160], mitogen-activated protein kinase (MAPK) [161], tyrosine kinase Rous sarcoma
oncogene cellular homolog (SRC) and (phosphoinositide 3-kinase (PI3K) pathways [162,163] has been
described. TRAIL-induced protein kinase B (AKT) signaling, has been confirmed in numerous cancer
entities. AKT is a PI3K-activated protein kinase which is primarily involved in cellular functions like
cell growth, survival, and apoptosis. Stimulation of AKT signaling might also play its part in the
development of TRAIL-resistance since inhibition of the pathway sensitized initial TRAIL-resistant
lung, breast or ovarian cancer cells to TRAIL-induced apoptosis [164–166].
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Figure 3. TRAIL-mediated non-apoptotic signaling. TRAIL binding induces assembly of a second
cytosolic complex, retaining TNF superfamily receptor 6 (Fas)-associated death domain (FADD) and
caspase-8 and recruiting receptor-interacting protein kinase 1 (RIPK1), tumor necrosis factor (TNF)
receptor-associated factor 2 (TRAF2), and nuclear factor kappa light chain enhancer of activated B cells
(NF-κB) essential modifier (NEMO). Downstream of caspase-8, TRAF2 recruits cellular inhibitor of
apoptosis protein 1/2 (cIAP1/2) which in turn leads to the ubiquitination of RIPK1 and therefore
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recruitment linear ubiquitin chain assembly complex (LUBAC), that attaches linear poly-ubiquitin
chains on RIPK1 [167]. RIPK1 is compulsory for the stimulation of tyrosine-protein kinase Rous
sarcoma oncogene cellular homolog (SRC) and signal transducer and activator of transcription 3
(STAT3) which are responsible for pushing migration and invasion. Complex I and complex II
trigger NF-κB, p38 mitogen-activated protein kinase (p38 MAPK), JUN N-terminal kinase (JNK)
and extracellular signal-regulated kinase (ERK). LUBAC acts in both complexes, alleviating caspase-8
activation and enabling recruitment of the Inhibitor of κB (IκB) kinase (IKK) complex, and consequently
activation of NF-κB. In case of inhibited caspase activation, the necrosome is built by the interaction of
RIPK1 and RIPK3. Independently of FADD and complex I and II, the membrane-proximal domain
(MPD) of TRAIL receptor 2 (TRAIL-R2) induces Rat sarcoma (Ras)-related C3 botulinum toxin
substrate 1 (Rac1) activation to promote migration and invasion. TRAIL-R2 is also present in the
nucleus and interacts with ribonucleoprotein complexes attributed to the maturation of microRNAs
(miRNAs) of the let-7 family which interact with and inhibit mRNAs of various regulators of mitogenic
pathways such as Ras and avian myelocytomatosis virus oncogene cellular homolog (c-Myc) thereby
promoting proliferation. DD: death domain; DED: death effector domain; ER: endoplasmic reticulum;
GTP: guanosine-5′-triphosphate; Ub: ubiquitin; DGCR8: DiGeorge critical region 8; P: phosphorylated.

Execution of these non-apoptotic, gene-activating pathways is cell-type dependent and occurs
when apoptosis induction is prevented or as a result of ‘fractional survival’ in clonal populations
of cancer cells. Besides the TRAIL-dependent pro-inflammatory, proliferation, and pro-survival
functions of these noted pathways, migration- and invasion-enhancing effects have also been
described [159,168–172]. Proliferation-enhancing and migration-promoting effects were found upon
administration of exogenous TRAIL [169,171]. These findings enabled the description of a pro-invasive
character of endogenous TRAIL in Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutated cells.
In murine models of KRAS-driven precursor lesions and metastasizing PDAC, deletion of mTRAIL-R
led to the reduction of tumor growth and metastases, and prolonged mouse survival by constraining
cancer cell-autonomous proliferation, migration, and invasion events. Moreover, high TRAIL-R2
expression related to lymph node invasion in human PDAC. Enhanced migration and invasion were
attributed to activation of the Rat sarcoma (Ras)-related C3 botulinum toxin substrate 1 (Rac1)/PI3K
pathway, mediated by constitutive TRAIL-R2 signals. Therefore, cancer cell-expressed endogenous
TRAIL-R2 can promote PDAC throughout different stages. Of note, the signaling pathway was not
mediated by the DD of TRAIL-R2, but its membrane-proximal domain (MTD) was necessary [170].

The induction of gene-activating pathways by TRAIL is supposed to be communicated via a
second cytosolic complex (Figure 3), retaining DISC components FADD and caspase-8 but additionally
recruiting receptor-interacting protein kinase 1 (RIPK1), TRAF2 and NF-κB essential modifier
(NEMO)/inhibitor of κB (IκB) kinase (IKK) [173–175]. Downstream of caspase-8, TRAF2 is essential
for cIAP1/2 recruitment, which in turn leads to the ubiquitination of RIPK1 with K11- and K63-linked
poly-ubiquitin chains [176]. Ubiquitinated RIPK1 builds the platform for recruitment of linear ubiquitin
chain assembly complex (LUBAC), an ubiquitin E3 ligase complex that attaches linear poly-ubiquitin
chains on RIPK1 [167]. LUBAC acts in both complexes, alleviating caspase-8 activation and enabling
recruitment of the IKK complex, and consequently activation of NF-κB [167,175,177].

So far, most known functions of TRAIL receptors are attributed to their presence at the plasma
membrane. Nonetheless, high levels of intracellular TRAIL-R1/R2 are characteristic features for
many tumors [178,179] and little tangible knowledge is available about the function of repeatedly
observed nuclear TRAIL-R2 (nTRAIL-R2) [180–182]. Thus, nTRAIL-R2 was found to interact with
the Microprocessor complex and its accessory proteins. By this interaction, nTRAIL-R2 negatively
regulated the maturation of miRNA let-7, which in turn is a known negative regulator of the expression
of various proliferation-driving proteins like high-mobility group AT-hook 2 (HMGA2), Ras and avian
myelocytomatosis virus oncogene cellular homolog (c-Myc) [183,184]. As a consequence, by inhibiting
let-7-maturation, nTRAIL-R2 enhanced tumor cell proliferation [185].
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1.10. Alternative TRAIL-Mediated Death Signaling

Besides the induction of non-cell death signaling, TRAIL-Rs have been shown to induce an
alternative cell death pathway termed necroptosis reviewed in [186] (Figure 3). Necroptosis is
promoted by RIPK1 and RIPK3 [187,188]. In case of inhibited caspase-8 activity, apoptosis induction
is prevented and building of the necrosome promoted by interaction of RIPK1 and RIPK3 [189,190].
Necroptosis can be blocked by pharmacological inhibition of the kinase activity of RIPK1 by
necrostatin [190,191]. Interestingly, high levels of RIPK1 and RIPK3 have been described for PDAC,
as well as their upregulation following treatment with gemcitabine. When the necrosome was blocked,
pro-cancer effects have been observed in PDAC cells. Importantly, in vivo no oncogenic progression
was detectable when RIP1 or RIP3 were inhibited [192], indicating that alternative anticancer pathways
were activated. Deletion of RIPK3 might function in an anti-oncogenic manner via improved
peri-tumoral immunogenicity. Since intrinsic resistance against TRAIL-induced apoptosis markedly
affects treatment response, the capacity of TRAIL-Rs to mediate further cell-death signaling pathways
contributes decisively to the extension of TRAIL-comprising treatment strategies. Particularly,
regarding clinical approaches, these discoveries illustrate the urgent priority to gain knowledge
on the orchestration of all TRAIL-induced signaling pathways, which might enable the prediction of
therapy response and risk evaluation in respect to the promotion of the disease.

2. Concluding Remarks and Future Perspectives

Since PDAC is amongst the deadliest of solid tumors, it has become a paradigm for an almost
incurable malignancy in today’s research era. PDAC is mostly resistant to conventional therapy. Thus,
the discovery of TRAIL created new hope for an alternative anticancer approach. Inducing extrinsic
apoptosis, pharmacological targeting of TRAIL-Rs offers the possibility to circumvent resistance
against intrinsic apoptosis, a pathway almost invariably inactivated through the loss or mutation of the
tumor suppressor p53. However, the majority of primary PDAC cells are resistant or acquire resistance
also to TRAIL-induced apoptosis. However, so far apart from promising preclinical studies, with none
of the reviewed TRAIL-R agonists a therapeutic advantage in cancer patients has been reported [30].
Presumably, due to inherent TRAIL resistance, the insufficient potency of the used agonist, and a lack
of biomarkers for patient stratification, the trials failed to achieve antitumor efficacy. Furthermore,
it has emerged that physiological levels of TRAIL can signal so much more than mere apoptosis, which
can provoke undesirable effects in the context of anticancer therapy.

Since tagged variants of recombinant TRAIL-induced hepatotoxicity, the untagged version
dulanermin reached clinical testing. The plain fact that hrTRAIL failed to reveal any anticancer activity
in various other tumor entities suggests that clinical trials with dulanermin in PDAC would also be
unsatisfying. Since TRAIL-R1 was shown to promote apoptosis in PDAC whereas TRAIL-R2 induced
pro-inflammatory cytokines, a PDAC trial would be more likely to benefit from a TRAIL-R1-selective
treatment [59].

Although it is far too early to find a conclusive answer to the question ‘Should we keep walking
along the TRAIL for pancreatic cancer treatment?’, several trial options are unexplored, for example
TRAIL-R1 selective targeting which surely should be tested. However, selective approaches need
to be intensively studied, since recent results demonstrate the dual role of a single TRAIL-R in
not only mediating apoptosis but also stimulating non-apoptotic pathways, supporting ‘fractional
survival’ [159]. Most importantly, sensitizing strategies to overcome TRAIL resistance [51,193,194] and
crosslinked TRAIL-R agonists, ensuring clustering of TRAIL-Rs intensifying DISC formation might be
steps towards successful TRAIL therapy. This approach can be enhanced by combination with tagged
TRAIL [45,195], to extend half-life period and stability, and to combine TRAIL with agents sensitizing
to TRAIL-induced apoptosis [145]. However, restricted drug bioavailability in PDAC caused by
reduced perfusion [140] and desmoplastic stroma needs to be conquered. The hopeful outcomes of the
in vivo testing of some of the described new TRAIL formulations must be further verified over the
next years (i) in a broader spectrum of tumor entities with special attention to mutations and predictive
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markers, and in (ii) more complex models, representing the heterogeneity and microenvironment of
tumors in a manner closer to reality.

Based on the limited activity of TRAIL-R agonists discussed above, the design of new TRAIL-R
agonists aimed at higher potency to induce apoptosis via TRAIL-R1 and TRAIL-R2 [196]. One of
these agents, firstly reaching clinical testing, was TAS266, an agonistic tetravalent nanobody directed
against TRAIL-R2 [197]. Nanobody approaches can overcome limitations of the efficiency of mAbs in
distribution and tumor penetration. Characteristics of variable fragments of Camelid heavy-chain-only
antibodies (HcAbs), termed nanobodies, comprise their small size, chemical and thermal stability,
high solubility, specificity and affinity, and their simplicity of cloning, as reviewed in [198]. TAS266 is
assembled from four identical humanized high-affinity heavy chain domain (VHH) antibody fragments.
Since TRAIL-R2 can be engaged by each VHH domain with high affinity, simultaneously clustering
of four receptor molecules is possible, therefore intensifying DISC formation. The data obtained
revealed that higher valency of DR5 binding correlates with the increased velocity of caspase induction
in vitro [197]. However, clinical testing of the substance had to be prematurely terminated, because
patients suffered from unexpected symptoms of hepatotoxicity. The underlying mechanisms can only
be presumed, including the agent’s immunogenicity and enhanced potency [199]. Therefore, potentially
expected immune reactions need to be evaluated extensively preceding de novo clinical testing.

Efficient cell-death induction by agonistic anti-TRAIL-R antibodies can only be gained due
to high clustering capacity. A new class of TRAIL-R agonists possesses this characteristic as
it comprises three TRAIL-promoter subsequences united in one polypeptide chain, defined as
single-chain-TRAIL-receptor-binding domain (scTRAIL-RBD). Two scTRAIL-RBDs and three receptor
binding sites are fused to a protein with hexavalent binding capacity. APG350, the prototype of this
approach was created by merging the Fc-part of human IgG1 and the scTRAIL-RBD polypeptide
which is thereby able to bind simultaneously six TRAIL-receptors (TRAIL-R1 and TRAIL-R2) per
drug molecule. Moreover, APG350 exerts high antitumor potential and induces superior clustering
independent of FcγR-mediated cross-linking [200]. Circularly permuted TRAIL (CPT) is a further
recombinant version of human TRAIL and is currently clinical investigated for the treatment of
hematologic malignancies [201–203]. In comparison to wild-type TRAIL, CPT is constructed by
the N-terminus of amino acid 121–135 sequence of TRAIL and the C-terminus of the amino acid
135–281 sequence of TRAIL connected via a flexible linker. The substance engages TRAIL-R1 and
TRAIL-R2 as stable homotrimers and exhibits higher stability and at least improved half-life than
wild-type TRAIL [204]. In a single dose-escalation study, no toxicity and maximum tolerated dose
was detectable [201]. Depending on the missing preference for one apoptosis-inducing TRAIL-R,
the molecule might be effective for PDAC treatment.

Since TRAIL resistance is a severe obstacle, numerous sensitizing strategies in TRAIL-signaling
have been envisaged. These may ultimately prevent adverse TRAIL-signaling output on the one hand,
and efficiently target PDAC in the future by efficiently inducing apoptosis on the other. Some promising
examples of these strategies are described as the substances are already clinically used and are
well-described: The herbal anticancer drug paclitaxel enhances TRAIL efficiency for example in gastric
cancer cells and prostate cancer stem cells [205,206]. TRAIL-embedded paclitaxel-bound albumin
nanoparticles were sufficient in PDAC xenografts [207]. A further plant-derived, cell cycle inhibiting
compound, benzyl isothiocyanate (BITC) sensitized KRAS-mutated PDAC cells to TRAIL-induced
apoptosis [208] and the natural occurring steroidal lactone, withanolide E, and TRAIL cooperate in
various human cancer cells by degradation of c-FLIP [209]. Amplification of TRAIL-induced apoptosis
was also attributed to the anti-diabetic drug metformin in colorectal cancer cells [210] and to bortezomib
by inhibition of the proteasome [211]. Since PDAC is preclinical responsive to histone deacetylase
(HDAC) inhibitors [212,213], this approach might also contribute to overcome TRAIL-resistance in
pancreatic cancer as shown for multiple myeloma cells and breast cancer cells [214,215]. The intrinsic
apoptosis pathway is controlled by the Bcl-2 protein family resulting in cytochrome c release and
subsequent activation of downstream caspases. Crosstalk between the two apoptotic pathways can
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influence cell death induction. The raised expression of anti-apoptotic proteins such as Bcl-2 and
Bcl-XL, can constrain the activation of the intrinsic apoptosis pathway and provoke resistance to
anti-cancer therapeutics, including TRAIL. Navitoclax (ABT-263) a Bcl-2/Bcl-XL selective inhibitor
was reported to sensitize PDAC cells to TRAIL [216]. Moreover, TRAIL resistance can be strikingly
overcome by the use of IAP antagonists or SMAC mimetics [217,218] or simultaneous pharmacological
inhibition of cyclin-dependent kinase 9 (CDK9), resulting in suppression of anti-apoptotic c-FLIP and
Mcl-1 [193].

The lack of predictive biomarkers for TRAIL treatment response is likely to be a significant
contributing factor that the potential of TRAIL in a convenient clinical setting is not assessable.
In a study to identify mediators of TRAIL-sensitivity in various tumor cell lines, among
other things in PDAC, the molecule most significantly correlating with response to dulanermin
was N-acetylgalactosaminyltransferase-14 (GALNT14), responsible for receptor glycosylation and
clustering [152]. However, so far, GALNT14 was not clinically proven in pancreatic cancer [219] but
might be convenient for prediction of response to death receptor agonists in this setting.

Additionally, intensified knowledge in orchestrated mechanisms of TRAIL-TRAIL-R-signaling,
especially in KRAS-mutated PDAC [170], would present a further approach towards targeted therapy.
Since the endogenous TRAIL-TRAIL-R-system promotes KRAS-mutated tumor growth, invasion and
metastases in PDAC, future therapeutic strategies seeking to harness TRAIL’s apoptosis-inducing
activity should aim to block this unwanted pro-tumorigenic effect and in turn boost TRAIL-induced
pro-apoptotic pathways.
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Abbreviations

5-FU 5-fluorouracil
ADCC antibody-dependent cellular cytotoxicity
AKT protein kinase B
ATM mutated in the disease ataxia telangiectasia
ATP adenosine triphosphate
Apo2L Apo-2 ligand
Bak Bcl-2 antagonist or killer
Bax Bcl-2-associated X protein
Bcl-2 B-cell CLL/lymphoma 2
Bcl-XL B-cell lymphoma-extra-large
BH3 Bcl-2 homology domain 3
Bid BH3-only protein
BITC benzyl isothiocyanate
CDK9 cyclin-dependent kinase 9
c-FLIP cellular (FADD-like IL-1β-converting enzyme)-inhibitory protein
cIAP cellular IAP
c-Myc avian myelocytomatosis virus oncogene cellular homolog
DcR decoy receptor
CPT circularly permuted TRAIL
DD death domain
DDR DNA damage response
DGCR8 DiGeorge critical region8
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DR death receptor
ER endoplasmic reticulum
ERK extracellular signal-regulated kinase
FADD Fas-associated death domain
Fc Fragment crystallizable
Flag DYKDDDDK
FLICE FADD-like IL-1β-converting enzyme
FOLFIRINOX FOL-folinic acid, F-5-fluorouracil (5-FU), IRIN-irinotecan, OX-oxaliplatin
GALNT14 N-acetylgalactosaminyltransferase-14
GTP guanosine-5′-triphosphate
HcAbs heavy-chain-only antibodies
HDAC histone deacetylase
HMGA2 high-mobility group AT-hook 2
IAP inhibitor of apoptosis protein
IGF-R insulin-like growth factor receptor
IgG immunoglobulin
IGFR insulin-like growth factor receptor
IKK inhibitor of κB kinase
IMS intermembrane space
IκB inhibitor of κB
IZ isoleucine zipper
JNK c-JUN N-terminal kinase
KRAS Kirsten rat sarcoma viral oncogene homolog
LUBAC linear ubiquitin chain assembly complex
LZ leucine zipper
mAb monoclonal antibody
MAPK mitogen-activated protein kinase
Mcl-1 myeloid leukemia cell differentiation protein
memTRAIL membrane-bound TRAIL
miRNA micro RNA
MOM mitochondrial outer membrane
MOMP mitochondrial outer membrane permeabilization
MTD membrane-proximal domain
nab nanoparticle albumin-bound
NEMO NF-κB essential modifier
NF-κB nuclear factor kappa light chain enhancer of activated B cells
N-glyc N-glycosylation
NIK NF-κB-inducing kinase
nTRAIL nuclear TRAIL
O-glyc O-glycosylation
OPG osteoprotegerin
p38 MAPK p38 mitogen-activated protein kinase
PARP poly-ADP ribose polymerase
PCD programmed cell death
PDAC pancreatic ductal adenocarcinoma
Rac1 Ras-related C3 botulinum toxin substrate 1
RANKL receptor activator of nuclear factor κB ligand
Ras Rat sarcoma
rhTRAIL recombinant human TRAIL
RIPK receptor-interacting serine/threonine protein kinase 1
scTRAIL-RBD single-chain-TRAIL-receptor-binding domain

Smac/DIABLO
second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein
with low pI

SR superfamily
SRC Rous sarcoma oncogene cellular homolog
STAT signal transducer and activator of transcription
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sTRAIL soluble TRAIL
TNF tumor necrosis factor
TAPE threonine, alanine, proline, glutamine
TRAIL TNF-related apoptosis-inducing ligand
TRAIL-R Trail receptor
Ub ubiquitin
VHH heavy chain domain
XIAP X-linked inhibitor of apoptosis protein
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