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Abstract: Sequential courses of anticancer target therapy lead to selection of drug-resistant cells,
which results in continuous decrease of clinical response. Here we present a new approach for
predicting effective combinations of target drugs, which act in a synergistic manner. Synergistic
combinations of drugs may prevent or postpone acquired resistance, thus increasing treatment
efficiency. We cultured human ovarian carcinoma SKOV-3 and neuroblastoma NGP-127 cancer
cell lines in the presence of Tyrosine Kinase Inhibitors (Pazopanib, Sorafenib, and Sunitinib) and
Rapalogues (Temsirolimus and Everolimus) for four months and obtained cell lines demonstrating
increased drug resistance. We investigated gene expression profiles of intact and resistant cells
by microarrays and analyzed alterations in 378 cancer-related signaling pathways using the
bioinformatical platform Oncobox. This revealed numerous pathways linked with development
of drug resistant phenotypes. Our approach is based on targeting proteins involved in as many
as possible signaling pathways upregulated in resistant cells. We tested 13 combinations of drugs
and/or selective inhibitors predicted by Oncobox and 10 random combinations. Synergy scores for
Oncobox predictions were significantly higher than for randomly selected drug combinations. Thus,
the proposed approach significantly outperforms random selection of drugs and can be adopted to
enhance discovery of new synergistic combinations of anticancer target drugs.
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1. Introduction

Emergence of target drugs significantly increased success rates for the therapy of many cancer
types. For example, in renal cell carcinoma, which is not sensitive to radiation or generalized
chemotherapy, the introduction into the clinical practice of a new class of target drugs—tyrosine
kinase inhibitors (TKIs) increased the response rate of the therapy to the impressive value of up to
70% of patients [1]. Another successful example is the use of a TKI Pazopanib in ovarian cancer
patients, which resulted in significant increase of progression-free survival [2]. Target therapeutics
(anti-angiogenic and tyrosine kinase inhibitors) significantly improved treatment of differentiated
thyroid carcinoma [3].

Multiple target drugs are currently under investigation in thousands of clinical trials. For example,
novel Janus Kinase-2 inhibitor, Fedratinib, showed promising results in patients with myelofibrosis [4].
Despite significant advances in the treatment of cancer, many patients stop responding to target
therapies after completion of several courses of treatment, which leads to relapse of the disease [3,5].
Apparently, this can be result of cancer cells adaptation to the drug(s) used followed by clonal expansion
of the resistant cells [6]. The resistant cancer cells can promote survival through activation of alternative
proliferative mechanisms, distinct from those inhibited by the respective target drugs [7]. Consequently,
control over these molecular mechanisms may prevent tumor adaptation to the target therapeutics.

Previously, we showed that long-term culturing of human ovarian carcinoma SKOV-3 and
neuroblastoma NGP-127 cell lines with target drugs, such as TKIs Pazopanib, Sorafenib, Sunitinib,
and mTOR inhibitors Everolimus and Temsirolimus significantly alters their sensitivity to radiation
therapy [8]. This long-term culturing resulted in an increase of half maximal inhibitory concentration
(IC50) of the corresponding drugs according to MTT test (Table 2 from Sorokin et al., 2018). Thus,
after four months of culturing, most of the cell populations developed drug-resistant phenotypes.
Every four weeks, using microarrays (CustomArray, Inc., Bothell, WA, USA) we profiled gene
expression in aliquots of the cells cultured (Figure 1A). The gene expression data were deposited in the
Gene Expression Omnibus (GEO) database under accession numbers GSE97750 and GSE97751.

Here we present an approach for selecting potentially effective combinations of target drugs
using these high throughput gene expression data. The gene expression data were used to calculate
activations of the intracellular signaling pathways using the bioinformatical platform Oncobox.
Our approach postulates that the most effective targets for the inhibition with selective anticancer
drugs are those that participate in the maximum number of upregulated signaling pathways in the
drug-resistant cells. The enclosed pipeline produces a list of proteins, which could be selectively
inhibited to prevent individual tumor resistance to target therapeutics. To experimentally investigate
this approach, we tested 13 predicted and 10 random combinations of drugs and/or selective inhibitors.
Three out of 13 predicted and one out of ten random combinations showed synergistic effect on cancer
cell survival. Moreover, mean synergy score for predicted combinations were significantly higher than
for randomly selected drugs/inhibitors combinations.
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Figure 1. Overall design of the study. (A) Adaptation of cell lines to target drugs. (B) Bioinformatical
pipeline for finding target drugs combinations.

2. Results

2.1. Signaling Pathway Activation in Drug-Resistant Cell Lines

We analyzed alterations in the activities of intracellular signaling pathways using bioinformatical
platform Oncobox (Figure 1B). Oncobox utilizes an algorithm that quantitatively analyzes the extents
of molecular pathway activation by calculating the value of pathway activation strength (PAS) for
each molecular pathway under investigation [9,10]. The PAS approach has proven its advantage
over the level of single gene expressions by producing less significant batch effects and platform bias,
as shown for many available microarray, deep sequencing, and quantitative proteomics platforms [11].
Positive PAS value indicates upregulation of a molecular pathway compared to the control biosample
or group of biosamples, negative PAS value—downregulation, and zero value suggests no changes in
pathway activation. The higher PAS value means higher pathway activation, and vice versa [12].

For each pair drug-cell line, at every timepoint across the study, we calculated PAS values for
378 intracellular signaling pathways previously associated with cancer development [13]. As the
controls served as the reference for measuring pathways activation, we used a pool of control
cells cultured without target drugs added (five biological replicates for each cell type). For all the
experiments, PAS values are shown on Supplementary Table S1.

The pathway activation profiles in response to target drugs were clearly different among the
NGP-127 and SKOV-3 cells. Interestingly, at the initial 4-week point following culturing with the target
drugs, in the SKOV-3 cells the molecular pathways showed at least two-fold bigger standard deviation
in their activation levels (PAS) compared to the NGP-127 cells (Figure 2A,B). In SKOV-3, for most of
the drugs this standard deviation significantly decreased after four months of culturing compared to
the initial point (Figure 2A,B); in contrast, for the NGP-127 cells, this standard deviation remained
stably low and relatively constant in all observations and timepoints (Figure 2C). Thus, the molecular
mechanisms of acquiring drug resistance seem to be cell-type-specific and different in NGP-127 and
SKOV-3 cells.
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Figure 2. Distribution of PAS values over time. (A) A density plot was built for each cell line for
each drug and for each timepoint. Each curve shows density of Pathway Activation Strength for
378 signaling pathways. Density plots were built using Lattice R package (B,C). Standard deviation of
PAS values for SKOV-3 (B) and NGP-127 (C) cells treated with target drugs for 1 to 4 months.

2.2. Prediction and Experimental Testing of Drugs Combinations

To get a deeper insight into the mechanisms of acquiring drug resistance in these cell types,
we focused on the signaling pathways that were altered after exposure to target drugs. For each
investigated timepoint, we selected ten percent of the most strongly affected pathways and then
intersected lists of gene products, which formed these pathways. We hypothesized that targeting
proteins corresponding to the most frequently occurring intersected gene products may be beneficial
to suppress acquisition of drug resistance. The targets predicted at 4-week time point were used to
select combinations in naïve cells, and those predicted at a 16-week time point were used to select
combinations in adapted cells. The predicted molecular targets varied significantly across drugs, cell
lines, and timepoints investigated (Table 1).

We next attempted to experimentally investigate if inhibition of the predicted molecular targets
may be effective for eliminating drug resistance in the corresponding cell types. To do this,
we used nine target drugs/inhibitors for twenty predicted molecular targets (Table 2). Prior to
combinational cytotoxicity experiments, we examined cytotoxicity of these drugs/inhibitors alone
on the NGP-127 and SKOV-3 cells for the selection of optimal concentrations to use with the baseline
target drugs (Table 3). For most of the components tested, there was no significant difference in the
half-inhibitory concentration (IC50) on both cell lines (Figure 3A–C). However, the specific inhibitor
of a transmembrane signaling protein Notch, FLI-06, had markedly lower IC50 for SKOV-3 cells than
for the NGP-127 cells (Figure 3D). This suggests that Notch signaling may have a crucial role in the
survival of SKOV-3 cells and that this effect is cell type specific.
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Table 1. Target proteins potentially linked with acquisition of drug resistance at different timepoints.
The experimentally investigated combinations are shown in bold.

Cell Line Drug 4–8 Week 16 Weeks

NGP-127

Sorafenib Phospholipase C, JNK1-2-3/MAP2K4-7 JAK1, JAK3
Sunitinib JNK1-2-3/MAP2K4-7 RAS, PI3K

Pazopanib Phospholipase C, Adenylate cyclase EGFR
Temsirolimus JNK1-2-3/MAP2K4-7 RAS
Everolimus PRKACA PI3K

SKOV-3

Sorafenib Akt Phospholipase C
Sunitinib Notch, Akt EGFR, ErbB2, ADCYs
Pazopanib mTOR ErbB3

Temsirolimus Notch EGFR-ErbB2
Everolimus Notch MAP2K6-MAP2K3

Table 2. Drugs/inhibitors used in this study and their molecular targets.

Drug/Inhibitor Molecular Target

Temsirolimus mTOR, FKBP12
Everolimus mTOR, FKBP12

Sunitinib VEGFR2 (Flk-1) and PDGFRβ
Sorafenib Raf-1, B-Raf and VEGFR-2
Pazopanib VEGFR1, VEGFR2, VEGFR3, PDGFR, FGFR, c-Kit and c-Fms

Afuresertib (GSK2110183) Akt
Sapitinib (AZD8931) EGFR, ErbB2 and ErbB3

FLI-06 Notch
U73122 Phospholipase C (PLC)

Table 3. Inhibitory concentrations of drugs/inhibitors used in this study.

Drug
SKOV-3 NGP-127

IC20 (µM) IC50 (µM) IC20 (µM) IC50 (µM)

Afuresertib 2.7 17 8 19
FLI-06 1.5 2 11 20
U73122 3 3.2 1 3.5

Sapitinib 11 37 4.2 ≥40
Sorafenib * 9.6 5.5
Pazopanib * ≥50 12
Sunitinib * 3 3.1

Temsirolimus * 17 11.8
Everolimus * 17.6 15.5

* Data taken from a past paper [8].

We next exposed the intact (naïve) SKOV-3 and NGP-127 cells to combinations of the
drugs/inhibitors. Each such combination contained one initial drug (Pazopanib, Sorafenib, Sunitinib,
Everolimus, or Temsirolimus) and another drug or inhibitor, which was predicted to complement
activity of the former.

Design of the experiment comprised the addition to the cell culturing medium of a predicted
drug/inhibitor at the constant concentration corresponding to its IC20, while concentrations of the
initial drugs were variable in order to measure their IC50 parameters in the presence of an additional
predicted drug/inhibitor. As before, the MTT test was used to investigate cell viability under all
the conditions. Cytotoxicity curves on the viability graphs reflect the effects of titration of the initial
target drug with the addition of a constant inhibitor concentration (Figure 4). Such curves were built
using the control baseline for the intact cells grown in the presence of IC20 of the corresponding
predicted drug/inhibitor alone. We estimated effect of a combination by comparing viability of cells
subjected to the combination (Figure 4, solid lines) with viability of cells subjected to initial single agent
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(Figure 4, dashed lines). Synergy was assessed using the Bliss independence model (see Materials and
Methods section). We used Bliss independence criterion, because it is applicable to our experimental
data, where a dose-response curve is measured in the presence/absence of another drug in a single
concentration [14]. We considered an effect of combination synergistic if the Bliss score was more than
5 (Figure 4C); the effect was considered antagonistic if the Bliss score was less than −5 (Figure 4A).
The effect of combination was considered additive in other cases (Figure 4B).

Figure 3. Viability of SKOV-3 and NGP-127 cells treated with different concentrations of target
drugs: (A) Akt inhibitor Afuresertib; (B) EGFR and ErbB inhibitor Sapitinib; (C) phospholipase
C inhibitor U73122; and (D) Notch inhibitor FLI-06. Viability and IC50 were measured with MTT
(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) test.

Figure 4. Examples of antagonistic (A), additive (B), and synergistic (C) effect of inhibitor/drug
combinations. Dashed line corresponds to single drug, solid line—combination. Survival of cells,
subjected to combination of drugs was normalized by viability of cells, treated with the drug used
in constant concentration. For example, the viability of SKOV-3 cells subjected to Sorafenib and
Afuresertib was divided by viability of SKOV-3 cells subjected to IC20 of Afuresertib alone.

FLI-06 in SKOV-3 cells. Notch protein, molecular target of FLI-06, was predicted to be a potent
drug resistance actor for the SKOV-3 cells cultured with Sunitinib, Everolimus, or Temsirolimus.
When we tested FLI-06 in combination with Sunitinib, Everolimus, or Temsirolimus, we observed
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its additive effect of FLI-06 with the above drugs (Figure 5A–C). Interestingly, FLI-06 also showed
additive effects for the combinations with Sorafenib and Pazopanib (Figure S1A,B), even though
these combinations were not predicted by the Oncobox platform. Together, these findings point to
an important role of Notch signaling in SKOV-3 cells drug resistance. However, Notch signaling is
unlikely involved in acquiring TKI resistance in SKOV-3 cells, because combinations of TKIs and
FLI-06 acted additively in these cells, independently from Oncobox predictions.

Figure 5. Viability of naïve SKOV-3 cells treated with different combinations of target drugs: (A–C)
Sunitinib, Everolimus, or Temsirolimus, respectively, in combination with Notch inhibitor FLI-06 or
alone; (D) Pazopanib in combination with mTOR inhibitor Temsirolimus; (E,F) Sorafenib or Sunitinib,
respectively, in combination with Akt inhibitor Afuresertib or alone. Dashed line corresponds to single
drug, solid line—combination.

Afuresertib in SKOV-3 cells. Akt protein, the molecular target of a drug Afuresertib, was predicted
as a potential specific target in SKOV-3 cells treated with Sorafenib or Sunitinib for four weeks.
However, we could only observe the additive effect in combination with Sunitinib (Figure 5F), but not
with Sorafenib, where the effect was antagonistic (Figure 5E).

Temsirolimus in SKOV-3 cells. The downstream target of Akt signaling—mTOR—was
over-represented in the signaling pathways, which were upregulated in SKOV-3 cells following
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four weeks of treatment with Pazopanib. In good agreement, we observed additive effects of mTOR
inhibitor drug Temsirolimus with Pazopanib in SKOV-3 cells (Figure 5D).

U73122 in SKOV-3 cells. According to the Oncobox combination prediction, we next tested
Phospholipase C inhibitor U73122 in combination with Sorafenib in Sorafenib-resistant SKOV3 cells.
We observed synergistic cytotoxicity of U73122 and Sorafenib (Figure 6A). We also tested the same
combination on the naïve SKOV-3 cells and again observed a synergistic effect (Figure S1D), although
not predicted by the Oncobox platform.

Figure 6. Viability of target drug resistant SKOV-3 cells treated with different combinations of
target drugs: (A) Sorafenib-resistant cells treated with (i) combination of Phospholipase C inhibitor
U73122 and Sorafenib or (ii) Sorafenib alone; (B) Sunitinib-resistant cells treated with (i) combination
of EGFR inhibitor Sapitinib and Sunitinib or (ii) Sunitinib alone; (C) Temsirolimus-resistant cells
treated with (i) combination of Temsirolimus and EGFR inhibitor Sapitinib or (ii) Temsirolimus alone;
(D) Pazopanib-resistant cells treated with (i) combination of Pazopanib and EGFR inhibitor Sapitinib
or (ii) Pazopanib alone. Dashed line corresponds to single drug, solid line—combination.

Sapitinib in SKOV-3 cells. We next tested predicted combinations of Sapitinib, inhibitor of ErbB2,
ErbB3, and EGFR, in Pazopanib-, Sunitinib-, and Temsirolimus-resistant SKOV-3 cell populations.
We found that these drugs could act synergistically in case of Sunitinib or Pazopanib (Figure 6B,D),
but the effect was not synergistic in case of Temsirolimus (Figure 6C).

U73122 and Sapitinib in NGP-127 cells. We examined three Oncobox predictions made for
NGP-127 cell lines. On the naïve NGP-127 cells, the combinations of Sorafenib + U73122 and
Pazopanib + U73122 worked additively (Figure 7A,B), and the same was observed for the combination
of Pazopanib + Sapitinib on the Pazopanib-resistant cell lines (Figure 7C).

Random drugs/inhibitors combinations. We also tested 10 random drugs/inhibitors
combinations, which were not predicted by our method. Of those, one combination showed synergistic
effect, in five cases this effect was additive and in four cases it was antagonistic (Figure S1). However,
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the synergistic effect was seen in the naïve SKOV-3 cells treated with Sorafenib and U73122, which was
predicted to be effective in the Sorafenib-resistant SKOV-3 cells.

Figure 7. Viability of NGP-127 cells treated with different combinations of target drugs: (A) Sorafenib
with Phospholipase C inhibitor U73122; (B) Pazopanib with Phospholipase C inhibitor U73122;
and (C) NGP-127 cell lines adapted to Pazopanib and treated with (i) combination of Pazopanib
and EGFR inhibitor Sapitinib or (ii) Pazopanib alone. Dashed line corresponds to single drug,
solid line—combination.

Conclusion. Overall, we investigated 13 predictions of the drugs/inhibitors combinations done
by the Oncobox platform. In three cases we observed a synergistic effect of the drugs and in eight
cases the effect of the drug combination was additive. The antagonistic effect was seen for only
two combinations. The difference between Bliss synergy scores calculated for Oncobox predicted
combinations and scores for random combinations was significant according to t-test (p-value < 0.05,
Table S2). Thus, our method identifies combinations that have a synergistic effect higher than randomly



Cancers 2018, 10, 365 10 of 15

selected combinations. Taken together, these findings suggest that the Oncobox method outperforms
random selection in predicting potentially effective combinations of target drugs.

3. Discussion

The quantitative pathway activation analysis, which was used here for the selection of drug
combinations, has already shown to be effective for finding new biomarkers of cancer and other
human diseases [10,15–17]. The analytical approach presented here is based solely on the intersection
of the most strongly upregulated signaling pathways, and the selection of drugs/inhibitors which
targeted the maximum number of these pathways.

Previously, we successfully used this approach for a single case of human acute myeloid leukemia
with AML1-ETO fused oncoprotein [13,18]. However, it remained unclear whether the same method
will be reproducibly effective for the other objects. It was also unexplored if this approach provides
advantage compared to randomly taken combinations of drugs/inhibitors.

Here, we examined five target drugs on two different cell lines for a period of up to four months.
Somewhat similar experiments which focused on the discovery of synergistic drug combinations were
conducted by Di Nicolantonio and coauthors [19]. However, in that study the cell lines were grown
in the presence of chemotherapeutic drugs for only six days, which is poorly correlated with the
duration of chemotherapy in clinical practice. Several other related attempts were recently published,
but they had either a lower number of cell populations analyzed [20], or lower number of drugs
tested [21], or both [22]. Other computational approaches for predicting synergistic pairs of drugs
using gene expression data were also reported. He et al. described a personalized predictor of drug
combinations for leukemia patients which was successfully validated in 10 out of 24 cases [23].
The Drug-Induced Genomic Residual Effect (DIGRE) model also showed promising results in
predicting effective pairs of drugs; however it was only validated for a single combination: gefitinib
and docetaxel in various concentrations [24]. The Ranking-system of Anticancer Synergy (RACS) is
another transcriptomic-based approach for selecting effective drug combinations [25]. Approximately
60% of RACS-predicted combinations were shown to act synergistically, while 13% of randomly
selected pairs showed same effect. Integrative pharmacogenomic approach for predicting effective
combinations was also proposed [26]. The authors experimentally tested only one combination of
drugs, which appeared to act in a synergistic manner. Interestingly, the DREAM consortium assessed
performance of 32 previously reported methods for predicting synergistic combinations in B cell
lymphoma and only four of them were significantly better than random guessing [27]. However,
none of the above discussed studies reported synergistic effects in cells, which are already resistant to
target drugs. Moreover, Oncobox provides a list of proteins, which should be targeted to overcome
or prevent drug resistance. Thus, our approach may be used not only for repurposing of the existing
drugs, but also for discovery of the novel target therapeutics.

Drug resistance acquisition by the tumor cells may be linked with the abnormal activation
of signaling networks, which was not directly targeted by the drug. Our study revealed a highly
effective synergistically acting combination of TKI—Sorafenib and Phospholipase C inhibitor—U73122.
We found that Ras signaling pathway was significantly upregulated in Sorafenib-resistant SKOV-3 cells
(Figure 8). Although Sorafenib targets tyrosine kinases and Raf proteins, thus inhibiting proliferation,
the proliferation still can be induced via alternative branch of the same signaling pathway, by Ras-PI3K
axis, which is not targeted by Sorafenib. The Ras-PI3K axis is activated by the Protein Kinase C, which,
in turn, is a downstream target of Phospholipase C (Figure 8). Indeed, our study showed that Sorafenib
and U73122 can act synergistically in inhibiting growth of human ovarian carcinoma SKOV-3 cells.

The Bliss synergy score for combination of U73122 and Sorafenib was the highest across this
study. Unfortunately, U73122 was not yet tested in clinical trials, thus we are unable to estimate
clinical feasibility of such combination. Another synergistic combination revealed was Pazopanib
and Sapitinib. Pazopanib is already FDA approved for treatment of renal cancer, and concentration
used in this study (0.8–50 µM) is lower than Cmax = 58.1 µg/mL (equivalent to 132 µM) for 800 mg
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bid. Median time to achieve peak concentration is 2 to 4 h after the dose (data from FDA website).
Sapitinib is undergoing clinical trials for several cancer types. In this study we used an 11 µM Sapitinib
concentration (equivalent to 5.21 µg/mL). At the same time, previous clinical trials have indicated that
Cmax for this drug was 1.53 µg/mL for 300 mg bid and that peak concentration could be observed 1 to
2 h after administering the dose [28]. Sapitinib dosage, which is required to achieve Cmax of at least
5 µg/mL, was not previously tested in clinical trials. However, lower concentrations of Sapitinib could
possibly act in a synergistic manner with Pazopanib. The latter could be tested in further preclinical
trials, which are needed to determine clinical feasibility of this combination.

Figure 8. Ras pathway was hyperactivated in Sorafenib-resistant SKOV-3 cells. The pathway was
visualized using Oncobox software. The pathway is shown as an interacting network, where green
arrows indicate activation and red arrows indicate inhibition. Color depth of each node of the
network corresponds to the logarithms of the case-to-normal (CNR) expression rate for each node,
where “normal” is a geometric average between intact SKOV3 cells, the scale represents extent of
up/downregulation. The molecular targets of Sorafenib and U73122 are shown by black arrows.
Predicted bypass of nodes targeted by Sorafenib is shown on bold arrows.

Bliss synergy scores for drug combinations predicted by Oncobox were significantly higher than
for the randomly selected drug combinations. Thus, the proposed method significantly outperforms
random selection. However, standard deviation of synergy scores was high for some combinations.
Thus, additional studies using other cell lines and/or initial drugs might be required.

Apparently, most of the predicted combinations failed to show synergism. This may be due to
the fact that the differential genes previously identified from drug-resistant cell models may largely
represent drug-induced transcriptional changes, rather than active resistant mechanisms. Nevertheless,
this approach could potentially be used to find synergistic combinations in cell line experiments.
These combinations should be further tested in clinical trials. In addition, such an approach can be
used to identify personalized combinations of target drugs in cases, when both pre- and post-treatment
material is available, e.g., after neoadjuvant therapy. However, drug combinations acting synergistically
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in cell lines may cause severe side effects when administered to patient. Thus, further trials are needed
in order to investigate such critical issues as required dosage of drugs supplemented in combination
and their possible side effects.

4. Materials and Methods

4.1. Biosamples

We used two human cell lines to profile responses to anticancer drugs. Cell lines were cultured as
described previously [8]. Briefly, the NGP-127 and SKOV-3 cells were cultured on Dulbecco’s modified
Eagle’s medium (DMEM; Gibco, Waltham, MA, USA) supplemented with 10% heat-inactivated fetal
bovine serum (HyClone, Pittsburgh, PA, USA), 100 mkg/mL penicillin (Sigma, St. Louis, MO, USA),
100 U/mL streptomycin (Sigma, St. Louis, MO, USA), and 2mM L-glutamine (Sigma, St. Louis, MO,
USA) at 37 ◦C and 5% CO2. The cells were grown in 25 cm2 or 75 cm2 flask (Greiner, Frickenhausen,
Germany) and passaged for every 72 h. In order to obtain drug-resistant cell lines the cells were
exposed to Sorafenib, Sunitinib, Pazopanib, Temsirolimus, or Everolimus for 16 weeks to obtain
drug-resistant cell lines. The cells were washed three times a week and each time new media was
added. The media was also supplemented with drug in initial concentration. Thus, concentration of
the drug in the media was constant during 16 weeks of culturing. Drug combinations were further
tested in MTT-test (described below). Together with culturing of cells with target drugs, we cultured
intact SKOV-3 and NGP-127 cells in drug-free media for 4 months. We profiled gene expression in
aliquots of control cells every four weeks and thus obtained five gene expression profiles for each cell
line (0, 4, 8, 12, and 16 weeks). We pooled the control samples for pathway activation quantification:
each experimental gene expression profile was normalized by geometric mean of corresponding
control samples.

4.2. Cell Culturing and Viability Assay

For cell viability assay, we used intact cell lines and cell populations resistant to anticancer drugs.
Cell viability was determined as described previously [8]. Briefly, it was evaluated by using the MTT
(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) test [29]. The following drugs were
tested (purchased at Selleckchem, Houston, TX, USA): Pazopanib, Sunitinib, Sorafenib, Everolimus,
and Temsirolimus. For every cell line, the drugs were tested in the following concentrations: 0, 0.8,
1.56, 3.1, 6.25, 12.5, 25, and 50 µM. All the experiments were made in quadruplicate. After addition of
the testing components, the plates were incubated for 72 h and then plates were centrifuged at 300 g
for 10 min, followed by the removal of supernatant. Thirty microliters of 0.5 mg/mL solution of MTT
(Sigma, St. Louis, MO, USA) was added to each well, and the plates were incubated for 2 to 4 h, then
100 µL of DMSO was added to each well for formazan crystals dissolving. The optical densities (OD)
at 540 nm were measured using a plate reader Multiscan FC (ThermoScientific, Waltham, MA, USA).
Cell viability was calculated using the formula: (OD treated cells − OD blank)/(OD control cells −
OD blank) × 100%, where OD blank means OD in control wells containing no cells. IC50 values were
deduced from dose–response curves using SigmaPlot software (Systat Software Inc., San Jose, CA,
USA). IC50 values are given in Table 3. To quantify synergy, we calculated Bliss model scores using R
CalculateSynergy function without baseline correction from SynergyFinder package [30]. This package
utilizes the following model equation.

YBLISS = Y1 + Y2 − Y1Y2

The effect was considered synergistic if the corresponding Bliss score was more than 5,
antagonistic—if less than −5, and additive if otherwise. The difference between Bliss scores for
Oncobox predicted combinations and Bliss scores for random combinations was estimated using R
t-test with default parameters.
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4.3. Data Analysis

Gene expression profiles were deposited to GEO database with the accession numbers GSE97750
and GSE97751. Gene expression was quantile normalized using R preprocessCore package [31].
Extents of signaling pathway activation were assessed with the bioinformatical platform Oncobox.
Output of the Oncobox algorithm is a list of Pathway Activation Scores (PAS). The formula used to
calculate the pathway activation strength (PAS) for a given sample and a given pathway p is as follows.

PASp = ∑
n

ARRnp × log10(CNRn)

Here the case-to-normal ratio, CNRn, is the ratio of expression levels for a gene n in
the sample under investigation to the same average value for the control group of samples.
ARR (activator/repressor role) equals to the following fixed values: −1, when the gene product
n is a repressor of pathway excitation; 1, if the gene product n is an activator of pathway excitation; 0,
when the gene product n can be both an activator and a repressor of the pathway; 0.5 and −0.5,
respectively, if the gene product n is rather an activator or repressor of the signaling pathway
p, respectively.

PAS can take both positive and negative values meaning over- or underactivation relative to
control (untreated) samples. In total we calculated activation level of 378 intracellular signaling
pathways. The signaling pathways knowledge base developed by SABiosciences [32] was used to
determine structures of intracellular pathways. The list of signaling pathways investigated is presented
in Supplementary Table S1. We selected ten percent of pathways with highest PAS and intersected lists
of gene products which form those pathways. Genes that were presented in the maximum number
of pathways were regarded as the potential candidates for targeting in combinational tests. The low
molecular mass inhibitors were purchased at Selleckchem (Houston, TX, USA) and tested on the cell
cultures in combination with the initial target drugs.

5. Conclusions

Here we report a method for predicting effective combinations of target drugs, which outperforms
random guessing in selecting synergistic or at least additive combinations. The method is based on
gene expression profiling of drug-resistant cell lines and subsequent pathway analysis with Oncobox
software. Our algorithm provides a list of potential targets, which are involved in most pathways
activated during acquiring of drug resistance. Synergy scores for Oncobox predicted combinations
were significantly higher than for random combinations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/10/10/
365/s1, Table S1: Pathway Activation Scores for NGP-127 and SKOV-3 cells incubated with target drugs for
various timepoints, Table S2: Dashed lines correspond to single drug, solid lines—combination, Figure S1:
Viability of naïve SKOV-3 (A–F) or NGP-127 (G–J) cells treated with different combinations of target drugs.
Bliss synergy scores are shown in brackets. (A) Pazopanib in combination with FLI-06 (−3.00); (B) Sorafenib in
combination with FLI-06 (−0.29); (C) Pazopanib in combination with Sapitinib (2.43); (D) Sorafenib in combination
with U73122 (5.86); (E) Sorafenib in combination with Temsirolimus (−0.29); (F) Sorafenib in combination with
Everolimus (−4.71); (G) Pazopanib in combination with Everolimus (−10.36); (H) Pazopanib in combination with
Temsirolimus (−4.43); (I) Sorafenib in combination with Everolimus (−9.46); and (J) Sorafenib in combination
with Temsirolimus (−8.89).
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