Supplementary Materials: Tannic Acid Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Prostate Cancer

Prashanth K.B. Nagesh, Elham Hatami, Pallabita Chowdhury, Vivek K. Kashyap, Sheema Khan, Bilal B. Hafeez, Subhash C. Chauhan, Meena Jaggi and Murali M. Yallapu

Figure S1. Real time gene expression studies ER stress markers in TA and Thapsigargin (TG) (Positive control for ER stress) treated cells (PERK, EIF2S1, BiP, CHOP, and ATF4). The level of significance was represented as **p < 0.01, *** p < 0.001.

Figure S2. Graphical representation of cells migrated/invaded after TA treatment in prostate cancer cells. The level of significance was represented as **p < 0.01, *** p < 0.001.
Table S1. Heatmap values of genes in TA treated C4-2 and PC-3 cells. Various genes altered during TA treatment (20 µM) in prostate cancer cells. The gene fold expression and heat maps were evaluated in the TA treated prostate cancer cells. The fold expression were determined through ratio of intensity values. We have shown the fold expression values for proteins related to ER stress, cell cycle, EMT and Apoptotic signaling in Supplementary Information Table S1. The Heat maps were generated based on the fold expression. The heat maps were generated as described in the manuscript using heatmapper software.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Cancer cells</th>
<th>Genes</th>
<th>Cancer cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ER stress signaling</td>
<td></td>
<td>Cell cycle signaling</td>
</tr>
<tr>
<td>DDIT3</td>
<td>1.470606</td>
<td>1.913439</td>
<td>CDK4</td>
</tr>
<tr>
<td>ATF4</td>
<td>1.617035</td>
<td>1.475808</td>
<td>CDK6</td>
</tr>
<tr>
<td>EIF2AK3</td>
<td>1.878942</td>
<td>1.92969</td>
<td>CCND1</td>
</tr>
<tr>
<td>HSPA5</td>
<td>1.867092</td>
<td>1.910386</td>
<td>CDKN1A</td>
</tr>
<tr>
<td>EIF2S1</td>
<td>1.344201</td>
<td>1.722456</td>
<td>CDKN2C</td>
</tr>
<tr>
<td>ERN1</td>
<td>1.675686</td>
<td>1.828875</td>
<td>RB1</td>
</tr>
<tr>
<td>P4HB</td>
<td>0.879461</td>
<td>0.847845</td>
<td>CDK10</td>
</tr>
<tr>
<td>PPP1R15A</td>
<td>1.37384</td>
<td>2.398293</td>
<td>CDKN1C</td>
</tr>
<tr>
<td>XBP1</td>
<td>0.837196</td>
<td>0.739063</td>
<td>CDK15</td>
</tr>
<tr>
<td>MTOR</td>
<td>0.776442</td>
<td>0.843005</td>
<td>CDK18</td>
</tr>
<tr>
<td></td>
<td>EMT signaling</td>
<td></td>
<td>Apoptotic signaling</td>
</tr>
<tr>
<td>CDH1</td>
<td>1.349361</td>
<td>1.40644</td>
<td>MCL1</td>
</tr>
<tr>
<td>MMP2</td>
<td>0.68989</td>
<td>0.713516</td>
<td>XIAP</td>
</tr>
<tr>
<td>MMP9</td>
<td>0.861321</td>
<td>0.464802</td>
<td>BCL2</td>
</tr>
<tr>
<td>ZEB1</td>
<td>0.396704</td>
<td>0.303452</td>
<td>BIRC3</td>
</tr>
<tr>
<td>TWIST1</td>
<td>0.366947</td>
<td>0.851236</td>
<td>BCL2L1</td>
</tr>
<tr>
<td>SNAI1</td>
<td>0.563721</td>
<td>0.812106</td>
<td>BAX</td>
</tr>
<tr>
<td>CLDN1</td>
<td>1.691079</td>
<td>1.734741</td>
<td>BCL2L11</td>
</tr>
<tr>
<td>OCLN</td>
<td>1.611185</td>
<td>1.393158</td>
<td>BIK</td>
</tr>
<tr>
<td>KRTAP19-6</td>
<td>1.662104</td>
<td>1.445187</td>
<td>BID</td>
</tr>
<tr>
<td>KRT34</td>
<td>1.19368</td>
<td>3.822781</td>
<td>BAD</td>
</tr>
<tr>
<td>KRT1</td>
<td>1.813328</td>
<td>1.649739</td>
<td></td>
</tr>
</tbody>
</table>

© 2018 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/)