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Abstract: Improved pressure sensing is of great interest to enable the next-generation of bioelectronics
systems. This paper describes the development of a transparent, flexible, highly sensitive pressure
sensor, having a composite sandwich structure of elastic silver nanowires (AgNWs) and poly(ethylene
glycol) (PEG). A simple PEG photolithography was employed to construct elastic AgNW-PEG
composite patterns on flexible polyethylene terephthalate (PET) film. A porous PEG hydrogel
structure enabled the use of conductive AgNW patterns while maintaining the elasticity of
the composite material, features that are both essential for high-performance pressure sensing.
The transparency and electrical properties of AgNW-PEG composite could be precisely controlled by
varying the AgNW concentration. An elastic AgNW-PEG composite hydrogel with 0.6 wt % AgNW
concentration exhibited high transmittance including T550nm of around 86%, low sheet resistance of
22.69 Ω·sq−1, and excellent bending durability (only 5.8% resistance increase under bending to 10 mm
radius). A flexible resistive pressure sensor based on our highly transparent AgNW-PEG composite
showed stable and reproducible response, high sensitivity (69.7 kPa−1), low sensing threshold
(~2 kPa), and fast response time (20–40 ms), demonstrating the effectiveness of the AgNW-PEG
composite material as an elastic conductor.

Keywords: silver nanowire (AgNW); hydrogel; PEG photolithography; nanocomposite; electronics;
pressure sensor

1. Introduction

Recently, flexible electronic devices capable of transducing physical phenomena, such as pressure,
strain, and temperature, into electrical signals have received considerable attention for use in
next-generation wearable electronics for health monitoring [1–8]. Particularly, a number of research
groups have been pursuing the development of high-performance pressure sensors with high flexibility,
optical transparency, and ultrahigh sensitivity, because of their wide range of potential applications
in robotics and medicine, and applications to specific devices including smart phones, touch screen
devices, and electronic skin [9–17]. Various types of pressure sensors exist, and are typically categorized
by their transduction mechanisms. In this article, we focus on the piezoresistive transducing
type (which has a number of advantages over the piezoelectric), capacitance, and triboelectric
types (including low cost, convenient readout, faster response time, lower power consumption,
small temperature dependence, and simple device structure) [18–21]. Most piezoresistive pressure
sensors have simple sandwich structures in which conductive materials are embedded into insulated
elastomeric polymer matrices. The elastic material is an essential component of such devices to
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accomplish high sensitivity and stable contact in the ultralow pressure region [22–24]. Therefore, it is
reasonable to expect that properties of the elastic matrix play an important role in the performance of
pressure sensors.

Several research groups have been utilized either polydimethylsiloxane (PDMS) or polyurethane
(PU) as elastic matrices for highly sensitive, flexible pressure sensors, allowing tailoring of their shapes
and structures [16,25–29]. However, elastic matrices, such as PDMS and PU, have the major limitation of
poor processability (poor adhesion) originating from their low surface energies, making these polymers
difficult to use in practical applications [30,31]. Contrastingly, elastic hydrogels having highly porous
and three-dimensional polymer networks have significantly lower elastic modulus and good flexibility
similar to that of natural tissues, making them more suitable for use as elastic matrices in pressure sensing
applications [23,32–35]. Several studies have demonstrated the use of conductive composite hydrogels to
improve sensitivity while maintaining good reproducibility in pressure/strain sensors [22,36,37].

Herein we describe the development of a novel type of transparent, flexible, and highly sensitive
piezoresistive pressure sensor based on silver nanowires (AgNWs) as the conductive material and
PEG hydrogel as the elastic matrix. We chose to use these materials because (1) AgNWs have
excellent electrical properties, flexibility, and mechanical robustness, and their use allows cost-efficient
solution processing [38–43]; and (2) PEG allows a simple patterning process including control over
shape and dimension [44–47]. An important design criterion for us was to construct a simple but
powerful active layer in which highly conductive materials were embedded into soft hydrogel matrices.
Our experiments showed that this piezoresistive pressure sensor based on the silver nanowires and
poly(ethylene glycol) (AgNW-PEG) sandwich structure exhibited good electrical properties, excellent
flexibility, good transparency, high sensitivity, and fast response time.

2. Materials and Methods

2.1. Materials

Silver nanowires of diameter 20–40 nm and length 20–30 µm were purchased from NANOPYXIS
(Jeonju-si, Korea). Poly(ethylene glycol) diacrylate (PEG-DA; MW 575) and polyethylene terephthalate
(PET; film thickness 0.175 mm) were purchased from Aldrich Chemicals (Gillingham, UK) and used
without further purification. 4-(2-Hydroxyethoxy) phenyl-(2-hydroxy-2-propyl) ketone (Irgacure
2959) was purchased from BASF (Ludwigshafen, Germany). 3-Acryloxy-propyl trichlorosilane was
obtained from Gelest, Inc. (Morrisville, PA, USA). Toluene and ethanol were purchased from Duksan
Pure Chemicals Company Co., Ltd. (Ansan, Korea). Phosphate-buffered saline solution (PBS) was
purchased from Life Technologies (Shanghai, China).

2.2. Preparation of AgNW-PEG Patterns on a Flexible PET Substrate

AgNW solutions of various concentrations (1.0, 0.8, 0.6, 0.4, and 0.2 wt %; 800 µL) were spin-coated
onto glass substrates (50 mm × 50 mm) at 500 rpm for 30 s. Into PBS containing 1% w/v of a
photoinitiator (Irgacure 2959), dissolved at 70% v/v in ethanol, PEG-DA (MW 575) was mixed to
achieve a 60% w/v gel precursor solution. The PEG precursor solution (10 µL) was dropped onto
the AgNW-coated glass and then covered with silane-treated PET. Silane modification was used to
anchor the gel layer to the PET. The AgNW-coated glass was covered with silane-treated PET and then
exposed to an ultraviolet (UV) light source (INNO Cure 2000; 2.32 mW·cm−2) through a photomask
for 2 s. The UV-exposed region of the AgNW film was transferred to the silane-treated PET substrate
along with the PEG hydrogel. Finally, the AgNW-PEG patterned PET was dipped into ethanol to
remove the unexposed PEG precursor solution.

2.3. Characterization of Morphology and Transmittance of AgNW-PEG Patterns

The morphologies of the AgNW-PEG patterns were characterized using optical microscopy
(Nikon eclipse Ti-S, Nikon Inc., Tokyo, Japan) and field emission scanning electron microscopy
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(FE-SEM, Hitachi, model S-4200, Carl Zeiss, model Merlin, Hitachi, Ltd., Tokyo, Japan). To measure
the transparency of AgNW-PEG patterns, prepared using various AgNW concentrations (1.0, 0.8, 0.6,
0.4, or 0.2 wt %), ultraviolet-visible-near infrared (UV-vis-NIR) transmittance spectra of samples in the
hydrogel state, immersed in water, were collected using a CARY 300 Bio spectrophotometer (Varian,
Inc., Milpitas, CA, USA).

2.4. Measurements of Electrical Properties and Bending Stability

To measure sheet resistance, AgNW-PEG patterns (width 1 mm) were prepared on PET substrates
by using AgNW solutions of various concentrations (1.0, 0.8, 0.6, 0.4, and 0.2 wt %) and using the
PEG photolithography procedure described above. The measurement was performed by using a sheet
resistance tester (CMT-100S, Advanced Instrument Technology, Suwon, Korea). Sheet resistance values
were calculated as the averages of measurements from several different positions. To test the stability of
patterned samples transferred to a flexible substrate and their performance under bending, I–V curves
of patterned samples were tested before and after substrate transfer and under bending. The patterned
samples were of AgNW (0.6 wt %)-PEG, and had line patterns 1 mm in width and 16 mm in length, with
4 mm × 3 mm squares at both ends, and measurements were taken using a two-point probe method under
voltage from −1 to +1 V, using a PGSTAT204 electrical measurement device (Metrohm Autolab, Utrecht,
The Netherlands). In a bending stability test, a patterned sample of AgNW (0.6 wt %)-PEG was bent to the
bending radius of 10 mm on both sides of the substrate and then unbent.

2.5. Fabrication of Resistive Pressure Sensor Device Using AgNW-PEG Electrodes on PET

Resistive pressure sensors of patterned AgNW-PEG were fabricated on flexible PET substrates
using a sandwich structure. Specifically, to fabricate each pressure sensor device, two AgNW-PEG
electrodes with the pattern width of 1 mm were assembled face to face, putting them in contact
with each other. The working and counter electrodes were connected to these electrodes. I–V curves
of these devices were obtained to demonstrate their behavior as pressure sensors under a range of
external pressures. To measure the current change of each sandwich pressure sensor, a potential was
applied from an electrochemical analysis device using a chronoamperometry technique (potential:
1 V). The relative change of resistance (RCR) of each device ((R − R0)/R0) was calculated by using the
resistance value obtained from the corresponding I–V curve.

3. Results and Discussion

The process used to fabricate piezoresistive pressure sensors comprising patterned AgNW-PEG
on flexible PET is schematically illustrated in Figure 1, including step-by-step photographs. A slightly
modified version of a PEG photolithography process described in our previous works [48–50] was
employed to construct each active layer of AgNW-PEG. In contrast to our previous studies the
objective of the present work was to directly study the influence of AgNWs and PEG hydrogel upon
the performance of contact resistive pressure sensors.
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via PEG photolithography. (B) Schematic illustration of the structural elasticity of the AgNW-PEG 
sandwich structure in the resistive pressure sensor. (C) Photographs of (i) AgNW film on glass, (ii) 
AgNWs left on glass after PEG photolithography, (iii) AgNW-PEG composite patterns on PET 
substrate, and (iv) resistive pressure sensor device based on AgNW-PEG sandwich structure (1 mm 
line pattern width; scale bars: 1 cm). 
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photomask triggered a strong crosslinking reaction between the AgNW network structures and PEG 
polymer chains. As a result, AgNWs were cleanly transferred from the glass to the PET substrate in 
the UV exposed regions, along with the PEG hydrogel (Figure 1C(iii)). As shown in Figure 1B, we 
fabricated resistive pressure sensors based on the AgNW-PEG sandwich structure and then 
investigated the effects of using the elastic AgNW-PEG composite hydrogel upon the performance 
of the pressure sensor, as discussed below. 

Optical and scanning electron microscope (SEM) micrographs showed that the AgNW-PEG 
patterns were successfully fabricated on the PET substrate via PEG photolithography (Figure 2). Tiled 
cross-sectional SEM micrographs clearly showed that each active layer of AgNW-PEG was composed 
of two distinct regions (AgNWs embedded in PEG, and pure PEG), which work together as an elastic 
conductor (Figure 2C,D). In contrast to pure AgNW patterns without PEG hydrogel on glass (Figure 
2B inset), highly magnified SEM micrographs of a region of AgNWs embedded in PEG showed that 
AgNW networks were embedded in the PEG surface layer, leading to good stability and flexibility 
of the elastic AgNW-PEG composite hydrogel (Figure 2B,D). This structure of AgNWs embedded in 
PEG likely arose from the ability of the PEG precursor solution to easily penetrate into AgNW 
networks during UV-induced PEG gelation. 

Figure 1. Schematic illustration of the fabrication of a resistive pressure sensor composed of elastic
silver nanowires and poly(ethylene glycol) (AgNW-PEG) composite hydrogel patterned on flexible
polyethylene terephthalate (PET). (A) Fabrication of flexible AgNW-PEG patterns on PET substrate
via PEG photolithography. (B) Schematic illustration of the structural elasticity of the AgNW-PEG
sandwich structure in the resistive pressure sensor. (C) Photographs of (i) AgNW film on glass,
(ii) AgNWs left on glass after PEG photolithography, (iii) AgNW-PEG composite patterns on PET
substrate, and (iv) resistive pressure sensor device based on AgNW-PEG sandwich structure (1 mm
line pattern width; scale bars: 1 cm).

As shown in Figure 1A, UV-induced PEG gelation at the AgNW-PEG interface through a
photomask triggered a strong crosslinking reaction between the AgNW network structures and PEG
polymer chains. As a result, AgNWs were cleanly transferred from the glass to the PET substrate in the
UV exposed regions, along with the PEG hydrogel (Figure 1C(iii)). As shown in Figure 1B, we fabricated
resistive pressure sensors based on the AgNW-PEG sandwich structure and then investigated the
effects of using the elastic AgNW-PEG composite hydrogel upon the performance of the pressure
sensor, as discussed below.

Optical and scanning electron microscope (SEM) micrographs showed that the AgNW-PEG
patterns were successfully fabricated on the PET substrate via PEG photolithography (Figure 2).
Tiled cross-sectional SEM micrographs clearly showed that each active layer of AgNW-PEG was
composed of two distinct regions (AgNWs embedded in PEG, and pure PEG), which work together
as an elastic conductor (Figure 2C,D). In contrast to pure AgNW patterns without PEG hydrogel on
glass (Figure 2B inset), highly magnified SEM micrographs of a region of AgNWs embedded in PEG
showed that AgNW networks were embedded in the PEG surface layer, leading to good stability
and flexibility of the elastic AgNW-PEG composite hydrogel (Figure 2B,D). This structure of AgNWs
embedded in PEG likely arose from the ability of the PEG precursor solution to easily penetrate into
AgNW networks during UV-induced PEG gelation.
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Figure 2. (A) Optical micrographs of AgNW-PEG patterns of line width 1 mm on PET. (B) FE-SEM
micrographs of AgNW-PEG patterns on a PET substrate. (B inset) SEM micrograph of AgNW patterns
on glass. (C,D) Cross sectional views of AgNW-PEG patterns of line width 1 mm on substrate.

We investigated the transmittance and the sheet resistance of elastic AgNW-PEG composite
hydrogels prepared using various AgNW concentrations; the transmittance and sheet resistance
of AgNW-PEG composites decreased with increasing AgNW concentration from 0.2% to 1.0%
(Figure 3A,B). AgNW-PEG patterns of 0.6 wt % AgNWs showed high transmittance, with T550nm

of around 86% (Figure 3A inset), and good electrical properties with the low sheet resistance of
22.69 Ω·sq−1 (conductivity: 15 × 103 S·cm−1). Therefore, the 0.6 wt % AgNW formulation of elastic
AgNW-PEG composite hydrogel was chosen for further experiments related to bending durability,
sensitivity, and response speed of transparent resistive pressure sensors.

Micromachines 2018, 9, x 5 of 11 

 

 
Figure 2. (A) Optical micrographs of AgNW-PEG patterns of line width 1 mm on PET. (B) FE-SEM 
micrographs of AgNW-PEG patterns on a PET substrate. (B inset) SEM micrograph of AgNW patterns 
on glass. (C,D) Cross sectional views of AgNW-PEG patterns of line width 1 mm on substrate. 

We investigated the transmittance and the sheet resistance of elastic AgNW-PEG composite 
hydrogels prepared using various AgNW concentrations; the transmittance and sheet resistance of 
AgNW-PEG composites decreased with increasing AgNW concentration from 0.2% to 1.0% (Figure 
3A,B). AgNW-PEG patterns of 0.6 wt % AgNWs showed high transmittance, with T550nm of around 
86% (Figure 3A inset), and good electrical properties with the low sheet resistance of 22.69 Ω·sq−1 
(conductivity: 15 × 103 S·cm−1). Therefore, the 0.6 wt % AgNW formulation of elastic AgNW-PEG 
composite hydrogel was chosen for further experiments related to bending durability, sensitivity, 
and response speed of transparent resistive pressure sensors. 

 
Figure 3. (A) Optical transmittance of AgNW-PEG layer on PET films prepared using various 
concentrations of dispersed AgNWs in the precursor solutions. (A inset) Photograph of highly 
transparent AgNW-PEG line patterns of line width 1 mm on PET film (AgNW concentration: 0.6 wt 
%). (B) Sheet resistance and transmittance at 550 nm of AgNW-PEG on PET film, versus AgNW 
concentration of the precursor used. 

We next evaluated the I–V characteristics of AgNW-PEG patterns on glass and PET substrates, 
respectively before and after PEG photolithography. Nearly identical I–V characteristics were 

Figure 3. (A) Optical transmittance of AgNW-PEG layer on PET films prepared using various
concentrations of dispersed AgNWs in the precursor solutions. (A inset) Photograph of highly transparent
AgNW-PEG line patterns of line width 1 mm on PET film (AgNW concentration: 0.6 wt %). (B) Sheet
resistance and transmittance at 550 nm of AgNW-PEG on PET film, versus AgNW concentration of the
precursor used.
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We next evaluated the I–V characteristics of AgNW-PEG patterns on glass and PET substrates,
respectively before and after PEG photolithography. Nearly identical I–V characteristics were observed
on the glass and PET substrates (Figure 4A), indicating that the PEG photolithography process allowed
intact AgNW transfer from glass to flexible PET film. To further evaluate the mechanical flexibility
of AgNW-PEG composite hydrogel, we examined changes in I–V characteristics under folding and
bending. AgNW-PEG showed very similar I–V curves in the flat state and under bidirectional bending
at the bending radius of 1 cm (Figure 4B), suggesting its good bending durability as an electrode.
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transfer process, and (ii) on PET substrate after direct transfer (0.6 wt % AgNW concentration). (B) I–V
curves of AgNW-PEG line patterns on PET during a bending test (0.6 wt % AgNW concentration; 1 cm
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We constructed a transparent and flexible resistive pressure sensor device composed of a sandwich
structure of the elastic AgNW-PEG composite (Figure 1B,C). Relative change of current (RCC) and the
resistance (RCR) values ((R − R0)/R0) were calculated using resistances obtained from the I–V data
collected in bending or non-bending state under various pressures. There was no distinct difference
between the RCR and RCC values in both states, indicating that the sensor can detect pressure even in
the bending state. These data were in line with I–V curve results shown in Figure 4B. The RCR values
with bending or non-bending state changed greatly under increasing pressures from 0 to 11.77 kPa
(1.96, 2.75, 3.92, 7.85, and 11.77 kPa; Figure 5A,B). It needs to be noted that there was no significant
difference in the values of current and resistance at pressures higher than 12 kPa.
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Figure 5. Responses of a sandwich-type pressure-responsive sensor device of elastic AgNW-PEG
composite hydrogel patterns on flexible PET (1 mm line pattern width). (A) Relative resistance change
(RCR), and (B) relative current change (RCC) of the sensor with bending or non-bending state under
various pressures (1.96, 2.75, 3.92, 7.85, and 11.77 kPa, 1.5 cm bending radius).
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The elastic AgNW-PEG based pressure sensor exhibited higher sensitivity (S = dR/dP; R,
resistance; P, applied pressure) of ~69.7 and ~1.9 kPa−1 in the respective pressure ranges of 0–1.96 and
1.96–7.85 kPa, which were comparable to previous reports [36,37,51–53]. The pressure detection
threshold of this sensor was determined to be around ~2 kPa.

It is important to note that the AgNW-PEG composite based pressure sensor presented herein
had much better sensitivity than a sensor based on a layer of pure AgNWs on a rigid substrate,
demonstrating the effectiveness of the elastic PEG hydrogel to enhance pressure sensitivity (Figure 6A).
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AgNW-PEG composite (blue line) and pure AgNW without PEG (red line). (B) Chronoamperometry
curve of AgNW-PEG based pressure sensor under 3.92 kPa for 48 h. To demonstrate drift stability,
measurements were conducted for 1 h at 1, 12, 24, 36, and 48 h after exercise. (C) Cyclability and
response time curves of resistive pressure sensor based on AgNW-PEG composite hydrogel under
several pressures (1.96, 3.92, and 11.77 kPa).

The electromechanical sensors typically exhibit drift phenomena that are less accurate and
less sensitive when exposed to steady stimuli. Therefore, we investigated the current difference
of AgNW-PEG based pressure sensor under 3.92 kPa for 48 h as shown in Figure 6B. As a result,
the initial current value was decreased to only 1.8%, indicating the good stability of AgNW-PEG based
pressure sensor. Other important requirements for high-performance pressure sensors are excellent
cyclability and fast response time. Our pressure sensor produced stable and reproducible signals with
very fast response and relaxation times (20–40 ms) over 1000 cycles of pressure loading/unloading
(1.96, 3.92, and 11.77 kPa) (Figure 6C). These results likely arose from the stable electrical contact and
excellent elastic deformation of the AgNW-PEG composite hydrogel under static loading.

To investigate the spatial distinguishable ability of pressure sensor array, three weights (2, 5, 10 g)
were placed on the marked sites of the 4 × 4 pixels sensing array (each is 1 mm × 1 mm, Figure 7A
inset). Figure 7 clearly shows the change in I–V curves depending on weights as well as the resistance
decrease by increasing weight. These results indicate that this sensor array based on AgNW-PEG
composite patterns can be used to detect the distribution of the applied pressure with a high sensitivity.
Overall, it is clear that the AgNW-PEG composite patterns on flexible PET substrate described herein
can enhance our ability to develop highly transparent, flexible, and ultrasensitive pressure sensors.
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4. Conclusions

We have reported a resistive pressure sensor with high performance, including good transparency,
high flexibility, excellent sensitivity, and fast and stable response. A key design consideration for this
pressure sensor was to construct an active electrode layer composed of highly conductive AgNWs and
elastic PEG hydrogel. A simple PEG photolithography can be employed to pattern elastic AgNW-PEG
composite hydrogels on flexible PET film. A resistive pressure sensor based on a sandwich structure
of the AgNW-PEG composite had high transmittance (including 86% transmittance at 550 nm), good
flexibility (only 5.8% resistance increase under bending to the radius of 10 mm), high sensitivity (up to
69.7 kPa−1), low sensing threshold (~2 kPa), and fast response time (20–40 ms). We foresee that the
proposed strategy to fabricate elastic composite conductors could enable diverse technologies for the
development of next-generation bioelectronics systems.
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