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Abstract: Atom-sized contacts of metals are usually characterized by their direct current (DC)
conductance. However, when atom-sized contacts are used as device interconnects and transmit high
frequency signals or fast pulses, the most critical parameter is not their DC conductance but their
admittance Y(ω), in particular its imaginary part Im Y(ω). In this article, I will present a brief survey
of theoretical and experimental results on the magnitude of Y(ω) for atom-sized contacts of metals.
Theoretical contact models are first described and followed by numerical evaluation of Im Y(ω) based
on these models. As for experiments on Y(ω), previous experiments conducted under time-varying
biases are surveyed, and then the results of direct signal transmission through atom-sized contacts
are discussed. Both theoretical and experimental results indicate that Im Y(ω) is negligibly small for
typical atom-sized contacts for signal frequencies up to 1 GHz.

Keywords: atom-sized contacts of metals; single-atom contacts; molecular junctions; signal transmission;
conductance; admittance

1. Introduction

A never-ending challenge on downsizing electronic devices is nearly coming to accomplish its
ultimate goal, realizing a device consisting of only one or a couple of atoms [1]. In such ultrasmall
devices, connections to them must also be the size of atoms, and signal transmission through these
atom-sized interconnects will become a vital issue for designing and operating atomic-scale devices.
When a contact between two electrodes shrinks to one- or two-atoms wide, the contact size falls below
the electron mean free path and the electronic conduction becomes ballistic. The conductance of a
ballistic contact is given by the Landauer-Büttiker formula [2] which dictates G = G0 ∑i τi, where
G0 ≡ 2e2/h is the quantum unit of conductance and τi stands for the electron transmission probability
of the i-th conductance channel (conductance channels are eigenstates of a transmission matrix that
connects the incoming and outgoing wave functions of an electron passing through a contact). Number
of conductance channels that contribute to the conductance and their transmission differs for different
elements and contact sizes. When a contact consists of only one atom of monovalent noble metals
such as Au, Ag, and Cu, it has only one dominant conductance channel that shows a nearly perfect
transmission τ ∼ 1. As a result, single-atom contacts of these metals show a conductance G ∼ 1G0 as
confirmed by numerous experiments [3,4].

This universal and material-independent conductance of single-atom contacts of Au, Ag, and Cu
makes them quite useful as atomic switches [5–8]. Fast switching at 1 MHz has been demonstrated
for Ag atomic switches [6], and mass-integration of single-atom switches to produce gate arrays have
already been accomplished [9–11]. Conductance switching of Au atom-sized contacts have also been
considered as consisting a memory operation of atomic devices [12].

These past device applications of atom-sized contacts are primarily concerned with conductance
switching but not with their signal transmission. When using atom-sized contacts as interconnects,
one has to first clear up such questions: does the admittance Y(ω) (or impedance Z(ω) = 1/Y(ω)) of
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atom-sized contacts of metals remain unchanged when ω increases from direct current (DC) to 1 GHz?
Do they transmit high-frequency signals or fast pulses as pure resistors even when their sizes shrink to
a single atom (Figure 1)? Intuitively, answers to these questions appear obvious; a strong coupling
between electrodes and contact atoms in metal contacts would arise no significant phase delay, positive
or negative, between input and output signals and hence Im Y(ω) ∼ 0. Nevertheless, from a practical
point of view, it should be necessary to quantitatively estimate the contact admittance and, if it is
small, establish its smallness through measurements. In this article, I will discuss the admittance and
the signal transmission of atom-sized contacts of metals. From a viewpoint of device applications,
I will focus my discussion mainly on those contacts that show τ ∼ 1 and G ∼ 1G0 (e.g., single-atom
contacts of Au, Ag, and Cu). In Section 2, I will take up two simple contact models and try to make
an order-of-magnitude estimation of the admittance of atom-sized contacts of metals. Experimental
verification of the theoretical estimation will be mentioned in Section 3.

Y(   )

Figure 1. Transmission of a high-frequency signal thorough a single-atom contact.

Except in Section 4, discussions will be made on atom-sized contacts of metals but not on molecular
junctions. This is because molecules are poor conductors and unsuitable for signal transmission.
Molecular junctions should be most valuable as functional elements but not as interconnects. It is,
however, noted that carbon nanotubes and graphene nanoribbons exhibit high carrier mobility and
have already been enjoying various applications as high-frequency devices and components [13].
This topic deserves a separate review.

2. Theoretical Calculations of Contact Admittance

2.1. Microscopic Calculations

By virtue of recent advancements in the method of electronic-structure calculation, a variety of
toolkits, such as non-equilibrium Green function method (NEGF, see for example Reference [2]) and
the real-space finite-difference method [14], are now available for theoretically tackling the problem
of electron transmission thorough atom-sized contacts. In these calculations, one first constructs
an atomistic contact model and then calculates the transmission of an electron wavefunction from
one electrode to another. Then, the conductance can be calculated from the transmission probability
using Landauer-Büttiker formula. However, these calculations implicitly assume a constant bias
and hence yield a DC conductance. For obtaining the contact admittance, one has to extend the
calculation scheme so as to take into account the time-variation of the bias voltage. Such an extension
of NEGF has already been made and applied to study the admittance of various systems such as
resonant tunneling systems [15–17], mesoscopic waveguides [18], and quantum point contacts of
two-dimensional electron gas [19]. Applications to atomistic systems have been made primarily on
carbon nanostructures, e.g., nanotubes [20–24] and graphene nanoribbons [25]. However, atom-sized
contacts of metals have been left outside the target of these microscopic admittance calculations,
presumably because of the intuitive smallness of their admittance. For evaluating the admittance
of atom-sized contacts, one therefore has to rely on simple model calculations. In the following
subsections, I will start with a classical contact model and then introduce two contact models that
focus on different aspects of the atom-sized contacts for estimating the theoretical contact admittance.
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2.2. Classical Radio-Controlled (RC) Model

A contact model widely used in electronics is to represent a contact as a resistor-capacitor (RC)
circuit composed of a resistor R and a capacitor C as shown in Figure 2. The contact admittance Y(ω)

in this model can be written as Y(ω) = 1/R + iωC. For ordinary (macroscopic) contacts, meanings of
R and C are clear; R is a contact resistance and C measures any capacitive contributions that shunt
the resistor. However, when the contact size becomes comparable to that of atoms, the definition of
R and C becomes less obvious. The resistance R bears little problem; it can be interpreted as 1/G
of the contact conductance G, even though G is now a non-classical (ballistic) conductance. For C,
it can be naturally considered as a capacitance between contact electrodes, as illustrated in Figure 2.
Though this interpretation appears plausible, some precautions must be made. First, this interpretation
assumes that the atom link (the R part of the contact in Figure 2) makes no capacitive contributions.
Theoretically, a classical resistor has no reactance, but it appears non-trivial whether or not the same is
true for ballistic conductors. There remains a possibility that a ballistic contact shows a non-negligible
reactance (or susceptance) and causes non-zero phase difference between voltage and current. Another
point is the capacitor size. Because of the field concentration, the capacitive contribution mainly comes
from the “base” (or “stem”) part of the contact. As a result, the effective capacitor size should be
the size of atoms. The capacitance of such atomic-scale capacitors should be different from that of
macroscopic capacitors and requires a non-classical approach for its understanding.

R

C

Figure 2. Classical resistor-capacitor (RC) model of a single-atom contact.

I will discuss these two problems separately. In the next section, I will describe the single-level
model which focuses on the electron transmission through the atomic link and neglects all contributions
from the base part of the contact. This model provides us information on the admittance of the atom
link. In Section 2.4, the mesoscopic capacitor model tells us how the contact admittance deviates from
the classical behavior when the contact (including both the atom link and the base part) shrinks to the
size of atoms.

2.3. Single-Level Model

In the single-level model, a contact is represented by a single electronic level which couples with
right and left electrodes, as illustrated in Figure 3. The electron transmission through this contact
is determined by two parameters, the coupling strength of the single level with the right and left
electrodes, denoted by ΓR and ΓL, respectively, and the energy of the single level E0. For simplicity,
I assume here a symmetric contact and put ΓR = ΓL ≡ Γ/2. In Figure 3, the transmission probability
of an electron of energy E can be expressed by a Lorentzian function and becomes maximum when
E = E0.

T(E) =
Γ2

(E− E0)2 + Γ2 (1)

In the single-level model, a bridging atom(s) of an atom-sized contact (or a molecule of a
single-molecular junction) is replaced just by a single energy level. Though this appears a large
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oversimplification, the model enjoys a wide applicability; by tuning the magnitude of Γ, one can
emulate a variety of junctions [26], from almost insulating molecular junctions with Γ ∼ 0 to highly
conductive junctions of metal atoms where Γ → ∞. The model can also properly describe non-linear
I–V characteristics of various molecular junctions [4,27]. These successes of the single-level model
come from the fact that, in typical atomic and molecular junctions, only one energy level among
many levels of the bridging atom/molecule gives a dominant contribution to electron transmission.
In molecular junctions, that is usually the Lowest Unoccupied Molecular Orbital (LUMO) or Highest
Occupied Molecular Orbital (HOMO) level of the molecule and in the single-atom contacts of Au, Ag,
and Cu, the single s-like eigenchannel leads to their 1G0 conductance.

E0

Γ /2

Electrode Electrode

E

Γ /2μ+ eV /2

μ- eV /2

Figure 3. Schematic of the single-level model. A bridging atom is represented by a single energy level
coupled with left and right electrodes. µ is the chemical potential of electrodes when the contact is
in equilibrium. The bias V is time varying in the alternating current (AC) conduction of electrons.
The transmission probability of an electron of energy E is given by Equation (1) in the text.

The single-level model shown in Figure 3 can also be viewed as a double-barrier junction,
or a resonant tunneling system, where Γ measures the barrier transmission. As mentioned before,
the double barrier junction has been studied using NEGF [15–17] and its admittance has been discussed.
I, however, adopt here the work of Fu and Dudley [28] because they have obtained an admittance
formula that can be easily evaluated. They studied a linear response of a double-barrier junction
against an alternating current (AC) input and derived the following set of equations for the real and
imaginary parts of the junction admittance Y(ω),

Re Y(ω) = G0

(
Γ

4h̄ω

) [
arctan

(
(E0 − µ) + h̄ω

Γ

)
− arctan

(
(E0 − µ)− h̄ω

Γ

)]
(2)

Im Y(ω) = −G0

(
Γ

8h̄ω

)
ln

[
[(E0 − µ + h̄ω)2 + Γ2 ] [(E0 − µ− h̄ω)2 + Γ2 ]

((E0 − µ)2 + Γ2 )2

]
(3)

where µ is the chemical potential of electrodes when the contact is in equilibrium. As will be shown in
the next section, the ω of “high-frequency” signals actually reside in a low frequency region in a sense
that h̄ω/Γ � 1. In this region, Re Y(ω) and Im Y(ω) can be approximated as (up to the first order
in h̄ω/Γ),

Re Y(ω) = τG0 (4)

Im Y(ω) =
G0

4

(
h̄ω

Γ

)
τ(1− 2τ) (5)

where τ = Γ2/((E0 − µ)2 + Γ2). In Equation (4), Re Y(ω) becomes a constant and Re Y(0) = τG0

at ω = 0. This result correctly reproduces the Landauer-Büttiker formula, and τ corresponds to the
DC transmission probability of the contact. On the other hand, Im Y(ω) in Equation (5) is linear in
ω so that Im Y(0) = 0. Thus, as expected, the contact behaves as a pure resistor in the DC limit.
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The coefficient of ω in Equation (5) changes sign depending on the magnitude of τ. When τ > 1/2,
the coefficient is negative and the contact becomes inductive (in a sense that Im Y < 0). Conversely if
τ < 1/2, then Im Y > 0 and the contact shows a capacitive response. For transparent contacts with
τ = 1, Equations (4) and (5) become,

Re Y(ω) = G0 (6)

Im Y(ω) = −G0

4

(
h̄ω

Γ

)
(7)

At another extreme of τ = 0 (Γ = 0), there is no coupling between electrodes (and hence no
electron transmission) and Equations (2) and (3) naturally lead to Y(ω) = 0.

2.4. Mesoscopic Capacitor Model

Another contact model that provides a calculable theoretical admittance is the mesoscopic
capacitor model proposed and developed by Büttiker and coworkers [29–32]. This model starts
with a mesoscopic capacitor, as schematically depicted in Figure 4.

Field penetration

Figure 4. Schematic of the mesoscopic capacitor model. The color gradation schematically represents
the field penetration mentioned in the text.

Unlike a classical capacitor where all induced charges reside on the electrode surface, the mesoscopic
capacitor can accommodate a finite amount of charges on its electrode surface determined by their surface
density of states. As a result, the electric field slightly penetrates into the electrodes as illustrated in the
figure. For metal electrodes, this field penetration depth, or the screening length, is the order of atomic
distances and can be neglected for macroscopic capacitors. However, for mesoscopic capacitors, the field
penetration becomes non-negligible and gives an additional capacitance in series with their classical
(geometrical) capacitance C0.

1
C

=
1

C0
+

2
D

(8)

This C is often referred to as the mesoscopic capacitance. The correction term D is related to the
electrode surface density of states dN/dE through D = e2(dN/dE). Christen and Büttiker [32] further
extended the model by allowing electron transmission between electrodes. The capacitor then becomes
a “leaky” mesoscopic capacitor and its admittance can be written as (up to the first order in ω),

Re Y(ω) = τG0 (9)

Im Y(ω) = ω

[
(1− τ)C− τ2

(
D
4

)]
(10)

where C and D stand for the mesoscopic capacitance and its quantum correction, respectively, as before
and τ is the electron transmission probability. In the DC limit ω → 0, Equations (9) and (10) become
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Re Y(0) = τG0 and Im Y(0) = 0, respectively, in agreement with the results obtained in the single-level
model. For a transparent contact with τ = 1, the mesoscopic capacitor model predicts,

Re Y(ω) = G0 (11)

Im Y(ω) = −ωD
4

(12)

Comparison of these expressions with Equations (6) and (7) shows that two models yield the same
Re Y(ω) and similar Im Y(ω). However, despite their formal similarity, Im Y(ω)s in Equations (7) and
(12) show different dependence on dN/dE and represent different aspects of the contact admittance.
In the single-level model which focuses on the atomic link part in Figure 2, the increase in dN/dE tends
to strengthen the coupling between the link atoms, making the link more like a pure resistor. On the
other hand, in the mesoscopic capacitor model, the increase in dN/dE extends the charge-storage
capacity of the contact electrodes and increases the contact capacitance. The two models also predict
different results at the limit of no transmission τ = 0; Im Y(ω) = 0 in the single-level model whereas
Im Y(ω) = ωC in the mesoscopic capacitor model. This discrepancy again reflects the difference
between two models, which is that the capacitive coupling between electrodes, which exists even at
τ = 0, is not considered in the single-level model where the electrode couples with each other electrode
only thorough the single level.

2.5. Theoretical Estimation of the Admittance of Atom-Sized Contacts

As noted before, signal frequencies used in device applications (up to a few GHz) correspond
to low frequencies and in the low-frequency limit, the theoretical admittance can be written as
Equations (4) and (5) and Equations (9) and (10) in the single-level model and in the mesoscopic
capacitor model, respectively. Specifically, for single-atom contacts of Au, Ag, and Cu which
would be of practical importance, τ ∼ 1 and the admittance becomes Equations (6) and (7)
and Equations (11) and (12). Both models yield the same Re Y(ω) = G0. On the other hand,
Im Y(ω) = −(G0/4)(h̄ω/Γ) in the single-level model, while Im Y(ω) = −Dω/4 in the mesoscopic
capacitor model. For quantitatively estimating the admittance, one therefore has to know the
magnitude of coefficients Γ and D appearing in these expressions.

Concerning the coupling strength Γ, there is little experimental information on its magnitude
even though the single-level model has been employed to quantitatively fit the results of shot noise
measurements on Au single-atom contacts [33] (model parameters normalized by Γ were numerically
evaluated but not Γ itself). For single-atom contacts of Au, Ag, and Cu, however, a crude estimation
of Γ can be performed. First, according to Avriller and Levy Yeyati [34], Γ ∼ t2(dN/dE) where t is
the hopping integral between the contact atom and the electrodes and dN/dE is the electrode density
of states. In the case of monovalent metals, the relevant hopping integral would be the one between
s states and t ∼ (0.1− 1) eV [35]. Combining these results suggest that Γ should be of the order of
0.1–1 eV. This leads to Im Y(ω) = −(G0/4)(h̄ω/Γ) ∼ −(0.01− 0.1) nS at ω = 1 GHz. Thus, Im Y(ω)

is negligibly small in the radio frequency (RF) region [36]. This smallness of h̄ω/Γ also justifies the use
of low-frequency approximation to Y(ω).

Different from Γ, there have been theoretical and experimental clues on the magnitude of D in
Equation (12). Wang et al. [37] theoretically investigated the AC response of Al single-atom chains
connecting jellium electrodes. They calculated the density of states dN/dE of the system and obtained
the emittance (coefficient of ω in susceptance and corresponds to −D/4 in Equation (12)) for Al chains
consisting 1–4 atoms. For all Al chains, the magnitude of the emittance was found less than ∼10 a.u.
or .0.03 aF. Then, the susceptance becomes Im Y(ω) . 0.03 nS at ω = 1 GHz.

Experimental information on D comes from an observation of the Coulomb gap appearing in
I–V characteristics of an scanning tunneling microscopy (STM) tip-sample junction. Hou et al. [38]
measured I–V characteristics of a tip-Au-cluster junction and examined the Coulomb gap as a function
of the tip-cluster distance d. From the data, they deduced the d dependence of the tip-cluster
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capacitance. The capacitance first exhibits a classical behavior and increases as 1/d when d decreases.
Then, the capacitance exhibits a peak around d = 0.15 nm and decreases with further reducing d.
The observed non-classical behavior of the tip-sample capacitance can be understood by considering
the tip-sample junction as a tunneling mesoscopic capacitor. For such capacitors, their mesoscopic
capacitance slightly differs from Equation (10) due to non-zero transmission and can be written as,

1− e−kd

C
=

1
C0

+
2
D

(13)

where k represents a decay constant. At large d, C0 dominates the capacitance and C increases as ∼1/d
as d decreases. On the other hand, at small d, the factor 1− e−kd starts to suppress the increase in C
and eventually C decreases with d as observed in experiment by Hou et al. They obtained C ∼ 0.3 aF
at their smallest distance d = 0.13 nm. Assuming (1− e−kd)/C ∼ 2/D at this distance, the magnitude
of D can be estimated as D ∼ 0.6 aF using the reported decay constant k = 22.7 nm−1. Then, from
Equation (14), the susceptance becomes Im Y(ω) ∼ 0.15 nS at ω = 1 GHz. The magnitude of Im Y(ω)

in the mesoscopic capacitor model is thus comparable with that in the single-level model and equally
negligible in the RF region.

It should be noted that the observed tip-sample capacitance ∼0.3 aF at the smallest distance
is 10 times larger than the theoretical capacitance ∼0.03 aF calculated for Al atomic chains [37] and
Al atomic junctions [39]. This is presumably due to the simplified atomic geometry of the junctions
assumed in the capacitance calculations. In addition, Hou et al. found discrepancies between Equation
(13) and the observed d dependence of the capacitance. They suggested that D might not be a constant
but d dependent. Orders-of-magnitude variation of D, however, appears unlikely and the smallness of
Im Y(ω) in the RF region would remain unaltered. The numerical estimations of Im Y(ω) mentioned
above show that both the single-level model and the mesoscopic capacitor model consistently predict
negligible Im Y(ω) up to ω = 1 GHz for transparent (τ = 1) contacts such as the single-atom contacts
of Au, Ag, and Cu. If we use the terms of the classical RC model shown in Figure 2, these single-atom
contacts have negligible C and their R contains no appreciable reactance. Experimental verification of
this conclusion will be described in the next section.

3. Experiments on the Admittance of Atom-Sized Contacts of Metals

Before mentioning about experiments on atom-sized metal contacts, it should be noted that these
contacts are usually specified by their DC conductance in unit of G0, e.g., 1G0 contacts, 3G0 contacts, and so
on. This convention is adopted because one can measure the conductance of an atom-sized contact but
cannot know its size unless one makes a direct observation with high-resolution-transmission-electron-
microscopy [40–43]. In addition, there is no reliable size-conductance relationship that covers down to a
single atom and works for many metals. For Au, Ag, and Cu, it is widely accepted that their 1G0 contacts
are single-atom contacts. Though there remains a possibility that some multiple-atom contacts may happen
to show the 1G0 conductance, such a coincidence would be a rare event as indicated by previous simulation
studies [44,45]. The experimental results obtained on the 1G0 contacts of Au, Ag, and Cu can thus be safely
interpreted as those on their single-atom contacts. In this section, I follow this interpretation and identify
the 1G0 contacts of Au and Cu as their single-atom contacts.

3.1. Experiments under Alternating Current (AC) or Time-Varying Biases

Experiments on atom-sized contacts of metal are usually carried out under a constant DC bias and
time-varying biases are rarely used. This might come from the fact that atom-sized metal contacts of
metals exhibit straight I–V curves [46,47] and exhibit no spectral features that require bias modulation
for their detection. However, there have been a few experiments that employ modulated biases or
fast bias ramps. For example, in the experiments exploring the current disruption of single-atom
contacts [48–50], the bias voltage was ramped to a high value in a short time interval. The conductance
of Au single-atom contacts was found unchanged during the bias ramp of ∼10 µs [50], and this



Micromachines 2018, 9, 320 8 of 14

observation indirectly suggests that the electron transmission should be unaffected by the bias variation
for frequencies up to ∼0.3 MHz.

Another group of experiments using modulated biases is an inelastic transmission
spectroscopy [27,51] where the second derivative of the I–V curve is measured with the lock-in
detection technique. The modulation frequency is typically a few kHz or lower. At these
low frequencies, no influence of bias modulation can be expected, and the experiments in fact
showed no modulation-related anomalies. Bias modulation has also been used in the shot-noise
experiments [33,52–56]. Natelson and his coworkers [53–56] conducted their noise measurements on
Au atom-sized contacts under AC biases with frequencies up to 520 MHz. At such high frequencies,
one usually has to worry about possible effects of contact admittance. However, their results are not
much different from those [33] obtained at lower frequencies. Up to this time, no experiments on
atom-sized contacts of metals, employing either ramped or modulated biases, have indicated any
frequency dependent transport phenomena. These previous experiments, however, used time-varying
biases only for some technical reasons and provided no direct information on the admittance.
For verifying the theoretical prediction on the smallness of ImY(ω), one has to carry out direct
measurements by actually transmitting high-frequency signals through atom-sized contacts.

3.2. Radio Frequency (RF) Signal Transmission through Atom-Sized Contacts

The RF signal transmission through atom-sized contacts has been first attempted by
Mizukami et al. [57]. They used a thin coaxial wire as a specimen of the mechanically controllable break
junction (MCBJ) technique [58] and turned the center conductor of the wire into an atom-sized contact
of Cu. Employing the junction self-breaking method developed by Tsuitsui et al. [59], a single-atom
contact of Cu could be maintained at room temperature for∼5 s, a sufficiently long time for transmitting
and detecting RF signals. Mizukami et al. injected rectangular pulses of various widths and could
observe output pulses for pulse widths down to 50 ns. Figure 5 shows the output pulses observed for
the 50-ns input pulses. The output pulses are heavily distorted and look like sawtooth or spike signals.
Fitting of the output pulse shape indicated a shunt capacitance of ∼40 pF. This should not, however, be
an intrinsic capacitor of the Cu single-atom contacts because the same capacitance appeared when the
contact was replaced by a fixed resistor. Then, the intrinsic capacitance of the Cu single-atom contacts
should be small for 50-ns rectangular pulses or, in terms of spectral bandwidth, for frequencies up to
∼100 MHz.

0

2

1

V
 (

 t 
)  

 [
 m

V
 ]

t  [ ns ]

50 ns

0 1000 2000

Figure 5. Output pulses from a single-atom contact of Cu when rectangular pulses of 50 ns wide were
injected. Because of a large stray capacitance, the pulse shape is heavily distorted from its rectangular
waveform. Reproduced from [57], copyright (2010) The Japan Society of Applied Physics.
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More direct information on the admittance can be obtained by connecting a specimen to
an impedance meter or a network analyzer. The MCBJ technique, combined with the junction
self-breaking, enables us to maintain atom-sized contacts for a sufficiently long time during which
we can switch the measuring instrument from a DC ammeter to an impedance meter or a network
analyzer. Using this technique, the impedance Z(ω) = 1/Y(ω) of the Au single-atom contacts has
been measured with an impedance meter [57], and the results are depicted in Figure 6. As shown in
the figure, ReZ(ω) ∼ 1/G0 and ImZ(ω) ∼ 0 for frequencies up to 200 kHz.

0 100 200

Frequency ( kHz )

10

14

12

-0.2

0.2

0

R
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 Z
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 )

Im
 Z

 (
 k

  
 )

Figure 6. Impedance spectra Z(ω) of a single-atom contact of Au. Upper and lower panels represent
ReZ(ω) and ImZ(ω), respectively. Both parts show a flat spectrum up to 200 kHz and ReZ(ω) ∼ 1/G0

and ImZ(ω) ∼ 0. Reproduced from [57], copyright (2010) The Japan Society of Applied Physics.

The admittance of atom-sized contacts at higher frequencies was investigated Aoyama et al. [60].
They employed a vector network analyzer and studied the transmission of RF signals through
atom-sized contacts of Au and Pt for frequencies up to 1 GHz. They actually measured a S
parameter S21 = |S21|eiφ which characterizes the signal transmission through a contact and is related
to the admittance as S21(ω) = 2Z0Y(ω)/(1 + 2Z0Y(ω)) where Z0 = 50 Ω is a cable impedance.
For atom-sized contacts, Z0Y(ω)� 1 so that S21(ω) is proportional to Y(ω). Specifically, |S21| and φ

determine the amplitude ratio and the phase difference, respectively, between incident and transmitted
signals. The parameters |S21| and φ are thus more directly relevant to signal transmission than Y(ω).

Figure 7a,b show the frequency spectrum of |S21| and φ, respectively, obtained for 1G0, 3G0, and
10G0 contacts of Au. A unique advantage of the MCBJ technique is that measurements on different
conductance states (i.e., different contact sizes) can be made by slightly varying the substrate bending
without causing any changes in the macroscopic experimental configuration. Modifications occur
only in an atomic-scale region around the contact, and all sources of stray effects, e.g., wiring to
the specimen, are unaffected. Therefore, any spectral features that commonly appear in the data
taken on different contacts can be judged as non-intrinsic contributions. In Figure 7b, for example,



Micromachines 2018, 9, 320 10 of 14

φ exhibits a slight upward bulging around 0.1–1 MHz and a decrement near 1 GHz. These behaviors
are commonly observed for 1G0, 3G0, and 10G0 contacts and represent some stray effects. Except
these deviations, φ ∼ 0 for three contacts over the entire frequency range: the signal passes through
these contacts with no phase delay or advance. This leads to ImY(ω) ∼ 0. When ImY(ω) vanishes,
Y(ω) = ReY(ω) = τG0 from Equation (4). Then, |S21| ∝ |Y(ω)| = τG0 and |S21| becomes a constant.
In fact, in Figure 7a, the observed |S21| shows a flat spectrum at different levels depending on the
contact conductance. The ratio between these levels is |S21|(1G0):|S21|(3G0):|S21|(10G0) = 1:3.65:13.3
which roughly agrees with the conductance ratio 1:3:10 of three contacts. Thus, both the observed
|S21| and φ indicate ImY(ω) ∼ 0, as theoretically predicted, and that the atom-sized contacts of metals
behave as pure resistors in the RF region.
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Figure 7. The S21 parameter measured on the 10G0, 3G0, and 1G0 contacts of Au and for frequencies
up to 1 GHz. Panels (a) and (b) show the spectrum of |S21| and that of the phase φ, respectively. Note
that φ ∼ 0 over the entire frequency range while |S21| = (constant) with a constant that varies in
proportion to the contact conductance. Reprinted from [60] with the permission of AIP Publishing.

The experiment by Aoyama et al. [60] also suggests necessary precautions when carrying out
MCBJ measurements in the RF region. For example, the connection between a specimen and coaxial
wires should be kept as short as possible. One of major stray sources is an insulator-coated metal
substrate that produces a large stray capacitance when a metal wire is glued on it; Plastic substrates such
as Kapton foils show no such stray effects. However, they cannot be used at cryogenic temperatures,
a preferred environment where many atom-sized contacts are more stabilized and longer-lived than
at room temperature. Fortunately, the Au atom-sized contacts exhibited superior stability even at
room temperature and caused no serious difficulties. In the experiment made by Aoyama et al. [60],
they switched the measuring instrument back-and-forth between an ammeter and a network analyzer.
This switching failed some contacts, but a reasonable fraction of the tested Au atom-sized contacts was
found to survive switching disturbances.

It should be pointed out that the smallness of Im Y(ω) has been checked for transparent contacts
such as single-atom contacts of Au and Cu but not for others. In the atom-sized contacts of
transition metals such as Fe and Ni, multiple conductance channels of low τ contribute to electron
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transmission [3]. These contacts, therefore, do not fit to the theoretical models described in Section 2
where a single transmission channel is assumed. However, both Equations (5) and (12) predict a small
Im Y(ω) for a low-τ channel so that Im Y(ω) of multiple channel contacts should still remain small if
each channel is independent and makes an additive contribution to Im Y(ω).

Finally, I note that time-varying biases play an important role not only in signal transmission but
also in contact stability. Single-atom metal contacts become destabilized at high biases and exhibit a
current-induced breakdown [61]. One of probable failure mechanisms is electromigration (EM). It is
well known that device interconnects become longer-lived as the bias frequency increases, due to the
healing effect of AC current where migration damages produced during a positive current cycle can
be recovered during a next negative cycle [62]. It can therefore be anticipated that single-atom metal
contacts would similarly show a longer lifetime under high-frequency biases. For making the healing
effect work, the frequency of bias modulation must exceed the thermal hopping frequency of contact
atoms which increases to∼1 MHz when the bias approaches the breakdown voltage [63]. Conventional
current-disruption measurements [48–50] are difficult to perform at such high frequencies, and it
remains an open question whether single-atom contacts are more stabilized under high-frequency
biases. The answer to this question will become a critical issue when atom-sized interconnects transmit
high-amplitude RF signals.

4. Admittance of Molecular Junctions

The theoretical admittance of molecular junctions can be estimated more easily than that of metal
contacts because the parameters E0 and Γ in the single-level model can be obtained from experiment
by fitting a theoretical I–V curve to an experimental one [27]. Yamauchi et al. [64] applied this method
to Au/BDT(1-4 benzenedihiol)/Au junctions and found that E0 and Γ lie in energy ranges 0.4–1.0 eV
and 20–120 meV, respectively. Even though Au/BDT/Au is known as a highly conductive junction, its
conductance is still around 0.01G0 [64,65]. The Au/BDT/Au is thus a low-transmission junction, and
its admittance can be written as (G0/4)(h̄ω/Γ)τ from Equation (5). By substituting Γ obtained from
experimental I–V curves, the admittance can be estimated as Im Y(ω) . 6 pS at ω = 1 GHz. As for
atom-sized metal contacts, the susceptance of Au/BDT/Au should be negligibly small in the RF region.

Yamauchi et al. [64] also carried out admittance measurements on Au/BDT/Au single-molecule
junctions. The observed Im Y(ω) started to positively deviate from zero around 20 MHz and, after
showing a broad maximum, rapidly decreased to become negative at &200 MHz. Yamauchi et al.,
however, concluded that these variations of Im Y(ω) should not be of molecular origin because the
Im Y(ω) of blank junctions with no bridging molecules showed a similar behavior. Then, the intrinsic
Im Y(ω) of Au/BDT/Au would remain ∼0 in the RF region in agreement with the theoretical
prediction. The observed variations of Im Y(ω) would likely be the stray effect generated by the
use of metal substrates, as noted in the previous section.

Because the RC time constant of a molecular junction varies as 1/Γ, some molecular junctions
showing smaller Γ than that of Au/BDT/Au might start to exhibit a capacitive behavior even in the
RF region. However, such low-Γ junctions are almost insulators and of no practical use as device
interconnects. In other applications such as single-electron transistors [66], capacitive molecular
junctions are indeed a crucial element, but this should be discussed in a different context. As far as the
signal transmission is concerned, the results obtained on Au/BDT/Au would be sufficient to indicate
that other conductive molecular junctions would also behave as pure resistors in the RF region.

5. Conclusions

Theoretical and experimental studies surveyed in the previous sections unanimously lead to a
conclusion that Im Y(ω) ∼ 0 for atom-sized contacts of metals and for signal frequencies up to 1 GHz. These
contacts thus transmit signals with no phase lags when stray effects are minimal and signal bandwidth
does not extend to a THz region. Designers of atomic-scale devices will thus be able to safely incorporate
atom-sized contacts of metals, including single-atom contacts, into devices as purely resistive elements.
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