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Abstract: In this article, we report on a comprehensive modeling study of frequency tuning of
graphene resonant nanoelectromechanical systems (NEMS) via electrostatic coupling forces induced
by controlling the voltage of a capacitive gate. The model applies to both doubly clamped graphene
membranes and circumference-clamped circular drumhead device structures. Frequency tuning
of these devices can be predicted by considering both capacitive softening and elastic stiffening.
It is shown that the built-in strain in the device strongly dictates the frequency tuning behavior and
tuning range. We also find that doubly clamped graphene resonators can have a wider frequency
tuning range, while circular drumhead devices have higher initial resonance frequency with same
device characteristic parameters. Further, the parametric study in this work clearly shows that a
smaller built-in strain, smaller depth of air gap or cavity, and larger device size or characteristic
length (e.g., length for doubly clamped devices, and diameter for circular drumheads) help achieve
a wider range of electrostatic frequency tunability. This study builds a solid foundation that can
offer important device fabrication and design guidelines for achieving radio frequency components
(e.g., voltage controlled oscillators and filters) with the desired frequencies and tuning ranges.

Keywords: nanoelectromechanical systems (NEMS); graphene resonators; electrostatic gate tuning;
frequency tuning model

1. Introduction

Two-dimensional (2D) materials such as graphene and atomic layer semiconductors have recently
attracted tremendous attention and research interest due to their unconventional and extraordinary
material properties stemming from their atomically thin layered structures. In addition to excellent
and unique properties in optical [1] and electrical domains (e.g., mobility of 1,000,000 cm2/(V·s) [2]),
graphene also exhibits remarkable mechanical properties such as ultrahigh Young’s modulus
EY = 1 TPa, and a large breaking strain limit up to 25% [3,4]. These attributes have made graphene an
attractive and promising candidate for highly miniaturized and aggressively scaled resonant-mode
nanoelectromechanical systems (NEMS) with unprecedented device performance. To date, mainly
doubly clamped [5–8] membranes and ribbons, and circumference-clamped circular drumhead
graphene resonators [9–16] have been prototyped, and fundamental device physics and basic
device characteristics have been studied. Further, potential applications of these graphene 2D
NEMS resonators in sensing of external stimuli and perturbations [17], and components for radio
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frequency (RF) signal processing and communications (e.g., oscillators [11]), have been attempted.
For these applications, continuous and wide frequency tuning controlled by moderate level electrical
signals (i.e., voltage or current) is highly desirable, to render these systems tunable, flexible, or
even programmable and reconfigurable. Indeed, strong frequency tunability has been quite heavily
pursued in more conventional and state-of-the-art microelectromechanical systems (MEMS) based
resonators and oscillators; however, tuning range is often limited up to 5% due to their high
stiffness [18]. Thanks to ultra-strong yet highly stretchable crystals and their related material properties,
graphene NEMS resonators can exhibit remarkably broad tunability of resonance frequency, with
∆f res/f res > 300% [12].

Among various device platforms and resonance excitation and detection methods, including
photothermal and electrothermal schemes, electrostatic excitation and control of graphene 2D NEMS
devices are always attractive for on-chip integration with mainstream technologies, and are particularly
promising toward achieving wide frequency tuning ranges [6–12]. In the electrostatic scheme,
device structures form a capacitor between a suspended 2D material and a bottom (or top) gate,
enabling electrostatic control of electrical and mechanical device performance by applying direct
current (DC) electric potential (i.e., DC gate voltage). The tunable conductance with respect to the
applied DC potential at the gate offers strong coupling between the mechanical motion and the
electrical conductance, enabling mechanical motion detection via sensitive vibrating channel field
effect transistor (VCFET) signal transduction [6]. Further, the electrostatic scheme only requires
ultralow power consumption owing to lack of DC current flowing between the suspended graphene
NEMS and the gate. More importantly, in the electromechanical domain, frequency tuning can be easily
achieved by applying the gate DC voltage, which modifies the effective spring constants of the devices
by electrostatic-mechanical coupling. The reported frequency tuning results in the electrostatic scheme
to date, however, exhibit complicated behavior including frequency downshifts and upshifts [6–14,16].
Several attempts have been made to develop frequency tuning models that can be used to describe
and explain the precise tuning mechanisms of devices [6,9,10,19–24]. So far, however, these models are
not sufficient to comprehensively explain the complicated frequency tuning behavior and the device
coupling mechanisms. Thus, it can be quite challenging to understand contributions from various
parameters, including device geometry and built-in tension (strain) on the frequency tuning ranges.

In this work, we present an accurate frequency tuning model for electrostatically actuated doubly
clamped membranes and circumference-clamped circular drumhead graphene resonators. This model
can quantitatively clarify various mechanisms of frequency tuning. We carefully develop the frequency
tuning model via electrostatic gating voltage by considering multiphysics coupling of elastic and
electrostatic effects. Our analysis reveals that various device parameters strongly govern the device
resonance and its frequency tuning range. Moreover, we find that frequency tuning range and
wide-range tuning behavior can be finely engineered by controlling important parameters such as the
built-in strain.

2. Analytical Model and Computational Methods

2.1. Development of Frequency Tuning Model and Analysis Procedure

We start to develop our model by calculating the deflection of the suspended graphene as a thin
membrane subject to external forces. We assume that the suspended 2D graphene membrane has
negligible flexural rigidity, and it can be stretchable by transversely pulling the membrane using the
electrostatic force induced by a gate voltage. Figure 1a shows the side-view schematic of the deflection
of the graphene resonator, and Figure 1b,c illustrate the schematics of a doubly clamped membrane
and the circumference-clamped circular drumhead device structure, respectively. The deflection of
the 2D material is precisely computed by following the procedure outlined in the flowchart shown in
Figure 1d. The equilibrium displacement (ze) on the center of the devices is solved by minimizing the
total energy (sum of elastic energy Uel and electrostatic energy Ues) upon the application of electrostatic
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force. To make the model accurate, we perform several iterative calculations of the capacitance between
the gate and suspended membrane Cg, equilibrium displacement ze, and total strain ε after deflection.
Substituting the modified strain ε and Cg into the effective spring constant keff, the resonance frequency
f res can then be obtained using a relation of f res = (keff/meff)1/2/2π, with the calculated effective mass
of resonance mode, meff.
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Figure 1. Device structures and modeling procedure of electrostatic tuning of resonance frequency
in graphene nanoelectromechanical systems (NEMS). (a) Deflection of graphene resonator under
electrostatic force. Without gate voltage, the membrane is flat (thin magenta dashed line) and
suspended over the trench at equilibrium. With applied DC gate voltage, the membrane deflects to new
equilibrium displacement ze (thick black solid line). With AC actuation, the membrane vibrates with
amplitude δz (thick black dashed lines). (b,c) Schematics of doubly clamped and circular drumhead
graphene resonators, respectively. (d) Flowchart for computational implementation of the frequency
tuning model.

2.2. Frequency Tuning of Doubly Clamped Graphene Resonator

Frequency tuning in a doubly clamped graphene resonator under electrostatic coupling can
be calculated by examining the elastic energy of the suspended graphene and electrostatic energy
in the device capacitor. Consider the doubly clamped device has a static deflection profile of
ud(x) = 4ze(Lx − x2)/L2, (0 < x < L), where L is the length of the suspended graphene membrane
(or ribbon), and it has the maximum static deflection of ze at the midpoint (x = L/2) due to the center of
the symmetric structure. Under uniformly distributed force, we neglect the Poisson’s ratio in doubly
clamped case since the resonance frequency is independent on width of the membrane. For the doubly
clamped device structure shown in Figure 1b, the elastic energy stored in the stretched membrane
Uel,d can be described as [24]

Uel,d =
∫ w

0

∫ L

0

γ

2
u′2(x)dxdy =

∫ w

0

∫ L

0
u′2(x)

[
EYtε0

2
+

EYt
4L

∫ L

0
u′2(χ)dχ

]
dxdy, (1)
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where w, EY, t, and ε0 are the width, Young’s modulus, thickness, and built-in strain of membrane,
respectively. The total tension after deflection is γ = EYtεd, where εd is the total strain that is composed
of both the built-in strain and the added strain according to the deflection. By introducing deflection
profile ud(x) into Equation (1), the elastic energy is then

Uel,d =
64EYtwze

4

9L3 +
8EYtwε0ze

2

3L
. (2)

We consider the suspended graphene as a capacitor where the graphene is a deformable electrode,
the bottom back gate is a fixed plate electrode, and the air gap is the dielectric layer. Considering
deflection profile, the device capacitance Cg,d is

Cg,d =
∫ w

0

∫ L

0

ε0

z0 − ze
4
L2

(
Lx− x2

)dxdy, (3)

where ε0 is the permittivity, and z0 is the depth of the air gap. The electrostatic energy stored in the
device structure is then

Ues = −
1
2

Cg,dV2
g , (4)

where Vg is the gate voltage. The equilibrium displacement ze can be obtained by minimizing the total
energy thus finding the deflection position where the elastic and electrostatic forces are equal:

∂
(
Uel,d + Ues

)
∂ze

=
256EYtwze

3

9L3 +
16EYwtε0ze

3L
− 1

2
C′gVg

2 = 0. (5)

Although Equation (3) can be further simplified by expanding it to Cg,d = ε0wL/z0 + 2ε0wLze/3z2
0

+ 8ε0wLze
2/15z3

0 + . . . , and the initial three terms of the series can be used for calculating ze using
Equation (5), this calculation produces an approximated value of ze and it may give quite large error,
especially when we calculate the exponent of ze. Instead, here we perform several iterations to find
accurate device Cg by repeating a process of plugging ze obtained using Equation (5) back into Equation
(3) till it is convergent. The total strain εd in the graphene includes built-in strain and the added strain
upon deformation. The added strain after deflection is obtained by comparing the extended length
from the deformed graphene sheet and the initial graphene length. The total strain is

εd = 1+ε0
L
∫ L

0

√
1 +

(
∂u
∂x

)2
dx− 1 = 1+ε0

2

√
1 + 16ze2

L2 +

(
1+ε0

)
L

8ze
ln
(√

1 + 16ze2

L2 + 4ze
L

)
− 1. (6)

Next, we consider the dynamic motion of the doubly clamped graphene membrane vibrating at its
resonance frequency. The mode shape of the fundamental mode resonance of doubly clamped devices
can be expressed by a sinusoidal function. Considering the clamped boundary conditions, we obtain
the mode shape of fundamental resonance uf,d(x) = δzsin(πx/L), where δz is the dynamic displacement
at the midpoint. We assume that at the small static defection ze of the graphene membrane, the
vibration mode shape remains to be in the sinusoidal form. The elastic energy δUel for the fundamental
mode resonance of the strained graphene resonator is

δUel,d =
∫ w

0

∫ L

0

γ

2
u′f ,d

2(x)dxdy =
π2EYtwεd

4L
(δz) 2. (7)

The effective spring constant keff,d can be given by the second order differentiation of the
total energy:

keff,d =
∂2δUel,d

∂δz2 +
∂2Ues

∂z2
e

=
π2EYwtεd

2L
− 8ε0wL

15z3
0

V2
g . (8)
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Resonance frequency is determined by f res = (1/2π)(keff/meff)1/2, where meff is effective mass
which can be calculated from kinetic energy of membrane at resonance. The peak kinetic energy
Ekin,d is

Ekin,d =
1
2

meff,d(δz) 2 =
1
2

ρt
∫ w

0

∫ L

0

(
δz sin

(π

L
x
))2

dxdy =
1
4

ρtwL(δz) 2. (9)

From Equation (9), the effective mass of the fundamental mode is meff,d = 0.5ρtwL in doubly
clamped case, where ρ is the mass density. The frequency tuning for the doubly clamped resonator can
be given by

fres,d =
1

2π

√
keff,d

meff,d
=

1
2π

√
π2EYεd

ρL2 − 16ε0

15ρtz3
0

V2
g . (10)

2.3. Circumference-Clamped Circular Membrane

We now turn to analyze the frequency tuning behavior of the circular drumhead graphene
resonator. For convenience, we use a polar coordinate for the circular drumhead that closely matches
the device geometry. The elastic energy stored in the stretched membrane Uel,c can be obtained
by [19,25]

Uel,c =
∫ 2π

0

∫ R

0

{
EYt
2

[
ε0,r

(
∂u
∂r

)2
+

ε0,θ

r2

(
∂u
∂θ

)2
]
+

EYt
8
(
1− v2

)(∂2u
∂r2

)2}
rdrdθ, (11)

where R, ν, ε0,r, ε0,θ are radius, Poisson’s ratio, initial radial strain, initial tangential strain, respectively.
Similar to the doubly clamped case, we assume that the curvature of the static deflection forms the
parabolic shape, and it has the maximum static deflection at its center due to symmetry. The solution
of deflection can also be uc(r) = ze(R2 − r2)/R2, where ze is the static defection at the center of the
drumhead. The elastic energy induced by electrostatic deformation is

Uel,c =
2πEYtz4

e

3
(
1− v2

)
R2

+ πEYtε0,rz2
e +

πEYtε0,rR2

2
(
1− v2

) . (12)

The device capacitance between the suspended graphene and the bottom gate is

Cg,c =
∫ 2π

0

∫ R

0

ε0

z0 − ze
1

R2

(
R2 − r2

) rdrdθ, (13)

and the equilibrium displacement ze can be obtained by minimizing the total energy

∂
(
Uel,c + Ues

)
∂ze

=
8πEYtz3

e

3
(
1− v2

)
R2

+ 2πEYtε0,rze −
1
2

C′gV2
g = 0. (14)

To find accurate ze, we conduct iterations using Equations (12)–(14) till it is convergent. Based on
the deflection curvature and estimated ze, the total radial strain from stretching of the drumhead is
estimated by calculating the radial elongation of the membrane:

εr =
1+ε0,r

2R
∫ R
−R

√
1 +

(
∂u
∂r
)2

dr− 1 =
1+ε0,r

2

√
1 + 4z2

e
R2 +

(
1+ ε0,r

)
R

4z2
e

ln
(√

1 + 4z2
e

R2 + 2ze
R

)
− 1 . (15)

The fundamental mode resonance and its mode shape of circular membrane can be expressed
using the 0th-order Bessel function of the first kind, J0. Considering the circumference-clamped
boundary conditions, the mode shape of the fundamental resonance is uf,c(r) = δzJ0(2.405r/R). The
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elastic energy of the strained circular drumhead at resonance is then modified by substituting the
mode shape uf,c(r) into Equation (11):

δUel,c = 0.271
2.4052πEYtεr

2
(
δz
)2

+
πEYtεrR2

2
(
1− v2

) . (16)

With capacitive softening, the effective spring constant for the circular drumhead is given by

keff,c =
∂2δUel,c

∂δz2 +
∂2Ues

∂z2
e

= 4.924EYtεr −
ε0πR2

3z3
0

V2
g . (17)

The effective mass of the device can be calculated from the peak kinetic energy,

Ekin,c =
1
2

meff,c(δz) 2 =
1
2

ρt
∫ 2π

0

∫ R

0

(
δzJ0

(
2.4
R

r
))2

rdrdθ = 0.136πρtR2(δz) 2. (18)

We obtain the effective mass meff = 0.271ρtπR2 for the fundamental mode resonance in the circular
drumhead case. Thus, the resonance frequency for the circular drumhead under electrostatic gating is
given by

fres,c =
1

2π

√
keff,c

meff,c
=

1
2π

√
2.42EYεr

ρR2 − ε0

0.813ρtz3
0

V2
g . (19)

3. Results and Discussions

We first calculate frequency scaling of the single layer (1L) graphene resonators without the
external gate voltage to understand effects of device dimension and built-in strain on the resonance
frequency. Figure 2 shows the simulated frequency scaling of doubly clamped and circular drumhead
graphene resonators using Equations (10) and (19) at zero gate voltage Vg = 0 V as a function of device
characteristic dimension (length for the doubly clamped structures, and diameter for the circular
drumhead devices) with different built-in strain levels of 0.002%, 0.01%, 0.05%, and 0.25%, respectively.
Due to possible photoresist residue on the device during fabrication and surface adsorbates, we assume
the mass is higher than the intrinsic device mass estimated by device dimensions and mass density,
and we take an effective mass ratio of 2 (i.e., mdevice = 2 × mgraphene) as a typical value. With strain
levels from 0.002% to 0.25%, the resonance frequency depends on the length for the doubly clamped
case and the diameter for the circular drumhead case, with f res~L−1, and f res~D−1 power laws, at zero
bias condition. It is clearly shown that in both doubly clamped and circular drumhead cases, resonance
frequency increases as the characteristic device dimension decreases and as built-in strain increases. For
the same characteristic length and built-in strain, the circular device gives higher resonance frequency
than the doubly clamped device does, since its circumference-clamped structure provides higher
spring constant and smaller effective mass. These correlations for both cases agree with the results
from previous models [6,9,10,19–24] at gate voltage Vg = 0 V. To enable resonance frequency above
gigahertz, f res > 1 GHz, built-in strain≈0.25% with length smaller than 0.4 µm or built-in strain≈0.05%
with length smaller than 0.18 µm are required for doubly clamped graphene resonators. For circular
drumhead resonators to achieve f res > 1 GHz, it needs a built-in strain ≈0.05% with a diameter smaller
than 0.22 µm or a built-in strain ≈0.25% with a diameter smaller than 0.6 µm. Accordingly, fabricating
smaller size membranes, larger built-in strain, and circular drumhead structure are preferred to attain
higher resonance frequency.
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Figure 2. Calculated resonance frequencies of single-layer (1L) graphene resonators without applying
gate voltage. Due to photoresist residue in fabrication and surface absorption, we assume the mass is
higher than the intrinsic device mass (of carbon atoms only), and we take an effective mass ratio of 2
as the typical value. Frequency scaling of (a) doubly clamped membranes and (b) circular drumhead
graphene resonators. The labels represent built-in strain levels in the devices.

Now we focus on electrostatic frequency tuning with respect to gate voltage Vg. At different
built-in strain levels, we find three frequency tuning behaviors: resonance frequency increases
monotonically with |Vg|, it decreases monotonically with |Vg|, and it first decreases, then increases
with increasing |Vg|. All these cases are observed in existing experiments [5–16] for both of doubly
clamped and circular drumhead graphene resonators. Figure 3 shows simulated frequency tuning
of the doubly clamped and circular drumhead single-layer (1L) graphene resonators, with typical
effective mass ratio = 2, air gap z0 = 300 nm, length L = 1 µm and diameter D = 1 µm, respectively. The
results show that a big difference between our model and the previous modeling. For the device with
relatively small built-in strain (ε0 = 0.01% in Figure 3a,d), applying |Vg| leading to elastic stiffening
which is much bigger than that of capacitive softening, causing frequency elevation (“U” shape).
Whereas for the device with large built-in strain (ε0 = 0.25% in Figure 3c,f), the capacitive softening
dominates as |Vg| increases, which keeps reducing the resonance frequency. For intermediate
built-in strain (ε0 = 0.05% in Figure 3b,e), initially the capacitive softening dominates, then the spring
constant stiffening dominates as |Vg| increases, showing “W” shape frequency tuning. These tuning
behaviors also affect frequency tuning range of the graphene resonators. For smaller built-in strain
(ε0 = 0.01%), the resonance frequency of the doubly clamped device (L = 1 µm, z0 = 300 nm) shifts
from 75 MHz to 98 MHz when |Vg|= 0 to 10 V (Figure 3a), showing the frequency tuning range
of ∆f res/f res ≈ 31%. For the device with the higher built-in strain (ε0 = 0.25%), although it leads
to higher initial resonance frequency, the frequency shift is very small (378.9 MHz to 378.3 MHz),
offering very limited frequency tunability, ∆f res/f res ≈ 0.15%. These results suggest that there is an
important trade-off between achieving high initial resonance frequency and wide frequency tuning
range, which should be considered for designing the desired device performance for the specific
applications. For example, devices with large initial strain are preferred for high frequency signal
processing applications, and small initial strain facilitates realizing voltage controlled tunable devices
that could be useful for making systems with tunable or programmable functions.
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Figure 3. Three typical frequency tuning behaviors for both a doubly clamped graphene resonator 
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lines show this model by assuming that effective mass ratio = 2, air gap z0 = 300 nm, length L = 1 μm 
and diameter D = 1 μm, respectively. 

Figure 3. Three typical frequency tuning behaviors for both a doubly clamped graphene resonator
(upper row) and a circular drumhead graphene resonator (lower row) with varying built-in strain of
(a,d) 0.01%, (b,e) 0.05%, and (c,f) 0.25%. The red dashed lines show previous modeling and blue solid
lines show this model by assuming that effective mass ratio = 2, air gap z0 = 300 nm, length L = 1 µm
and diameter D = 1 µm, respectively.

We also study frequency tuning with varying device parameters such as the depth of the air gap
and the number of layers in the doubly clamped and circular drumhead resonators. Figure 4a,b shows
that the device (L = 1 µm, ε0 = 0.01%) with the smaller air gap can provide much larger frequency
tuning range for the doubly clamped and circular drumhead resonators (e.g., ∆f res/f res ≈ 24.4% for
z0 = 350 nm, and ∆f res/f res ≈ 57.8% for z0 = 150 nm, for doubly clamped devices). Interestingly,
with the same device parameters, such as the characteristic length, initial strain, depth of air gap,
doubly clamped devices show larger tuning ranges when the gate voltage is changed (|Vg| = 0–10 V)
(∆f res/f res ≈ 57.8% for L = 1 µm, z0 = 150 nm, ε0 = 0.01%), compared to those of the circular drumhead
resonators (∆f res/f res ≈ 48.2% for D = 2R = 1 µm, z0 = 150 nm, ε0 = 0.01%). This is attributed to the fact
that the fully clamped circular drumhead devices have larger stiffness at the beginning, making it less
responsive to incremental external electrostatic force.

Further, we have investigated the dependence of resonance characteristics on a number of
layers. Figure 4c,d shows frequency tuning in single-layer (1L) and few-layer graphene doubly
clamped and circular drumhead resonators. In the same device parameters (L = 1 µm, ε0 = 0.01%,
z0 = 300 nm) without an applied gate voltage, the resonance frequencies are independent of the number
of layers. With the gate voltage, the resonance frequency for the 1L graphene resonators exhibits a
much higher frequency tuning capability, compared to those in the few-layer graphene resonators
(∆f res/f res ≈ 30.2% for 1L, ∆f res/f res ≈ 17.5% for 2L, and ∆f res/f res ≈ 12.0% for 3L doubly clamped
graphene resonators), and we also find a similar trend in the circular drumhead resonators. According
to Equations (9) and (19), the elastic stiffening is independent of the thickness t, while the capacitance
softening increases with the increasing thickness of the membrane. For the built-in strain ≈0.01% in
these cases, the softening effects of the few-layer are stronger compared to the softening in the single
layer. Therefore, 1L graphene resonators give a much higher frequency at the same voltage and thus a
wider tuning capability, compared to those in the few-layer graphene resonators.
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Figure 4. Dependence of resonance characteristics on depth of air gap and number of layers. Frequency
tuning of doubly clamped graphene resonators with varying (a) air gap and (c) number of layers.
Simulated resonance frequencies and tuning characteristics for circular drumhead resonators with (b)
different depth of air gap and (d) number of layers.

We plot the frequency tuning range to clearly display tuning capability with respect to important
parameters, including characteristic dimension, depth of air gap, and strain (Figure 5). Figure 5 shows
the frequency tuning at gate voltage from Vg = 0 V to 10V as a function of the characteristic dimension
and air gap with high built-in strain (0.2%) and low built-in strain (0.002%), for both doubly clamped
and circular drumhead graphene resonators, respectively. With an air gap from 200 nm to 350 nm,
length or diameter from 0.2 µm to 2 µm, and lower built-in strain (0.002%), this gives a larger frequency
tuning range, while a higher built-in strain (0.2%) leads to a smaller frequency tuning range for both
types of geometries for the graphene resonators. We find that a smaller depth of air gap, smaller initial
strain, and longer characteristic dimension help achieve a wide frequency tuning range.
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Figure 5. 3D plots of computed frequency tuning with varying characteristic dimension and air gap
with high built-in strain (0.2%) and low built-in strain (0.002%). (a) Frequency tunability of doubly
clamped single-layer (1L) graphene resonators, and (b) circular drumhead 1L graphene resonators.

Figure 6 shows the experimental frequency tuning data from [6] and fitted results using our
model (blue solid lines) and previous modeling (red dashed lines) [24]. Due to the trapped charges
in the membrane, the symmetry axis of the frequency tuning curve is shifted from zero gate voltage.
The results show that our model agrees well with experimental data and it is much more accurate
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compared to that of the previous modeling, particularly at a high voltage regime. In a previous
model [24], the equilibrium displacement ze, which is a positive correlate to the strain, depends on the
DC gate voltage Vg, with ze~V2

g power laws [6,10]. This is the only correct form for sufficiently small

Vg; while we expect ze~V2/3
g for large Vg. This is the reason that the estimated resonance frequency

from the previous modeling is much larger than the experimental results. In our model, we obtain
ze by performing several iterative calculations, to make the model accurate at a wide voltage range.
Based on the iterative calculations, we solve the effective spring constant by considering both static
deflection and the fundamental mode shape, which are largely unexplored in the previous model.
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Figure 6. Fitting frequency tuning model to experimental data. The measured data from [6] and fitted
data with our modeling (blue solid lines) and previous modeling (red dashed lines) [24] by assuming
that built-in strain ε0, effective mass ratio, length L, air gap z0 are (a) 0.003%, 3.5, 1.1 µm 250 nm and (b)
0.23%, 5.7, 1.8 µm 250 nm, respectively.

4. Conclusions

Using iterative computational modeling of device capacitance, we have developed comprehensive
models for frequency tuning behaviors in doubly clamped and circular drumhead graphene resonators.
We have also examined the effect of various parameters such as built-in tension, characteristic
dimension, depth of air gap, number of layers, and device structure on frequency tuning, which
provides useful guidelines for future design and fabrication to achieve new tunable graphene devices
with the desired resonance frequencies and tuning ranges.
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