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Abstract: Stimuli-responsive polymeric materials have attracted significant attention in a variety
of high-value-added and industrial applications during the past decade. Among various stimuli,
light is of particular interest as a stimulus because of its unique advantages, such as precisely
spatiotemporal control, mild conditions, ease of use, and tunability. In recent years, a lot of effort
towards the synthesis of a biocompatible and biodegradable polypeptide has resulted in many
examples of photo-responsive nanoparticles. Depending on the specific photochemistry, those
polypeptide derived nano-assemblies are capable of crosslinking, disassembling, or morphing
into other shapes upon light irradiation. In this review, we aim to assess the current state of
photo-responsive polypeptide based nanomaterials. Firstly, those ‘smart’ nanomaterials will be
categorized by their photo-triggered events (i.e., crosslinking, degradation, and isomerization),
which are inherently governed by photo-sensitive functionalities, including O-nitrobenzyl, coumarin,
azobenzene, cinnamyl, and spiropyran. In addition, the properties and applications of those
polypeptide nanomaterials will be highlighted as well. Finally, the current challenges and future
directions of this subject will be evaluated.

Keywords: stimuli-responsive polymers; synthetic polypeptide; photo-sensitive; self-assembly;
morphological transformation

1. Introduction

Stimuli-responsive or ‘Smart’ polymers are capable of changing their physical and/or chemical
properties upon receiving external triggers, such as temperature, pH, redox, mechanical forces, and
light [1–9]. These tailor-made polymers are receiving significant interest in the fields of drug delivery,
biosensor, tissue engineering, coatings, and self-healing materials [10–14]. In particular, light has
recently garnered tremendous attention as a stimulus, as it can be not only triggered remotely but
also provides spatiotemporal control [15–23]. Moreover, irradiation parameters, including wavelength,
power, and time, can be easily tuned to fit the system (e.g., on-demand and controllable drug release
rate) [24–27]. Typically, the ability of smart polymers to respond to light stems from the incorporation
of photo-sensitive chemical structures [28–30]. Those moieties can be classified into three general
categories based on their specific photo-chemistry (Scheme 1A–C). In the first category, represented by
cinnamyl and coumarin, photo-induced dimerization of those groups takes place upon irradiation at
a certain wavelength, while the dimer can undergo a reversal reaction at another wavelength with
a higher energy (i.e., shorter wavelength). The second (e.g., O-nitrobenzyl) involves irreversible
photo-triggered degradation, which can liberate the unprotected functionality, leading to a dramatic
change in solvability. The last subset includes functional groups, such as azobenzene and spiropyran,
which are capable of reversibly isomerizing under different wavelengths. By taking advantage
of the above-mentioned photo-chemistry, various light-triggered morphological transformations
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(e.g., crosslinking, dissociation, and shape change) of polypeptide nano-assemblies have been achieved
(Scheme 1D).
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Scheme 1. Photo-chemistry of various functional groups. (A) Ultraviolet (UV)-induced dimerization;
(B) UV or near infrared (NIR) promoted cleavage; (C) reversible isomerization by UV and visible light;
and (D) photo-triggered metamorphosis of polypeptide derived nano-objects.

Inspired by natural protein, synthetic polypeptides or poly(amino acids) based nanomaterials are
receiving increasing interest in the field of polymer science because of their inherent biocompatibility
and biodegradability [31,32]. Furthermore, synthetic polypeptides have exhibited their unique
ability to form higher order secondary structures, including α-helix, β-sheet, and β-turn, thanks
to non-covalent interactions (i.e., hydrogen bonds, pi–pi stacking, and hydrophobic interaction)
between amino acids side chains [33,34]. Those non-covalent interactions are highly sensitive to local
environments, such as temperature, pH, the presence and concentration of reducing agent, ionic
strength, and even light. A small change in the local environment could have a noticeable impact on
non-covalent interactions, resulting in the transformation of secondary structures and concomitant
change in bio-activity and function of polypeptides [35].

The rapid development of polymerization methodology has empowered polymer chemists with
the ability to easily prepare unique polypeptides with diverse architecture and functionalities [36–39].
Numerous polypeptides have been successfully prepared via various living polymerization
approaches, such as ring-opening polymerization of N-carboxyanhydrides (NCA) [40–43], reversible
addition-fragmentation polymerization [38], atom transfer radical polymerization [44,45], and
ring-opening metathesis polymerization [46–50]. In a typical case, living or controlled polymerization
techniques are capable of producing polymers with precise chain lengths, excellent functionalities
tolerance, and narrow polydispersity [51–55]. In addition, complicated architectures, such as block,
cyclic, brush, and star, which were previously inaccessible, can now easily be made via living
polymerization techniques [56–64]. Owing to those features arising from the living polymerizations
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(vide supra), one can design and tune the hydrophobic to hydrophilic balance, which dictates the critical
packing parameters and give rise to nanoparticles with predictable morphologies (Scheme 2) [65].Micromachines 2018, 9, x FOR PEER REVIEW  3 of 17 
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Scheme 2. The shapes of polypeptide derived nano-objects are dictated by critical packing
parameters [65]. Diblock copolymer polypeptide-b-PEG exemplifies amphiphilic polypeptide
based copolymers.

With the recent success of light-responsive amphiphilic polypeptides in nanotechnology and
nanomedicine, we believe it is necessary to assess the current state of those smart nanomaterials.
In this review, the main focus will be placed on the photo-chemistry of various light-sensitive functional
groups that are incorporated into the polypeptide nanoparticles. Furthermore, we will discuss the
influence on the size or morphologies of nano-assemblies as a consequence of light treatment and
how this may assist the prediction of potential applications of those materials. Recent examples of
photo-responsive polypeptide deriving nanoparticles are summarized in Table 1. Finally, we believe it
is crucial to evaluate the current challenges and future directions of this field.

Table 1. Summary of photo-responsive polypeptide nano-assemblies.

Polypeptide Synthetic
Method Photo-Responsive Moiety Light-Triggered Events Application Ref.

PEG-b-P(LGA/CLG) ROP a Cinamyl Micellar Core-Crosslink Drug Delivery [66]
PEG-b-PCLG ROP Cinamyl Micellar Core-Crosslink Drug Delivery [67]

PEG-CA4LS4Co4 Solution-PPS b Coumarin Micellar Core-Crosslink Drug Delivery [68]
PNBC-b-PEO ROP O-nitrobenzyl Micellar Disassembly Drug Delivery [69]
PNBC-b-PEO ROP O-nitrobenzyl Vesicle to Micelle N/A [70]
PNBC-b-PEO ROP O-nitrobenzyl Composite Nanoparticle Drug Delivery [13]
PNBL-b-PLL ROP O-nitrobenzyl Sol-Gel Transition N/A [71]
PNBL-b-PEO ROP O-nitrobenzyl Sol-Gel Transition N/A [72]

PEtOx-b-P[MetNB][Br] ROP O-nitrobenzyl Composite Nanoparticle Gene Delivery [73]
PEO-b-P(LGA-co-COU) ROP 6-Bromo-7-hydroxyl-coumarine Micellar Disassembly Drug Delivery [74]

Fmoc-Phe-pazoDbg Solution-PPS Azobenzene Micelle to Fiber N/A [75]
PBLG-azobenzene ROP Azobenzene Vesicle Disruption Cargo Release [76]

P(OEG-Azo) ROP Azobenzene Sol-Gel Transition N/A [40]
Azo-GFGH Solid-PPS Azobenzene Nanofiber Assembly Catalysis [77]

PLGASP-b-PEO ROP Spiropyran Micellar Disassembly Drug Delivery [78]

Note: a ROP—ring-opening polymerization; b PPS—phase peptide synthesis.
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2. Photo-Chemistry of Light-Responsive Polypeptide Nanoparticles

2.1. Photo-Crosslinkable Nanoparticles

Photo-dimerizable or crosslinkable groups including cinnamic, coumarin, and anthracene can
undergo a crosslinking reaction via [2+2] cycloaddition of the carbon-carbon double bonds after
UV-irradiation [79–81]. They have been mainly utilized for the photo-crosslinking of micelles, leading
to micelles or nanogels with enhanced colloidal stability, even in very dilute condition [82–84].
Compared with traditional crosslinking methods such as ‘click’ chemistry and carbodiimide
coupling, the photo-crosslinking approach is relatively inexpensive, rapid, and highly efficient at
room temperature. Furthermore, no byproduct is generated during the photo-dimerization process,
rendering a final product with a high purity [85].

Chen et al. demonstrated the first example of photo-crosslinkable polypeptide based
micelle [66]. In their work, diblock copolymer poly(ethylene glycol)-b-poly(L-glutamic acid) was
synthesized by ring-opening polymerization (ROP) of L-glutamate-NCA monomer in the presence
of PEG-amine macroinitiator. The resulting diblock copolymer further underwent deprotection
and subsequent modification with cinnamyl alcohol, yielding amphiphilic PEG-b-polypeptide,
containing pendent cinnamyl functionalities. A core-shell micellar structure was formed by the
self-assembly of the PEG-b-polypeptide into water. Moreover, UV-irradiation at 254 nm led to
photo-crosslinking of the micellar core, which was directly proven by dynamic light scattering (DLS),
showing a decreased size of the nanoparticle after core-crosslinking. Jing and coworkers reported
the synthesis and ROP of a functional NCA monomer bearing a cinnamyl moiety [67]. Water soluble
PEG-amine macroinitiator was utilized during the polymerization process, leading to well-defined
PEG-b-polypeptide copolymers, which possess cinnamyl groups in the side chains of hydrophobic
polypeptide (Figure 1A). The block copolymer was capable of self-assembling into micelles that
could be core-crosslinked under UV light (Figure 1B,C). It is noteworthy to mention that Jing’s
direct polymerization approach achieved full functionalization of cinnamyl in the repeating units
of the polypeptide chain. However, in the case of Chen’s post-modification method, only a partial
functionalization of repeating units with cinnamyl could be realized because of the low efficiency of
esterification under steric environment of the polypeptide.
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Figure 1. (A) Self-assembly of PEG-b-polypeptide and subsequent photo-induced core-crosslinking;
(B) Transmission electron microscopy (TEM) image before UV irradiation; and (C) TEM image after
UV irradiation. Reproduced with permission from [67].
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Beyond cinnamyl photo-chemistry, coumarin based reversible dimerization has also been
illustrated in the fabrication of photo-crosslinkable polypeptide micelles. In a pioneering work by Luo,
solution-phase peptide synthesis (PPS) was employed to obtain a linear-dendritic block copolymer
composed of hydrophilic PEG (5 KDa) and hydrophobic branched polylysine containing peripheral
coumarin groups (Figure 2A) [68]. As the block copolymer was amphiphilic, micellar nanoparticles
were observed in water as a result of self-assembly (Figure 2B). When long-wavelength UV irradiation
(>310 nm) was applied to micelle solutions, the core-crosslinking event was rapidly completed within
400 seconds, as indicated by UV-Vis spectra. More interestingly, photo-induced decrosslinking occurred
upon exposure to a short wavelength UV light (254 nm), elucidating the reversibility of this process.
Notably, the decrosslinking reaction of coumarin dimer underwent a significantly slower kinetics
(over 100 min) compared with that of crosslinking process.
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Figure 2. (A) Chemical structures of linear-dendritic PEG-b-polylysine containing coumarin moieties
at their periphery; (B) light-triggered photo crosslinking of drug-loaded micelles. Reproduced with
permission from [68].

2.2. Photo-Cleavable Nano-Objects

While polypeptide derived diblock copolymer micelles can acquire enhanced stability through
the photo-crosslinking process, the concern regarding the lack of degradability still remains, especially
in biomedical applications [86,87]. In view of this, photo-cleavage chemistry has emerged as an
alternative approach to photo-sensitive polypeptide nanoparticles [13,69–72,74,88]. More importantly,
photo-cleavage reactions are typically accompanied by a dramatic increase in the water-solubility of
the hydrophobic segment, which could promote either a disassembly or morphological transformation
of nano-objects.

Several illustrative examples of photo-cleavable polypeptide nanoparticles involving
O-nitrobenzyl groups have been reported by Dong et al. In their first work, a photo-sensitive
S-(O-nitrobenzyl)-L-cysteine NCA monomer (abbreviated as NBC) was designed and polymerized
with PEG-amine as macroinitiator, giving rise to a diblock copolymer PNBC-b-PEG [69]. Since the
NBC repeating units are hydrophobic because of the presense of O-nitrobenzyl moieties in the side
chains, the amphiphilic block copolymer is able to form micelles with a size of 79 nm. This approach
conferred photo-degradability to the micelles, because the hydrophobic core consists of numerous
UV-labile O-nitrobenzyl groups. Transmission electron microscopy (TEM) and dynamic light scattering
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demonstrated that the block copolymer micelles were capable of dissociating into smaller nanoparticles
(44 nm) upon UV irradiation at 365 nm. The reduction in particle size is because of the photo-cleavage of
O-nitrobenzyl groups, producing free thiols with enhanced water solubility. A later report described the
photo-induced shape transformation of polypeptide-containing vesicles (Figure 3A) [70]. In that work,
PNBC56-b-PEG114 (the subscript stands for the number of repeating units) was synthesized and used
for constructing a vesicle morphology in an aqueous solution. The vesicle solution was subsequently
exposed to 365 nm UV light, promoting the cleavage of O-nitrobenzyl groups and a concomitant
increment in hydrophilicity of PNBC block. As the ratio of hydrophilicity to hydrophobicity increased,
the critical packing parameters of the nano-assemblies decreased, inducing a morphological transition
from vesicle to micelles (Figure 3B–D). In addition, the free thiol inside the micellar core can be further
oxidized in the presence of an oxidizer (i.e., hydrogen peroxide), resulting in formation of disulfide
linkages, which prompt the aggregation of the micelles.
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redox process; (B) vesicular structures before UV treatment; (C) a mixture of vesicles and micelles after
UV irradiation for 5 mintes; and (D) after UV-irradiation for 1 h, the vesicles were fully transformed to
micelles. Reproduced with permission from [70].

Very recently, the same group invented NIR-responsive PNBC-b-PEG upconversion composite
micelles (Figure 4) [13]. During the block copolymer self-assembly process, upconversion nanoparticles
(UCNP) were encapsulated inside the PNBC core. The composite micelles were capable of
disassembling with the help of UCNP, converting NIR light (980 nm) to UV light (365 nm). Moreover,
Zhao and coworkers reported a novel NIR light-sensitive micellar system based on a diblock copolymer,
consisting of PEG and poly(L-glutamic acid) bearing pendent 6-bromo-7-hydroxycoumarin-4-ylmethyl
groups, an efficient NIR two-photon-absorbing chromophore (Figure 5) [74]. Upon irradiation with
794 nm of NIR light, the chromophores were gradually removed from the polypeptide chain, shifting
the hydrophilic–hydrophobic balance toward a disassembly of micelles in water. Notably, nearly
200 min of irradiation was needed to fully cleave the side chain groups, demonstrating the potential of
controlled release kinetics.
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2.3. Photo-Isomerizable Nano-Assemblies

According to the properties of the aforementioned photo-crosslinkable and photo-cleavable
polypeptide nanoparticles (vide supra), we can easily draw the conclusion that the photo-induced
shape transformation or micellar disruption based on those functionalities are non-reversible under
common conditions. While the de-crosslinking reaction of coumarin dimer can be literally achieved,
the condition (i.e., 254 nm) is harsh and the slow reaction could cause the decomposition of coumarin
and lead to undesired side reactions [89]. In the case of O-nitrobenzyl, the UV-induced photo-redox
cleavage would generate O-nitrosobenzaldehyde that cannot reform the original O-nitrobenzyl moiety.
To further pursue efficient and reversible photo-responsiveness of polypeptide nano-assemblies,
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some research groups have designed smart nanoparticle systems, which rely on photo-isomerizable
functionalities, such as azobenzene and spiropyran [40,75–78,90–92].

Azobenzene is capable of transitioning between two isomers (i.e., cis and trans) through
manipulation of UV light (365 nm) and visible light. When UV light is present, a polar cis-isomer
is favorably formed. On the other hand, visible light or heat can promote the shift of isomerization
towards thermodynamically favored non-polar trans-isomer. To date, azobenzene derivatives have
been extensively incorporated into many peptides, either in the side chains or in the backbone. In a
report by Moretto, azobenzene served as a central linker for diblock poly(γ-benzyl-L-glutamate)
(PBLG) (Figure 6A,B) [76]. Before UV irradiation, diblock PBLG trans-isomer vesicles were observed, as
evidenced by TEM and SEM (Figure 6C,D). After exposure to UV light, a rapid and gradual collapse of
those ordered vesicles was observed, probably owing to trans-to-cis azobenzene transformation, which
induced change in 3D geometry of diblock polypeptide (Figure 6F–I). Lu and coworkers were able
to synthesize photo-responsive polypeptides via ROP of NCA monomers that consisted of pendent
azobenzene and oligoethylene glycol (OEG), affording P(OEG-Azo) [40]. Because of the presence of
both hydrophobic azobenzene and hydrophilic OEG, P(PEG-Azo) can self-assemble into nanoparticles
in an aqueous solution. Moreover, a α-helical conformation of polypeptide was observed in the case
of azobenzene trans-isomer. Upon UV treatments, trans-cis isomerization occurred and forced the
polypeptides to adopt a disordered conformation, as evidenced by the circular dichroism spectroscopy.
Importantly, a reversible conformation switch was found when heating the UV-treated cis-polypeptides
at 70 ◦C.
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Figure 6. (A) Reversible geometry change of azobenzene-containing polypeptide via UV and visible
light; (B) UV-Vis absorptions of cis- and trans-isomers; (C,D) TEM and SEM images of vesicles arising
from self-assembly of trans-isomer of polypeptides; (E) cartoon representation of vesicular structure
based on trans-polypeptide; and (F–I) time-dependent UV-induced degradation of vesicles. Reproduced
with permission from [76].

Spiropyran (SP) is a widely-used photochromic molecule, thanks to light-induced
spiropyran-to-merocyanine (SP–MC) isomerization [93,94]. Original SP derivatives, in their closed
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form, appear as colorless, nonpolar, and hydrophobic compounds. Isomerization toward MC
(open form) occurred under UV treatment, leading to MC derivatives, which are colored, polar,
and hydrophilic. Mezzenga et al. presented an excellent example of photo-reversible micelle system,
based on spiropyran-containing polypeptide-b-PEG diblock copolymer (Figure 7A) [78]. Firstly, they
performed a kinetic study of SP–MC and MC–SP isomerization, using UV-Vis spectroscopy. Before UV
irradiation (365 nm), the solution was colorless, suggesting the absence of the MC form. After UV
irradiation, the absorption peak at 544 nm progressively increased and reached maximum value within
5 min, indicative of fast and complete SP–MC isomerization. Nevertheless, MC–SP isomerization
happened much slower and reached full conversion after 180 min in the presence of visible light
(590 nm). After demonstrating the photo-regulated reversibility of SP–PC isomerization, the authors
further utilized TEM to observe the reversible aggregation–dissolution–aggregation process of block
copolymers in water. According to their results, original SP isomer containing polymers were capable
of self-assembling into micelles (Figure 7B). UV irradiation fully disrupted the micellar structure after
5 min, because of the formation of hydrophilic MC moieties (Figure 7C). Interestingly, micelles were
successfully recovered as a consequence of visible light treatment for 3 h (Figure 7D).

Micromachines 2018, 9, x FOR PEER REVIEW  9 of 17 

 

they performed a kinetic study of SP–MC and MC–SP isomerization, using UV-Vis spectroscopy. 
Before UV irradiation (365 nm), the solution was colorless, suggesting the absence of the MC form. 
After UV irradiation, the absorption peak at 544 nm progressively increased and reached maximum 
value within 5 minutes, indicative of fast and complete SP–MC isomerization. Nevertheless, MC–SP 
isomerization happened much slower and reached full conversion after 180 min in the presence of 
visible light (590 nm). After demonstrating the photo-regulated reversibility of SP–PC 
isomerization, the authors further utilized TEM to observe the reversible aggregation–dissolution–
aggregation process of block copolymers in water. According to their results, original SP isomer 
containing polymers were capable of self-assembling into micelles (Figure 7B). UV irradiation fully 
disrupted the micellar structure after 5 min, because of the formation of hydrophilic MC moieties 
(Figure 7C). Interestingly, micelles were successfully recovered as a consequence of visible light 
treatment for 3 h (Figure 7D). 

 
Figure 7. (A) Synthetic route to spiropyran-bearing polypeptide-b-PEG diblock copolymer; (B) TEM 
image of polymer nano-objects before UV treatment; (C) TEM image after UV irradiation; and (D) 
TEM image of regenerated micelles after applying visible light to UV-treated polymer solution. 
Reproduced with permission from [78]. 

3. Properties and Applications 

Apparently, polypeptide derived nanoparticles hold great potential to serve as excellent drug 
delivery systems because of their biocompatibility and biodegradability. Moreover, the 
aforementioned photo-chemistry confers those nanoparticles with attractive properties, such as 
enhanced colloidal stability and on-demand drug release. Jing and coworkers investigated in vitro 
paclitaxel (PTX) release from two batches of PTX-loaded peptide micelles, with one batch treated 
with UV light [67]. According to their results, the drug release from the crosslinked micelles was 
significantly slower than that from the non-crosslinked micelle. For instance, only 20% of the drug 
was leaked from a crosslinked micelle during 55 h incubation in a phosphate buffered saline (PBS) 

Figure 7. (A) Synthetic route to spiropyran-bearing polypeptide-b-PEG diblock copolymer; (B) TEM
image of polymer nano-objects before UV treatment; (C) TEM image after UV irradiation; and (D) TEM
image of regenerated micelles after applying visible light to UV-treated polymer solution. Reproduced
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3. Properties and Applications

Apparently, polypeptide derived nanoparticles hold great potential to serve as excellent drug
delivery systems because of their biocompatibility and biodegradability. Moreover, the aforementioned
photo-chemistry confers those nanoparticles with attractive properties, such as enhanced colloidal
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stability and on-demand drug release. Jing and coworkers investigated in vitro paclitaxel (PTX)
release from two batches of PTX-loaded peptide micelles, with one batch treated with UV light [67].
According to their results, the drug release from the crosslinked micelles was significantly slower than
that from the non-crosslinked micelle. For instance, only 20% of the drug was leaked from a crosslinked
micelle during 55 h incubation in a phosphate buffered saline (PBS) buffer, while almost 100% of
the drug was released from a non-crosslinked micelle under same condition (Figure 8). In Zhao’s
study, NIR-responsive Rifampicin-encapsulated polypeptide micelles showed a neglectable release
after 55 h in the absence of NIR irradiation. When the NIR laser was turned on, a progressive drug
release was observed, demonstrating the feasibility of this drug delivery system to achieve on-demand
drug release.

Very recently, Mandal and coworkers employed ROP to prepare a cationic block copolymer
consisting of poly(2-ethyl-2-oxazoline) and positively charged O-nitrobenzyl modified polymethionine
(P[MetNB][Br]) [73]. This cationic polypeptide was capable of forming an electrostatic complex with
negatively charged calf thymus DNA (ctDNA). When UV-light was applied to the polypeptide-DNA
complex, a photo-driven cleavage of O-nitrobenzyl moieties occurred, resulting in neutral polypeptides,
which had no binding affinity with ctDNA (Figure 9A). According to the gel electrophoresis, free ctDNA
was rapidly released from the complex after irradiation with UV light. Those results demonstrated the
potential of using photo-responsive cationic polypeptide as a DNA delivery platform (Figure 9B,C).
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In addition to biomedical applications, photo-responsive polypeptides have been used in the
field of catalysis as well. He and coworkers designed a peptide-based artificial hydrolase, which
consisted of a catalytic histidine residue and a photo-responsive azobenzene group in the peptide chain
(Figure 10) [77]. Before UV irradiation, the peptide exhibited an antiparallel β-sheet conformation,
enabling self-assembly into a peptide fibril. An enhanced catalytic activity on p-nitrophenyl acetate
was observed, because of the hydrophobic environment of peptide fibril and proximity effect of
histidine groups. However, a significant reduction in catalytic efficiency occurred upon exposure to
UV-light, which caused a conformational conversion of peptide from β-sheet to random coil and thus
disrupted the supramolecular fibril structure. Most importantly, the authors were able to demonstrate
that the activity of the peptide-based artificial hydrolase could be reversibly controlled using visible
and UV light.

Finally, the application of photo-sensitive polypeptides was successfully translated into
macroscopic materials involving reversible sol-gel process, as described by Hu and Li
(Figure 11) [40]. In their study, an organogel was formulated by dissolving azo-bearing
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polypeptide-b-PEG-b-polypeptide triblock copolymer in THF (Figure 11A). Interestingly, the gel
was capable of switching physical states between gel and solution upon alternating the visible and
UV treatment. According to the atom force microscope images, the gel revealed a densely crosslinked
fibrous network, while the solution exhibited a much smaller degree of crosslinking after UV irradiation
(Figure 11B,C).Micromachines 2018, 9, x FOR PEER REVIEW  11 of 17 
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4. Current Challenges and Prospective

Many relatively recent developments in photo-responsive polypeptides have greatly expanded
the scope of smart nanomaterials, providing us with many new possibilities and opportunities
in various applications, such as drug delivery, self-healing materials, and catalysis. Indeed, the
marriage of polypeptide and photo-chemistry not only confer biocompatibility to the nanomaterials,
but also facilitate the structural control of peptide chains or nano-assemblies because of the ease of
using light. In view of photo-chemistry relying on different light-sensitive functionalities, a number of
photo-sensitive peptide nanoparticles with distinct properties have been accomplished.

Despite the tremendous success that has been described above, many challenges still remain.
One significant barrier is the translation of light-responsive polypeptide drug delivery system
into clinical use. Indeed, the majority of examples in this review involve the use of UV light
or visible light, which has a poor penetration depth into human tissue. Moreover, UV light has
been shown to be detrimental to healthy cells and tissues [95–99]. Because of these downsides of
using UV/Vis light, NIR-responsive polypeptide nanoparticles represent a more promising platform
for nanomedicine [100]. However, the current NIR-responsive polypeptide derived drug delivery
systems suffer from either slow drug release kinetics or an introduction of cytotoxic UCNP [13,74].
Therefore, more careful design and study are essential in order to translate those nanomaterials
into biomedical applications. Moreover, photo-responsive polypeptide nano-objects have not yet
been reported by means of controlled radical polymerization (CRP) and ring-opening metathesis
polymerization (ROMP). Considering the robustness of CRP and ROMP techniques to prepare
polymers with complex architectures and functions, we envision that one of the next directions
for photo-responsive polypeptides will be updating the synthetic toolbox, in order to achieve more
sophisticated polypeptide structures. According to the above-mentioned examples illustrated in
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Table 1, photo-responsive polypeptide deriving nanomaterials have been overwhelmingly exploited
for potential biomedicine use, such as drug delivery and gene release. However, only a few reports
demonstrated the promise of those materials in other utilities, such as switchable catalysis and
reversible macroscopic gel materials. Since light can be easily used to dictate when and where
the photo-reaction happens, it can be anticipated that the significant attention on photo-responsive
polypeptides will be shifted to some other applications, including self-healing materials, lithography
or 3D-printing technology, which may exhibit excellent performance with the help of light-stimulus.
Given the considerable success of traditional stimuli-responsive materials in biomedicine and
manufacturing, we believe that photo-responsive polypeptide nanomaterials will take on more
important roles to next generation of supramolecular peptide nanotechnology and material science.
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