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Abstract: In optogenetic studies, the brain is exposed to high-power light sources and inadequate
power density or exposure time can cause cell damage from overheating (typically temperature
increasing of 2 ◦C). In order to overcome overheating issues in optogenetics, this paper presents
a neural tool capable of assessing tissue temperature over time, combined with the capability of
electrical recording and optical stimulation. A silicon-based 8 mm long probe was manufactured to
reach deep neural structures. The final proof-of-concept device comprises a double-sided function:
on one side, an optrode with LED-based stimulation and platinum (Pt) recording points; and,
on the opposite side, a Pt-based thin-film thermoresistance (RTD) for temperature assessing in
the photostimulation site surroundings. Pt thin-films for tissue interface were chosen due to its
biocompatibility and thermal linearity. A single-shaft probe is demonstrated for integration in a 3D
probe array. A 3D probe array will reduce the distance between the thermal sensor and the heating
source. Results show good recording and optical features, with average impedance magnitude of
371 kΩ, at 1 kHz, and optical power of 1.2 mW·mm−2 (at 470 nm), respectively. The manufactured
RTD showed resolution of 0.2 ◦C at 37 ◦C (normal body temperature). Overall, the results show
a device capable of meeting the requirements of a neural interface for recording/stimulating of
neural activity and monitoring temperature profile of the photostimulation site surroundings, which
suggests a promising tool for neuroscience research filed.

Keywords: silicon neural probes; LED chip; thermoresistance; temperature monitoring; optogenetics

1. Introduction

The central nervous system is the part of the human body that is least understood, and there is
a constant effort to develop novel and useful tools and techniques to increase knowledge about it.
Advances in microtechnologies allowed the development of micrometer-size devices that promote the
interface between biological neural tissue and physical and electronic components. These instruments,
known as neural probes, are usually invasive and with multiple recording sites [1].
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Optogenetics is a recent technology that combines genetics and optics to promote stimulation or
inhibition in specific photosensitive cells of brain tissue when exposed to light [2]. Combined with
optogenetics, neural probes are now capable of simultaneously performing electrophysiology studies
and stimulation based on light pulses, with increased cell-type selectivity and millisecond-scale
temporal precision [3]. An optogenetic implantable tool is known as optrode.

Optrode designs can be categorized based on its approach to deliver light to the tissue,
i.e., as devices integrating customized optical fibers, waveguide systems or LEDs. Commercial
optogenetics-compatible neural probes, like those available by Neuronexus or Cambridge Neurotech,
integrate exclusively optical fibers as light sources. These approaches present various drawbacks
discussed in a recent review [4], where LED probes stand out by overcoming coupling light losses and
maximizing delivered light power due to the proximity to target cells. Nowadays, there are various
LED-based penetrating optrodes reported in the literature [5–10]. In our work, the LED optrode
distinguishes from those designs due to integration of a temperature monitoring system.

Design requirements to manufacture a relevant optrode have been reported [4,11]. One of
these challenges consists of preventing cell damage from overheating processes in the stimulation
focus area. Thus, it becomes crucial to assess thermal properties of optical sites under various
conditions, avoiding inadequate light-power density or exposure time, which can cause overheating.
Probes providing in situ heat monitoring can be particularly important in academic scenarios, where
photostimulation protocols are frequently customized to each experiment and application.

The core body temperature maintains a near constant (37 ◦C) over a broad range of environment
temperatures. However, the human brain is quite sensitive to fluctuations in temperature [12].
The knowledge on brain temperature fluctuations is limited, and, therefore, there is no established
threshold above which irreversible heat-induced brain injury occurs [13]. Haveman et al. reported
microscopic damage in many brain areas (striatum, cortex, hippocampus and thalamus) when
subjected to temperatures of 39 ◦C [14]. Rises in temperature of approximately 2 ◦C have been used as a
threshold to prevent brain damage [15], corresponding nowadays to the regulatory limit recommended
by the American Association of Medical Instrumentation (AAMI). Nevertheless, this temperature
reference may vary based on different species, animal age and brain activity state [13,15].

By directly exposing light sources to tissue, LED-based optrodes could be easily affected
by overheating, as a light emitter converts energy into heat. Although previous studies using
LED-optrodes have measured rises of temperature in vivo below 1 ◦C (using thermal cameras) [16,17],
monitoring device temperature is crucial, since the lack of monitoring could cause damage of neural
cells and greatly disturb brain functions. In this regard, McAlinden et al. [17] and, more recently,
Dong et al. [18] measured the heating profile of LEDs using thermal cameras. In this paper, an approach
to manufacture a thin-film thermoresistance (RTD) sensor on an LED-optrode body is presented,
capable of monitoring the temperature on the stimulation surroundings, preventing temperature rises
over 2 ◦C.

An RTD is a temperature sensor that operates on the measurement principle that a material’s
electrical resistance changes with temperature. RTDs have been used to add functionality in biodevices
for blood flow [19], heart [20], and superficial [21] and deep [22–25] brain measurement applications.
For high-performance thermal sensing coupled to an optrode, the proposed thermal sensor needs
to meet the following main requirements: (1) Micrometer-size dimensions, so it can be integrated in
the probe body. For this application, thin-film RTDs, which enable smaller dimensions, were used.
Thin-film RTDs allow good time responses, vibration resistance, and are relatively inexpensive and
stable [26]; (2) Good resolution. RTD must be capable of monitoring temperature fluctuations in
the medium that are inferior to the maximum increase in temperature before cell damage (2 ◦C);
(3) Temperature range of 0 ◦C to 60 ◦C. The wide temperature range was chosen for future applications,
e.g., low temperatures required in neurosurgery procedures [27].

In this paper, a Pt RTD was fabricated using microfabrication lithographic methods. Pt RTDs were
previously reported in gas [28] and heat [29] flow devices. Pt was chosen due to its biocompatibility and
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linear behavior with temperature variations within the proposed temperature range [30]. Moreover,
Pt is the material also used for manufacturing the optrode recording sites, which avoids increasing
fabrication complexity of the device.

In summary, the focus in this paper is to demonstrate a simple and robust manufacturing approach
to produce a multifunction single-shaft probe for rodents’ applications, combining optogenetics with
electrophysiology and temperature sensing, avoiding overheating processes. An 8 mm deep and
600 µm wide optrode coupled with a 300 µm long Pt RTD was successfully manufactured, capable of
spanning nearly any mice brain structure. Electrochemical, optical and thermal characterization of
the device is also presented and discussed, which validated the proposed device as a valuable tool in
neuroscience.

2. Probe Design

As a device capable of delivering light to neurons and electrically recording them, the proposed
optrode comprises 10 recording points (50 × 50 µm2) around a single LED chip (ELC-470-37, Roithner
LaserTechnik GmbH, Wien, Austria) with dimensions of 280 × 310 × 85 µm3. The recording points
are metallic Pt thin-films responsible to convert ionic into electronic currents, and therefore record
electrical activity of neurons. The LED chip is the light source, which delivers light to photosensitive
engineered brain cells, so they can express the intended biological effect.

The proposed device also includes a Pt RTD for temperature sensing, aiming to prevent tissue
overheating around the implant (>2 ◦C). RTD is positioned in the shaft on the opposite site of the LED
and recording sites, which would allow the temperature sensor to be positioned even closer to the
stimulation focus of a neighbor shaft. Thus, this design becomes interesting for a close-packed 3D array
by assembled individual shafts on top of each other, as illustrated in Figure 1. The goal of this study
is to demonstrate a multifunctional probe, thus just the fabrication of a single shaft is demonstrated.
The single-shaft configuration could be assembled into an array by the stacking method reported by
Chang et al. [31].
Version August 18, 2018 submitted to Micromachines 3 of 14

Figure 1. Design of the 3D silicon neural array concept. Pt RTD patterning on a single shaft (Bottom
view), and on the opposite side 10 recording sites and a LED chip (Top view).
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Figure 1. Design of the 3D silicon neural array concept. Pt thermoresistance (RTD) patterning on a
single shaft (bottom view), and on the opposite side 10 recording sites and an LED chip (top view).

RTD design must meet the dimension requirements of the proposed device. Therefore,
its geometry was dimensioned based on Pouillet law—Equation (1)—that computes resistance (R)
from input resistivity (ρ), length (L) and cross-sectional area (t, thickness and W, width) of the resistive
material. To increase RTD’s length, a serpentine geometry (Figure 2) and the following parameters
were chosen: t = 50 nm; W = 20 µm; theoretical ρPt = 1.05 × 10−4 Ω·mm; L = 3.27 mm, which resulted
in an RTD area of 300 × 520 µm2, and a theoretical resistance of 343.35 Ω. The higher the length,
the higher RTD resistance. Higher resistance can improve accuracy in one side but can also increase
device noise. Thus, a sensible trade-off between those factors must be achieved. Top RTD geometry
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included a large area to promote a better electrical contact between the serpentine and its pads via
interconnection lines. Pad resistance represents less than 2% of the RTD resistance:

R = ρ
L

t W
. (1)

The Si probe outline is 8 mm long and 600 µm wide with a sharp tip that facilitates probe
implantation. Probe geometry is accomplished by conventional blade cutting technology, using a
diamond blade (NBC-ZB 2050, Disco, Tokyo, Japan) suitable for Si wafer dicing [32].

Figure 2. Design and geometrical dimensions of RTD patterned on the optrode.

3. Methods

This section includes the fabrication methodology and electrochemical, optical and thermal
characterization processes used to manufacture and validate single-shaft optrodes.

3.1. Microfabrication

Figure 3 summarizes the manufacturing process of the proposed single-shaft device. This process
begins with the fabrication of the Pt RTD (Figure 1 Bottom view) followed by the manufacturing of the
recording sites and the pads for the LED (Figure 1 Top view). This order aims to start with the simpler
fabrication steps first.

In this paper, n-type [100] 525 µm thick Si wafers (with 1 µm of SiO2 at wafer surface) were selected
for producing neural shafts. Si wafers were chosen due to the legacy of microfabrication technologies
used for micromachining Si devices, their compatibility to complementary metal-oxide-semiconductor
(CMOS) processes, and good mechanical proprieties [33]. The chosen Si doping and crystal orientation
ensures the maximum shaft robustness after the dicing step. Initially, Si samples were cleaned with
acetone on a 20 min ultrasonic bath, rinsed with deionized (DI) water and heated at 110 ◦C during
20 min for dehydration. The cleaning step promotes a better adhesion of the substrate surface in the
further fabrication steps.

RTD is patterned by photolithography. Firstly, 10 nm of TiO2 as electrical insulation layer is
deposited over the entire wafer to enhance adhesion between SiO2 surface of wafers and RTD and
pad’s material [34]. Thin-film deposition parameters are shown in Table 1. Then, spin-coating of a
7 µm thick layer of negative photoresist (AZ nLOF 2070, MicroChemicals GmbH, Ulm, Germany) that
is an image reversal resist. The samples are exposed to ultraviolet (UV) light (Figure 3a), using the
lithographic mask in Figure 4b, and immersed in developer (AZ 726 MIF, MicroChemicals GmbH) to
dissolve the unexposed photoresist (Figure 3b). Next, it is performed a metalization step (50 nm Pt)
over the samples (Figure 3(c1)), to create RTD geometry—see Table 1. Then, the negative photoresist
layer is lifted by its immersion in stripper (TechniStrip NI555, MicroChemicals GmbH), so that only
the thin metal films remain in the substrate (Figure 3(d1)). After RTD patterning, steps (a) to (d) are
repeated for interconnection lines and pads fabrication of the RTD using chromium and aluminum
(30 nm Cr/600 nm Al) metallic layers (Figure 3(c2,d2))—see Table 1. For these steps, it used the mask
in Figure 4a. Finally, an 800 nm Si3N4 passivation layer is deposited, thick enough to protect RTD and
its pads (Figure 3e).
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Figure 3. Cross-section view of the neural device fabrication process flow (not to scale).

Table 1. Parameters of the thin-films deposition to manufacture the optrode with RTD.

Material Technology Thickness (nm) Pressure (mbar) Gas injection (sccm) Power (W) Rate (Å/s)

TiO2 RF sputtering 10 2 × 10−3 10 (Ar); 2 (O2) 200 0.1
Pt DC sputtering 50 and 60 6 × 10−3 40 (Ar) 100 3.4
Cr e-beam 30 6.3 × 10−6 – 140 1
Al e-beam 600 and 200 5.3 × 10−6 – 700 23
Ti e-beam 15 4.3 × 10−6 – 350 0.8

Si3N4 RF sputtering 800 and 400 6 × 10−3 7 (Ar); 13 (N2) 150 0.3

After RTD manufacturing, samples undergo lithographic steps (Figure 3f,g), using the lithographic
mask shown in Figure 4c, with the same negative photoresist for the interconnection lines, pads and
recording sites patterning. Then, Ti/Al/Pt (15 nm/200 nm/60 nm) metalization layers (Figure 3h) are
deposited. Deposition parameters are shown in Table 1. Next, samples are again immersed in stripper
(TechniStrip NI555, MicroChemicals GmbH), removing photoresist from the wafer (Figure 3i).

Another photolithographic process is performed to protect the samples against silicon dust during
the dicing phase, sequentially on top and then on the bottom surface (Figure 3j). In this stage, a layer of
20 µm thick positive photoresist (AZ 4562, MicroChemicals GmbH) is deposited by spin-coating. Then,
samples are exposed to UV light, using the mask shown in Figure 4d. Before the developer step in the
pattering process, the cutting phase is performed in order to get the desired probe geometry, carried
on a DAD-2H/6T dicing machine (Disco, Tokyo, Japan) performing cuts 150 µm thick. The cutting
step is performed before passivation step because mechanical cutting of wafers introduces Si dust over
the samples. Thus, the resist layer serves as a debris protective layer. Probe outline is set as 8 mm long,
600 µm wide with a sharp tip. A detailed dicing step for probe shaping is reported elsewhere [35],
and the tip sharpening process is accomplished by using an automatic cutting program of the dicing
machine, which allows the user to set a target cut angle (in this case, 45◦).

The samples are then cleaned with DI water, and the photoresist removed with developer (AZ
351B, MicroChemicals GmbH), exposing only passivation area (Figure 3k). A deposition of 400 nm
thick layer of Si3N4 as the insulation material was performed (Figure 3l), followed by the removal of
the resist layer with acetone (top and bottom), exposing the recording sites and LED pads (Figure 3m).
Finally, the blue-light LED chip is welded with solder paste (EM907, Kester) on the probe. LED’s
contact pads are coated with a thin layer of a biocompatible transparent glue (PERMABOND 102),
in order to protect LED against wet conditions.
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After manufacturing, the optrode is fixed to a Printed Circuit Board (PCB) using cyanoacrylate,
and its contact pads are packaged by Al wire-bonding. The PCB provides connection for external
hardware for the LED chip and the RTD pads, and it is also coupled to an 18-pin connector (A79014-001,
Omnetics, Minneapolis, MN, USA) to ensure external connectivity for recording sites.

Figure 4. Lithographic masks used during fabrication process of the optrode. (a) RTD’s interconnection
lines and pads; (b) RTD; (c) interconnection lines, recording sites, and pads for LED and recording
points; (d) connection pads to external electronics (top) and exposure of recording sites and pads for
the LED (bottom).

3.2. Characterization

The characterization process of the proposed device aimed to validate its threefold goal: record
electrical neural activity; stimulate engineered target cells sensitive to blue light; and monitor
temperature profile around the probe. For this purpose, electrochemical, optical and thermal
measurements were performed in vitro.

Electrochemical impedance spectroscopy (EIS) is a valuable technique in assessing the recording
capabilities of recording sites and, because the voltage excursions at the electrode are small, may
also be a useful and benign method for the in vivo assessment of an electrode [36]. The impedance
measurements were performed in a Gamry system (Reference 600, Gamry Instruments, Warminster,
PA, USA), using a standard three-electrode configuration: 40 × 40 × 0.25 mm3 Pt foil as counter
electrode, Ag/AgCl as reference electrode, and 0.9% NaCl solution as electrolyte at room temperature.
Impedance (Z) was measured for frequencies from 100 Hz to 1 MHz at a constant 10 mV rms alternating
current (AC) voltage.

Photostimulation is validated by measuring power intensity of the light source. Reported
minimum light intensity to promote a biological effect in engineered cells is 1 mW·mm−2 [3].
LED light power was measured using a photodiode sensor (FDS100-CAL, Thorlabs, Newton, NJ,
USA), coupled to a 1 mm diameter pinhole. Power (P) can be obtained by Equation (2), where I is the
current produced by the photodiode and < is the photodiode’s responsivity at a wavelength (λ):

Pλ =
I
<λ

. (2)

The fabricated RTD was validated by measuring its resistance (R) with a four-wire setup.
Temperature measurements were carried out inside a temperature-controlled furnace (0 ◦C to 100 ◦C
and 5 ◦C steps) coupled to an acquisition system (DT800, dataTaker, Scoresby, Australia) and software
interface (DeLogger, dataTaker). A commercial RTD sensor, hereafter refereed as Pt100 (DM-510,
Thorlabs), is used as comparative tool for the temperature measurements with a 600 µm long RTD.
All measurements were carried out with a current of 0.1 mA. RTD’s temperature in ◦C (T) can be
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obtained with its resistance (R), temperature coefficient of resistance (TCR) and resistance at 0 ◦C (R0),
as shows Equation (3) [29]. TCR is given by R0 and R100 (resistance at 100 ◦C)—Equation (4) [37]:

T = (
R
R0
− 1)TCR, (3)

TCR =
R100 − R0

100× R0
. (4)

RTD’s resistivity (ρexp) was obtained with van der Pauw method [38]. ρexp can be obtained
with Equations (5)–(7). Moreover, the sensitivity of the RTDs can be obtained as the slope of the
second-order polynomial fit [39]:

RA =
V12

2I43
+

V43

2I12
and RB =

V14

2I23
+

V23

2I14
, (5)

e
−πRA

RS + e
−πRB

RS = 1, (6)

ρexp = Rst. (7)

4. Results and Discussion

The fabrication methodology based on lithography, thin-film depositions and blade dicing
successfully accomplished an optrode design with the proposed features: 10 recording sites for
electrical recording of neural activity; integration of one commercial LED chip for optical stimulation;
and, finally, an RTD for temperature sensing of photostimulation site surroundings.

Microfabrication results are shown in Figure 5. Geometrical features of Si optrodes resulted
in 8 mm long, 600 µm wide and 525 µm thick shafts. Maximize length of penetrating interfaces
is important so the device is capable of reaching deeper neural structures than current designs [5].
For rodents’ applications, the probe cross-section must still be optimized. Here, it was demonstrated
a single LED-based probe concept, whose dimensions are mainly limited by the dimensions of the
commercial LED chip.

Figure 5. Results of the fabricated optrode integrating 10 Pt recording sites and commercial LED chip,
and also a Pt RTD on its backside.

Traditionally, µ-LEDs are either (1) monolithical manufactured onto the device structure by
deposition of gallium nitride (GaN) layers on a substrate [5,6]; or (2) integrated in the probe by
LED transfer techniques [7–10]. Here, the latter approach due to employment of a commercial
LED chip was used. While the first approach has the disadvantage of offering limited substrate
choices, manual assembly of LED to substrate represents a harder task and might yield challenges.
Further developments to our probe could include monolithically manufacture LEDs onto the
probe, as demonstrated by other studies [5,40], ultimately leading to probe cross-section reduction.
An interesting approach to address high-footprint commercial LED chips is reported by Ayub et al. [41].



Micromachines 2018, 9, 473 8 of 14

In that study, LED chips are mounted on a thin polyimide-based substrate, stiffened using a
micromachined ladder-like silicon structure. This approach avoids thicker probes by transfer LED
chip to the surface of a stiff and thick substrate. Although minimizing probes cross-section is a
preferable feature, with our approach, wider probes are necessary to accommodate wide LED chips
and recording sites.

Light intensity tests for the LED chip, performed with the previously mentioned photodiode and
pinhole, measured an average photodiode current of 168.5 µA when a current of 20 mA is applied to
the LED. Considering the LED’s peak emission wavelength (approximately 470 nm—Figure 6) and the
photodiode responsivity of 0.14 A/W (at 470 nm), extracted from its datasheet, LED optical power
measured was 1.2 mW·mm−2—Equation (2). This result is superior to the reported minimum light
intensity (1 mW·mm−2) to effectively promote photomodulation in brain tissue [3].

.

.

.

Figure 6. Experimental LED’s normalized light intensity as a function of the wavelength. LED peak
intensity is at approximately 470 nm.

By using a thermal camera, McAlinden et al. [17] measured the temperature rise profile of
40 µm-diameter GaN LEDS. They reported a maximum temperature rise of 1.5 ◦C over 100 ms light
pulse. More recently, Dong et al. [18] demonstrated temperature variation over pulsed and continuous
illumination regime, using the same forward current (20 mA) and a similar area (240 × 320 µm2) LEDs
as the emitter proposed in this paper (250 × 280 µm2). Their results show a maximum temperature
rise of 2 ◦C for 350 ms pulse light train and 3 ◦C for continuous irradiance over 15 min. Moreover,
this study measured a 400 µm penetration depth (depth that can be attained while still presenting the
optical power of 1 mW·mm−2) for a Lambertian emitter.

Another important geometrical characteristic of the probe is its tip shape. Here, Si shafts present
sharpened tips (opening angle 45◦). Sharp tips on these devices have been reported to result in lower
implantation forces, and thus lower tissue damage [42–44].

Currently, a high-density probe includes more than 1000 channels [45–47], which advantageously
span wider tissue areas and allow unprecedented opportunities for extracellular electrophysiology
studies. On the other hand, they suffer higher signal attenuations by noise and crosstalk wiring.
Conversely to these high-density designs, the proposed approach includes more functionalities (optical
stimulation and temperature monitoring), not only recording capability as those reports. In fact,
Kim et al. demonstrated a multi-functional operation that includes only a single 400 µm2 Pt recording
site [22].

Figure 7 shows EIS average result for the fabricated 50 × 50 µm2 recording sites. At 1 kHz
(neurons firing rate), they show an average of 371 kΩ suitable for electrophysiology studies [48].

RTD was also successfully manufactured on one surface of the device. RTD design includes
its location on the opposite side of the LED, which still makes it possible to monitor vicinity of the
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stimulation focus. In contrast to our approach, RTD could be fabricated next to the LED chip [24].
The downside of this approach is that it takes additional surface space in the shafts and overall
complexity of fabrication to integrate an additional sensor. In this sense, Dehkhoda et al. reported an
interesting study by presenting a temperature monitoring system that uses the LED both as emitter
and its own sensor, taking advantage of the LED reverse current to measure the generated heat at the
surface of the device.

.

p

Figure 7. Impedance results for the Pt 50 × 50 µm2 recording sites.

Experimental Pt resistivity over the temperature range defined in the requirements (0 ◦C to 60 ◦C)
is shown in Figure 8, where higher temperatures result in higher values of resistivity, as expected.
Average RTD resistivity was 2.33 × 10−4 Ω·mm, similar to theoretical value (1.05 × 10−4 Ω·mm).
RTD’s resistance at 0 ◦C and 100 ◦C, R0 and R100, respectively, were also measured to obtain the TCR
coefficient of the fabricated RTD (Equation (4)). Table 2 shows the resistance values for RTD and Pt100.
Pt100 TCR magnitude is consistent with the theoretical value of bulk pure platinum (0.0039 ◦C−1) [49].
RTD’s sensitivity is 2.4 Ω·◦C−1 in the temperature range of 35 ◦C to 40 ◦C. This value is in accordance
with Pt RTDs reported by Fiedler et al., where Pt1000 and Pt5000 sensitivities were 1.7 Ω·◦C−1 and
8.8 Ω·◦C−1, respectively [50]. Table 3 compares the sensitivity and TCR values of the RTD in this work
and previously reported studies.

.

.

.

.

.

Figure 8. RTD’s resistivity vs. temperature. The dashed line results from a processing data
five-point adjacent-averaging smoothing method, which replaces a point using the average of its
five closest points.
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Table 2. Resistance values at 0 ◦C (R0) and 100 ◦C (R100) for RTD and commercial Pt100. The calculated
TCR value is also included.

Sample R0 R100 TCR

Pt100 100.23 Ω 137.71 Ω 0.0037 ◦C−1

RTD 1548.58 Ω 1787.55 Ω 0.0015 ◦C−1

Table 3. Comparison of RTD developed in this work and previous studies.

Ref. Material Sensitivity (Ω·◦C−1) TCR (◦C−1) Resolution (◦C)

[19] Au - - 0.03
[20] Poly-Si - - 0.9
[49] Pt 0.781 0.0028 -
[50] Pt 8.8 - 0.5
[51] Pt - 0.0015 1
[52] Au - 0.0032 0.25
[53] Pt 1.485 0.0035 -

This work Pt 2.4 0.0015 0.19

Figure 9 presents temperature measurements with Pt100 and RTD over a wide range of
temperatures (0 ◦C to 100 ◦C), and at an approximately normal body temperature (35 ◦C)—Figure 10.
These results show RTD’s accurate temperature measurements in the entire range of temperatures.
In addition, it is noticeable that RTD measurements show higher noise amplitudes relative to the Pt100
results, which might be related with higher thermal mass of the Pt100. In particular, at 37 ◦C (normal
body temperature), RTD has an average and maximum error of 0.19 ◦C and 0.64 ◦C, respectively.
This means that temperature recording with the fabricated RTD might provide on average an estimated
difference of 0.19 ◦C from real tissue temperature. These results are suitable for monitoring temperature
variations below 2 ◦C required in this application. In Table 3, it is possible to see the final resolution is
better than most RTD reported. In fact, even the RTD maximum error (0.64 ◦C) presented is lower than
most approaches reported to monitor brain thermal variation. Therefore, we believe a average error of
0.19 ◦C is a promising result for this kind of devices.

.

.

Figure 9. Comparative temperature measurements using Pt100 vs. RTD (green line). Measurement
accuracy is given by error lines: maximum error (blue dashed line) and average error (red dashed line).
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.

.

.

.

.

.

.

.

Figure 10. Measurements temperature results with a commercial Pt100 and the proposed RTD when
medium is set to 35 ◦C.

Passivation layer on RTD is a required step with a twofold goal: (1) electrical insulation, and
(2) avoiding electrical stimulation of neurons in its vicinity. Current as low as 10 µA has been reported
to promote microstimulation of neurons as far as four millimeters away [54]. One possible limiting
factor in RTD performance (response time) is the use of Si3N4 as a passivation layer due to low thermal
conductivity. Fekete et al. demonstrated, however, a good thermal monitoring in mice tissue using a
thin-film Pt sensor insulated with a Si3N4 layer [24].

Future work for this optrode-RTD combination design will include initially in vitro measurements
of the environment thermal profile with the LED on, followed by in vivo validation of thermal brain
monitoring in the vicinity of LED-based stimulation and electrophysiology studies.

5. Conclusions

The fabrication and in vitro validation of a single LED optrode was demonstrated in this paper.
Its design accommodates optical stimulation, electrophysiological recording sites and temperature
sensing with an RTD thin-film integrated in a silicon probe. The proposed multi-functional device is
envisioned to help validated neural probes with optical stimulation capability, avoiding overheating
processes. The manufacturing methodology relied on standard microfabrication technologies:
lithography, thin-film depositions and low-cost traditional mechanical blade dicing technology.
Fabrication results suggest a robust probe design, with 8 mm long single-shaft with a sharp tip.
The 2D dicing methodology, applied to silicon wafers, facilitates the integration with patterning
process, frequently used in MEMS and CMOS industry. Low impedance values of recording sites and
sufficient light power results show great potential for this design to modulate neural activity in both
cortical and deeper brain regions. RTD’s average accuracy of 0.2 ◦C suggests that this is a promising
tool for thermal mapping of brain tissue in the vicinity of the stimulation focus.
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Abbreviations

The following abbreviations are used in this manuscript:

RTD Resistance Temperature Detector
e-beam Electron-Beam
EIS Electrochemical Impedance Spectroscopy
UV Ultraviolet
DI Deionized
TCR Temperature Coefficient of Resistance
CMOS Complementary Metal-Oxide-Semiconductor
RF Radio-Frequency
DC Direct Current
AC Alternating Current
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