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Abstract: Electroosmotic flow (EOF) is widely used in microfluidic systems and chemical analysis.
It is driven by an electric force inside microchannel with highly charged boundary conditions.
In practical applications, electrochemical boundary conditions are often inhomogeneous because
different materials as walls are commonly utilized in routine fabrication methods. In the present study,
we focus on the analytic solutions of the EOF generated in a planar microchannel with asymmetric
electrochemical boundary conditions for non-Newtonian fluids. The velocity profile and flow rate
are approximated by employing the power-law model of fluids in the Cauchy momentum equation.
The hydrodynamic features of the EOF under asymmetric zeta potentials are scrutinized as a function
of the fluid behavior index of the power-law fluid, thickness of Debye length, and zeta potential
ratios between planes. The approximate solutions of the power-law model are comparable to the
numerically obtained solutions when the Debye length is small and the fluid behavior index is close
to unity. This study provides insights into the electrical control of non-Newtonian fluids, such as
biological materials of blood, saliva, and DNA solution, in lab-on-a-chip devices.
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1. Introduction

In the micro-scale, there have been intensive studies to adjust fluid movement using electrostatic
force because pressure-driven flow is inefficient due to the extremely small hydraulic areas in the
microchannel. Electroosmotic flow (EOF) is one of the well-known techniques in electrokinetics
because it can efficiently drive fluids along microchannel devices, such as lab-on-a-chip [1–4]. Most
studies on EOF are based on Newtonian fluids because most electrolytes or buffer solutions used in
microfluidic devices are Newtonian. However, most biological fluids used in biochip, such as blood,
saliva, and DNA solutions, are non-Newtonian fluids. As non-Newtonian fluids exhibit significantly
different properties from Newtonian fluids, a model for non-Newtonian fluids should be established
to predict proper EOF [5–11].

There are various constitutive models to analyze non-Newtonian fluids, such as power-law,
Carreau, Phan–Thien–Tannar, and Oldroyd models. Among them, the power-law model (also known
as the Ostwald–de Waele model) has become a convenient choice for its simplicity and adequateness
in analyzing flow behavior. Therefore, there have been many studies that analyzed EOF using the
power-law model [12–20]. Zhao et al. analyzed the behavior of EOF in a slit microchannel using
power-law and obtained an approximated solution for shear stress and velocity distribution [12].
In addition, they presented the Smoluchowski slip velocity of the EOF in the microchannel using
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power-law and suggested an exact solution for the EOF of power-law fluids in the microchannel [14,16].
Tang et al. numerically analyzed the EOF of power-law fluids using the lattice Boltzmann method [13].
Vasu and De presented the mathematical model for the EOF of power-law fluids in a rectangular
microchannel with a high zeta potential [15]. Babaie et al. and Hadigol et al. numerically analyzed
the EOF of power-law fluids in a slit microchannel combined with a pressure gradient [17,18].
The aforementioned studies are based on EOF in a slit microchannel with symmetrical electrochemical
boundary conditions assuming identical zeta potentials of the top and bottom walls. However, there
are many cases where devices are made using different materials to simply fabricate a microchannel
by using silicon dioxide (glass) as a base and polydimethylsiloxane (PDMS) as the top and side wall.
When microchannels are fabricated using different materials, the zeta potentials are inhomogeneous,
so asymmetric electrochemical boundary conditions should be introduced to reasonably predict EOF.

Studies on the EOF of non-Newtonian fluids with asymmetric zeta potentials are limited.
Afonso et al. analyzed the EOF of non-Newtonian fluids in a microchannel using the simplified Phan–
Thien–Tannar model and the finitely extensible nonlinear elastic model, Peterlin’s approximation [21].
Choi et al. obtained an analytical solution for the velocity profile of the EOF in the microchannel with
asymmetric zeta potential using the Phan–Thien–Tannar model [22]. Qi and Ng investigated the EOF
of a power-law fluid through a slit channel with an asymmetrically patterned wall [23]. Hadigol et al.
presented the electroosmotic mixing of power-law fluid in a slit microchannel with nonuniform zeta
potential distributions along the microchannel walls [24]. Recently, Choi et al. presented a numerical
analysis for the electroosmotic velocity profiles of the power-law fluid in a rectangular microchannel
with an asymmetric zeta potential using finite element analysis [25]. In these studies, it is difficult to
understand intuitively how the parameters affect the velocity profile of the EOF because it is the result
of numerical analysis or a very complicated form of expression.

In the present study, we generalize previous studies on power-law fluids and introduce bounding
walls with different zeta potentials. Approximated solutions for the velocity profile and flow rate
of the EOF of power-law fluids in a slit microchannel with asymmetric zeta potential were obtained
and compared with previous numerical results. We report here a case of power-law fluids as a
representative and comprehensive example.

2. Mathematical Formulation

We consider a two-dimensional EOF, as shown in Figure 1, where a direct current of electric
potential gradient Ẽex is applied to a power-law fluid with a constant density ρ̃ and electric permittivity
ε̃ in a microchannel with gap 2h̃. The top and bottom boundaries bear electric charges upon contact with
the fluid, quantified by zeta potentials ζ̃t and ζ̃b, respectively. Thin nano-scale regions, called electrical
double layers (EDLs), with excess ions are formed adjacent to the boundaries of the microchannel
because of the zeta potential. The ions near the top and bottom EDLs are moved by the external electric
field Ẽex, and the movement of the ions generates the flow of fluid in the microchannel due to viscosity.
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We describe this EOF theoretically by using a system of equation based on first principles and
nondimensionalized using h̃, Ẽex h̃, ũs = −ε̃ζ̃bẼex/µ̃0, and t̃ = h̃/ũs as the characteristic length, electric
potential, velocity, and time, respectively, where ũs and µ̃0 are the conventional Smoluchowski velocity
and dynamic viscosity of Newtonian fluids and the superscript tilde denotes a dimensional form.
The velocity field of the fluid in the microchannel is governed by the dimensionless continuity and
Cauchy momentum equations, which are given as:

∇·u = 0 (1)

Re
Du
Dt

= −∇p +∇·τ+ fe (2)

where u is the velocity vector, p is the pressure, τ is the stress tensor, and fe is the body force. We
consider the unidirectional flow that can be represented as u = u(y)ex, where u is the x-component of
velocity and ex is the unit vector along the x-direction. The body force fe acting on the fluid is defined
as the product of the free charge density and the external electric field, and the density of the charge
can be obtained by Poisson’s equation. The fluid in the microchannel is assumed to be x-direction
unidirectional flow, and the shear stress of the power-law fluid is defined as [26]:

τ = m
∣∣∣∣∂u

∂y

∣∣∣∣n−1 ∂u
∂y

(3)

where u is the x-directional velocity of the fluid; m is the flow consistency index, which is
nondimensionalized using µ̃0h̃n−1/ũn−1

s ; and n is the flow behavior index. If the pressure gradient is
neglected, Equation (2) can be expressed as:

0 = nm
∣∣∣∣∂u

∂y

∣∣∣∣n−1 ∂2u
∂y2 −

1
ER

∂φ

∂x
∂2φ

∂y2 (4)

where φ is the nondimensional electric potential and ER is a dimensionless parameter indicating the
ratio of zeta potential to external potential, ER = ζ̃b/Ẽex h̃. The details on the dimensionless form are
described in Appendix A. The total electric potential can be represented as φ(x, y) = −x + ϕ(y),
where −x and ϕ(y) are the electric potential due to an external electric field and zeta potentials,
respectively. Here the Debye length (λ̃D), a measure of the EDL thickness, is expressed as

λ̃D =
(

ε̃k̃BT̃/2ẽ2z̃2ÑA c̃0

)1/2
for an aqueous solution of a symmetrical electrolyte, where k̃B is a

Boltzmann constant, T̃ is the absolute temperature, ẽ is the elementary charge density, z̃ is the charge
number of ions, ÑA is the Avogadro’s number, and c̃0 is the mole concentration (mol/m3). If the Debye
length λ̃D is extremely small compared with the microchannel thickness 2h̃, the electric potential due
to the zeta potential can be described by the Poisson–Boltzmann equation, which can be linearized
with the Debye–Hückel approximation as:

∂2 ϕ

∂y2 =
ϕ

L2
D

(5)

where LD = λ̃D/h̃ is the nondimensional Debye length. If the operation 〈·〉 is defined as 〈a〉b = a|a|b−1,
by integrating Equation (4), the approximate velocity gradient is obtained as:

∂u
∂y

= −〈χ〉1/n
〈

Zt exp
(

y− 1
LD

)
− Zb exp

(
−y + 1

LD

)
+ α

〉1/n
(6)

where χ = 1/(mERLD), α is an unknown constant, and Zt and Zb are the nondimensional zeta potential
of the top and bottom walls, respectively. The details of the equation are described in Appendix B.
In Equation (6), the term exp((y− 1)/LD)Zt can be interpreted as the effect of Zt on the flow near
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the top boundary, the term − exp(−(y + 1)/LD)Zb is the component generated by the movement of
ions near the bottom wall, and α is caused by the flow rate difference near the top and bottom walls.
The first term is almost zero near the bottom wall, and the second term is near the top wall. Therefore,
the velocity gradient can be approximated by dividing it into two sections as:

(i) 0 ≤ y ≤ 1
∂ut

∂y
= −〈χ〉1/n

〈
exp

{
y− 1

LD

}
Zt + α

〉1/n
(7)

(ii) −1 ≤ y < 0
∂ub
∂y

= −〈χ〉1/n
〈
− exp

{
−y + 1

LD

}
Zb + α

〉1/n
(8)

where ut and ub are the velocity at the top and bottom halves of the channel, respectively. If
Equations (7) and (8) are integrated as it is, the velocity is represented as a hypergeometric function,
which is an infinite series, so intuitive understanding of the velocity profile is very difficult. In the
top half of the channel, the term exp((y− 1)/LD)Zt is dominant near the top wall (y ≈ 1), and α is
dominant near the center line of the microchannel (y ≈ 0). If the term exp((y− 1)/LD)Zt. is dominant,
the velocity gradient in Equation (7) will be approximated as χ1/n exp((y− 1)/LD)Zt

1/n because
extra terms are very small, and vice versa. Therefore, the velocity gradient from Equation (7) can be
approximated as:

∂ut

∂y
≈ −〈χ〉1/n

[
exp

{
1
n

y− 1
LD

}
〈Zt〉1/n + 〈α〉1/n

]
(9)

Although the prosed approximation is inaccurate between the regions where the size of the two
terms is similar, the range of this inaccurate region is very limited because the term exp((y− 1)/LD)Zt

changes exponentially. Therefore, the effect of the approximation error on the overall velocity profile
will be small. If the fluid in the bottom half of the channel is applied in the same way, Equation (8) can
be approximated as:

∂ub
∂y
≈ −〈χ〉1/n

[
− exp

{
− 1

n
y + 1

LD

}
〈Zb〉1/n + 〈α〉1/n

]
(10)

The velocity obtained by integrating Equations (9) and (10) is expressed as:

ut = −〈χ〉1/n〈Zt〉1/nnLD exp
{

1
n

y− 1
LD

}
+ 〈χ〉1/nα1/ny + βt (11)

ub = −〈χ〉1/n〈Zb〉1/nnLD exp
{
− 1

n
y + 1

LD

}
+ 〈χ〉1/nα1/ny + βb (12)

where βt and βb are integral constants. At the center of the microchannel (y = 0), the streamwise
component of the velocity must be continuous:

ut(0) = ub(0) (13)

As LD � 1, the term exp(−1/(nLD)) converges to zero at y = 0. Thus, the integral constants
βt and βb have the same value (β ≈ βt ≈ βb). In Equations (11) and (12), the terms (χα)1/n + β are
common, the term exp{(y− 1)/(nLD)} converges zero at y ≤ 0, and the term exp{−(y + 1)/(nLD)}
converges zero at y ≥ 0. The velocity can be expressed as:

u = −〈χ〉1/n
[

nLD

{
〈Zt〉1/n exp

(
y− 1
nLD

)
+ 〈Zb〉1/n exp

(
−y + 1

nLD

)}
+ α1/ny + c

]
(14)
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where c = β/χ1/n. On the top and bottom walls, no-slip boundary conditions ut = 0 at y = 1 and
ub = 0 at y = −1 are imposed. The above system yields the constant as:

α1/n = −nLD
2

{
〈Zt〉1/n − 〈Zb〉1/n

}
(15)

c = −1
2

nLD

{
〈Zt〉1/n + 〈Zb〉1/n

}
(16)

In this study, potential ratio ER and the dimensionless zeta potential of the bottom wall Zb have
the same value (ER = Zb = ζ̃b/Ẽex h̃), and thus, the velocity profile can be simplified as:

u = − nLD
(mLD)1/n

{
〈ZR〉1/n exp

(
y−1
nLD

)
+ exp

(
− y+1

nLD

)
− y

2

(
〈ZR〉1/n − 1

)
− 1

2

(
〈ZR〉1/n + 1

)}
(17)

where ZR is the zeta potential ratio ZR = Zt/Zb. As we know, the magnitude of zeta potential is
independent of the velocity of EOF, and the flow consistency index m affects the magnitude of EOF but
does not affect the velocity profiles. The dimensionless flow rate Q can be obtained by a straightforward
integration of the velocity profile across the depth of the microchannel (−1 ≤ y ≤ 1) as:

Q =
∫ 1
−1 udy = χ1/nnLD(nLD − 1)

{
〈Zt〉1/n + 〈Zb〉1/n

}
= − nLD

(mLD)1/n (nLD − 1)
{
〈ZR〉1/n + 1

}
(18)

The parameters used in this study are the zeta potential ratio, which ranges from −0.5 to 1.5;
the fluid behavior index (n), which ranges from 0.8 to 1.2; and the dimensionless Debye length (LD),
which ranges from 0.001 to 0.1.

3. Discussions

In this study, the accuracy of the approximate velocity profile is compared with the results of
numerical analysis in a two-dimensional microchannel based on previous work from our group.
For comparison, the present results are plotted by lines, and the numerical results are plotted
by symbols.

When both the top and bottom boundaries are made of the same materials (ZR = 1), α becomes
zero, the assumption used in Equations (9) and (10) are ignored, and an accurate expression can be
obtained. Figure 2 shows such cases for five different fluid behavior indexes. The present results
(lines) and those by numerical analysis (symbols) are seen to coincide exactly for all five cases. For a
Newtonian fluid (n = 1), the characteristic plug-type EOF with Helmoholtz–Smoluchowski velocity
in the core part of the flow and a large velocity gradient in the thin boundary regions are observed.
The shear thinning fluid (smaller fluid behavior index) is less viscous with increasing velocity gradient,
and thus the EOF is enhanced as the fluid behavior index decreases.

The change of Debye length LD in a Newtonian fluid affects the velocity profile near the boundary,
but the velocity of the core part (Smoluchowski velocity) is identical [1–3]. Figure 3 shows the
velocity profile with the change in Debye length in the power-law fluid. The velocity profiles for
a shear-thinning fluid (n = 0.8) are plotted in Figure 3a, and those for a shear-thickening fluid
(n = 1.2) are plotted in Figure 3b. In non-Newtonian fluids, the velocity gradient is concentrated
in a narrow region near the boundaries, and the velocity profiles approach the plug flow as the
Debye length decreases, which is similar to the Newtonian fluid. However, these results also
show a meaningful difference between non-Newtonian and Newtonian fluids at the EOF. Unlike
the Newtonian fluid, the non-Newtonian fluid changes velocity at the core part with the change in
Debye length. Interestingly, the effect of Debye length on the velocity at the core region is reversed
in shear thinning and shear thickening fluids. In a shear-thinning fluid, the velocity at the core
is more enhanced, as the Debye length decreases, whereas the shear-thickening fluid exhibits the
opposite effect.
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(a) shear-thinning fluid (n = 0.8) and (b) shear-thickening fluid (n = 1.2 ).

Figure 4 shows the velocity profiles when the top and bottom boundaries are made of different
materials and thus of different zeta potentials (ZR 6= 1). The symmetric case (ZR = 1) is included
in the figure as a reference. If the zeta potential at the top boundary is higher (lower) than that at
the bottom, the flow near the top boundary is more (less) enhanced than the flow near the bottom,
and the velocity gradient is enhanced at the core unlike the symmetric case. At the asymmetric case
(ZR 6= 1), the constant α of Equation (15) is non-zero, which is different from the symmetric case,
thereby resulting in errors due to the assumptions in Equations (9) and (10). As shown in the figure, the
errors in the approximate solutions are affordable, so the assumptions used in Equations (9) and (10)
are available. When the zeta potentials on the top and bottom boundaries have opposite signs (ZR < 0),
the ions adjacent the top boundary are subjected to forces in the opposite direction to the ions adjacent
the bottom boundary, so EOF will be generated as seen in the figure. The larger the difference between
the zeta potential of each wall, the greater the error in the approximate solutions. Under the same zeta
potential difference, the sign of the error of the shear-thinning fluid and that of the shear-thickening
fluid are opposite.

Figure 5 shows the velocity profiles according to the Debye length with asymmetric zeta potentials
for the shear-thinning fluid (Figure 5a) and shear-thickening fluid (Figure 5b). The errors between the
approximated solution and numerical analysis decreases as the Debye length decreases. The Debye
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length used in this study is generally larger than the Debye length used in the actual EOF to observe
the velocity profile near the boundaries. If a univalent electrolyte with 1 mM ion concentration is
used for a microchannel of 20 µm height, the dimensionless Debye length LD ≈ 0.001, which is much
smaller than the Debye length used in this study. Figure 6 shows the velocity profiles for five different
fluid behavior indexes with fixed zeta potential ratio (ZR = 0.5) and Debye length (LD = 0.05). In this
figure, the approximated solution and numerical results coincide at the Newtonian fluids, and the
error increases as the shear thinning or thickening properties become stronger. The percent difference
between the maximum velocities form the approximate solution and numerical results are described
in the Supplementary Materials (Tables S1 and S2).Micromachines 2018, 9, x 7 of 12 
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The EOF can be examined more quantitatively by studying the volumetric flow rate, which can
be obtained by integrating the velocity profiles across the depth of the microchannel (−1 ≤ y ≤ 1).
Figure 7 shows the volumetric flow rate according to the fluid behavior index for three different Debye
lengths with a fixed zeta potential ratio (ZR = 1.5). Given that the sign of error at the approximate
solution in the top half of the channel is opposite that in the bottom half of the channel, these errors
are canceled out in the integration to obtain the flow rate. Therefore, the flow rate of the approximate
equation is in good agreement with the numerical results. Table 1 shows the flow rate error Qer defined
as Qer = |Qas −Qna|/Qna × 100, where Qas is the flow rate obtained from the approximate solution
and Qna is the flow rate obtained from the numerical analysis. The largest error rate is approximately
0.2%, so the flow rate of the approximate equation is fairly accurate. The volumetric flow rate decreases
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with increasing fluid behavior index. The smaller the Debye length is, the larger the flow rate decreases
as the fluid behavior index changes.Micromachines 2018, 9, x 8 of 12 
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Figure 7. Dimensionless flow rate according to fluid behavior index (n) for different Debye lengths
(LD) with a fixed zeta potential ratio (ZR = 1.5 ).

Table 1. Flow rate error (%) between approximate solution and numerical analysis at ZR = 1.5.

n LD = 0.01 LD = 0.05 LD = 0.1

0.8 0.012 0.090 0.135
0.9 0.013 0.071 0.096
1.0 0 0 0
1.1 0.023 0.088 0.108
1.2 0.038 0.171 0.220

4. Conclusions

In this study, the approximate solution for fully developed two-dimensional steady unidirectional
EOFs of power-law fluids with different zeta potentials on the top and bottom boundaries was derived.
The approximate solution was compared with the numerical analysis results. The approximate
solution is identical to the numerical results in the case of the Newtonian fluid (n = 1) or the zeta
potentials of the top and bottom boundaries being equal. The approximate solution is similar to the
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numerical results as the Debye length becomes smaller or the fluid behavior index is closer to unity.
Given that the velocity errors obtained from the upper and lower halves of the channel cancel each
other out, the volumetric flow rate obtained by the approximate solution is accurate. In many cases,
the microchannels are made up of different materials, and the Debye length is very small. Therefore,
this approximate solution helps in efficiently designing a microfluidic system using EOF without
numerical analysis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/9/6/265/s1.
Table S1: Flow rate error (%) between approximate solution and numerical analysis at ZR = 1.5, Table S2: Flow
rate error (%) between approximate solution and numerical analysis at ZR = 0.5.
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Appendix

The Cauchy momentum equation of the power-law fluid can be non-dimensionalized in the
following ways:

ρ̃
Dũ
Dt̃

= −∇̃ p̃ + ∇̃·τ̃+ f̃e (A1)

ρ̃
ũ2

s

h̃
Du
Dt

= − µ̃0ũs

h̃2
∇p +

µ̃0ũs

h̃2
∇·τ+

ε̃Ẽ2
ex

h̃
∇φ∇2φ (A2)

ρ̃
ũs h̃
µ̃0

Du
Dt

= −∇p +∇·τ+
ε̃Ẽex ζ̃b

µ̃0

1
ũs

Ẽex h̃
ζ̃b
∇φ∇2φ (A3)

Re
Du
Dt

= −∇p +∇·τ− 1
ER
∇φ∇2φ (A4)

where the superscript tilde denotes a dimensional form.

Appendix

Zeta potential conditions of Zt and Zb are imposed on the top (y = 1) and bottom (y = −1)
boundaries, respectively, and the dimensionless electric potential due to the zeta potential can be
obtained from Equation (5).

ϕ =
Zt + Zb

2 cosh(1/LD)
cosh

(
y

LD

)
+

Zt − Zb
2sinh(1/LD)

sinh
(

y
LD

)
(A5)

Given that Debye length LD � 1, it can be assumed as:

cosh
(

1
LD

)
≈ sinh

(
1

LD

)
≈ 1

2
exp

(
1

LD

)
(A6)

The dimensionless velocity gradient equation (Equation (6) can be obtained in the following ways:

nm
∣∣∣∣∂u

∂y

∣∣∣∣n−1 ∂2u
∂y2 = − 1

ERL2
D

{
Zt exp

(
y− 1

LD

)
− Zb exp

(
−y + 1

LD

)}
(A7)

http://www.mdpi.com/2072-666X/9/6/265/s1
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(i) ∂u/∂y > 0

m
(

∂u
∂y

)n
= − 1

ERLD

{
Zt exp

(
y− 1

LD

)
− Zb exp

(
−y + 1

LD

)
+ α

}
(A8)

(ii) ∂u/∂y < 0

−m
(
−∂u

∂y

)n
= − 1

ERLD

{
Zt exp

(
y− 1

LD

)
− Zb exp

(
−y + 1

LD

)
+ α

}
(A9)

where α is the integral constant. As the velocity gradient ∂u/∂y should be a real number, the velocity
gradient obtained from Equations (A8) and (A9) can be expressed as:

(i) ∂u/∂y > 0, ER < 0

∂u
∂y

=

(
− 1

mERLD

)1/n[
Zt exp

(
y− 1

LD

)
− Zb exp

(
−y + 1

LD

)
+ α

]1/n
(A10)

(ii) ∂u/∂y > 0, ER > 0

∂u
∂y

=

(
1

mERLD

)1/n[
−
{

Zt exp
(

y− 1
LD

)
− Zb exp

(
−y + 1

LD

)
+ α

}]1/n
(A11)

(iii) ∂u/∂y < 0, ER < 0

∂u
∂y

= −
(
− 1

mERLD

)1/n[
−
{

Zt exp
(

y− 1
LD

)
− Zb exp

(
−y + 1

LD

)
+ α

}]1/n
(A12)

(iv) ∂u/∂y < 0, ER > 0

∂u
∂y

= −
(

1
mERLD

)1/n[
Zt exp

(
y− 1

LD

)
− Zb exp

(
−y + 1

LD

)
+ α

]1/n
(A13)

If the operation 〈·〉 is defined as ab = a|a|b−1, combining Equations (A10) and (A11), the velocity
gradient can be expressed as:

∂u
∂y

= −
〈

1
mERLD

〉1/n〈
Zt exp

(
y− 1

LD

)
− Zb exp

(
−y + 1

LD

)
+ α

〉1/n
(A14)
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